Ignitor distinguishing control system and method therefor

Information

  • Patent Grant
  • 6803544
  • Patent Number
    6,803,544
  • Date Filed
    Friday, October 6, 2000
    24 years ago
  • Date Issued
    Tuesday, October 12, 2004
    20 years ago
Abstract
A system and method for universal control of an ignitor within a gas appliance is disclosed. The system includes an ignitor distinguishing circuit in communication with the ignitor and having a signal representative of the ignitor current through the ignitor output therefrom, and a controller in communication with the ignitor distinguishing circuit and adapted to determine the scope of the ignitor based on the signal received from the ignitor distinguishing circuit. Specifically, the controller stores a plurality of control programs for controlling a plurality of corresponding ignitor types and executes the control program corresponding to the type of ignitor determined thereby.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to a system and method for universal ignitor control, and more particularly to an ignitor distinguishing control system and method therefor.




Most gas furnaces manufactured today include some type of electronic ignition system and, in particular, hot surface ignitors which generate temperatures of about 2,500° F. The system typically includes an ignitor, a gas valve, and a microcomputer and related circuitry. The microcomputer and related circuitry control energizing of the ignitor to a desired ignition temperature. The ignitor, when activated, ignites gas flow passing through the gas valve to the main burner of the furnace without the use of a pilot light. These electric ignition systems increase the efficiency of the furnace, thereby increasing the efficiency of the HVAC system to which they are connected.




Several different types of ignitors exist. The most common types include silicon nitride ignitors, silicon carbide ignitors and mini silicon carbide ignitors. Each type of ignitor behaves differently during the ignitor in-rush and steady states. As a result, each type of ignitor requires a different ignitor control system for controlling operation of the ignitor and ensuring the proper and optimum operation of the furnace.




Currently, there are no means for distinguishing the type of ignitor installed in a furnace. As a result, a different type of ignitor controller is needed for each type of ignitor. Consequently, existing ignitor systems are severely limited in their ability to be used over a variety of ignitor type configurations. Moreover, when an ignitor needs to be replaced, it must be replaced with the same type of ignitor so that the ignitor control system is compatible therewith. Unfortunately, since furnaces are typically used over a long period of time (i.e. 10-20 years), certain ignitor types may no longer be available. Moreover, a new and improved ignitor may have since been developed which is more desirable. Under such circumstances, both the ignitor and the ignitor control system must be replaced.




Accordingly, there is a need for an ignitor distinguishing control system and method whereby one ignitor controller type can be used to control any type of ignitor.




SUMMARY OF THE INVENTION




An ignitor distinguishing control system for distinguishing the type of ignitor within a gas appliance in which the ignitor powered by a power source having a power source voltage, v, connected thereto and an ignitor current having a magnitude is disclosed. The system comprises an ignitor distinguishing circuit in communication with the ignitor and having a signal representative of the ignitor current through the ignitor output therefrom, and a controller in communication with the ignitor distinguishing circuit and adapted to determine the type of the ignitor based on the signal received from the ignitor distinguishing circuit. The igniter operates between an in-rush state having a beginning and an end and a steady state. The controller comprises storage for storing a plurality of control programs for controlling a plurality of corresponding ignitor types and an execution mechanism for executing the control programs corresponding to the type of ignitor determined by the controller. The plurality of control programs comprise a silicon carbide control program, a silicon nitride control programs, and a mini-silicon carbide control programs, and the plurality of corresponding ignitor types comprise a silicon carbide ignitor, a silicon nitride ignitor, and a mini-silicon carbide ignitor, respectively. The controller further comprises a comparator adapted to compare the magnitude of the igniter current of the signal at the beginning of the in-rush state to the magnitude of the ignitor current of the signal at the end of the in-rush state, and the execution mechanism comprises means for executing the silicon carbide ignitor control program when the igniter current compared by the comparator increases between the beginning and the end of the in-rush state. The controller storage also stores an ignitor current value during steady state for each of the plurality of ignitor types and for a plurality of different power source voltages, vp, and the comparator is further adapted to compare the magnitude of the ignitor current of the signal during the steady state with the ignitor current value stored within the controller storage for the power source voltage, vp, equal to the power source voltage, v, of the ignitor distinguishing control system. The execution mechanism executes the control program for the ignitor type having the ignitor current value equal to the magnitude of the ignitor current. The controller further comprises an error message generator for generating an error message to an operator of the appliance if no ignitor type is determined thereby.




A method of distinguishing the type of ignitor within a gas appliance is also disclosed. The method comprises receiving a signal from an ignitor distinguishing circuit connected to the ignitor, and determining the type of ignitor based on the signal received from the ignitor distinguishing circuit. The method may further comprise storing a plurality of control programs for controlling a plurality of corresponding ignitor types and executing the control programs corresponding to the type of ignitor determined. The plurality of control programs comprise a silicon carbide control programs, a silicon nitride control programs, and a mini-silicon carbide control programs, the plurality of corresponding ignitor types comprise a silicon carbide ignitor, a silicon nitride ignitor, and a mini-silicon carbide ignitor, respectively, and the ignitor operates between an in-rush state having a beginning and an end and a steady slate. The method further comprises comparing the magnitude of the ignitor current at the beginning of the in-rush state to the magnitude of the ignitor current at the end of the in-rush state and executing the silicon carbide ignitor control program when the magnitude of the ignitor current increases between the beginning and the end of the in-rush state. The method further comprises storing an ignitor current value during steady state for each of the plurality of ignitor types and for a plurality of power source voltages, vp, comparing the magnitude of the ignitor current of the signal during the steady state with the ignitor current value stored within the controller storage for the power source voltage, vp, equal to the power source voltage, v, of the ignitor, and executing the control program for the ignitor type having the ignitor current value equal to the magnitude of the ignitor current. The method may further comprise generating an error message to an operator of the appliance if no ignitor type is determined.




While the principal advantages and features of the present invention have been explained above, a more complete understanding of the invention may be attained by referring to the description of the preferred embodiments.











BRIEF DESCRIPTION OF THE INVENTION





FIG. 1

is a block diagram showing the component parts of a typical furnace for use in connection with a HVAC system in which an ignitor distinguishing control system and method therefor in accordance with the present invention may be implemented;





FIG. 2

is a schematic diagram of one embodiment of an ignitor distinguishing control system in accordance with the present invention for use in the ignition system of

FIG. 1

;





FIG. 3

is a schematic diagram of another embodiment of an ignitor distinguishing control system in accordance with the present invention for use in the ignition system of

FIG. 1

;





FIG. 4

is a chart identifying the operating characteristics of various types of ignitors for a plurality of line voltages during the ignitor's in-rush and steady states; and,




FIG.


5


and

FIG. 6

are flowcharts outlining an ignitor distinguishing control method in accordance with the present invention for distinguishing the type of ignitor in the ignition system of FIG.


1


.











DETAILED DESCRIPTION OF PREFERRED ENBODIMENTS




An ignitor distinguishing control system and method therefor is shown and described in conjunction with a gas furnace incorporating an electronic ignition system. It can be appreciated by one skilled in the art, however, that the ignitor distinguishing control system and method therefor can be provided in conjunction with other types of gas appliances, including without limitation water heaters, boilers, dryers, stoves and ranges. As shown in

FIG. 1

, a typical gas furnace system


100


includes a heat exchanger


102


, a combustion system


104


, an ignition system


106


, an air blower assembly


108


and an operator control


110


, such as a thermostat. Activation of the heating of furnace system


100


requires the opening of a gas valve (not shown) and triggering of an ignitor within the ignition system


106


.





FIG. 2

shows an ignitor distinguishing control system


111


according to one embodiment of the present invention. In particular, an ignitor


112


is powered by a conventional 120 Volt alternating current (AC) power source having power terminals


126


and


127


. It is to be understood, however, that power sources of a different voltage, such as for example 97 Volts or 132 Volts may be implemented. The ignitor


112


is controlled by an ignitor switch


114


such as a triac, having terminals


116


and


118


. When the voltage on the terminal


116


is positive with respect to the voltage on the terminal


118


and a positive gate voltage is applied to the gate terminal


120


of the switch


114


, the left semiconductor


122


conducts. Likewise, when the voltage on the terminals


116


and


118


is reversed and a negative voltage is applied to the gate terminal


120


, the right semiconductor


124


conducts. An inducer


128


, sometimes also referred to as a purge fan or a combustion air blower, is connected to the power source terminal


126


through normally-open inducer relay contacts


130


. The inducer


128


is in air flow communication with the combustion system


104


such that when gas is flowing into the combustion chamber of the furnace (not shown), the inducer


128


provides the air required for developing a combustible air-gas mixture, and provides a positive means for forcing the products of combustion out of the combustion chamber through the flue (also not shown).




A controller


134


, preferably in the form of a microprocessor, operates off of a power supply


146


, preferably of 5 Volts, in series with a pull-up resistor


148


. The controller


134


is connected to the ignitor


112


and the inducer


128


via an ignitor distinguishing circuit


154


. The ignitor distinguishing circuit


154


comprises an opto-isolator


138


, having a pair of input pins


158


and


160


and a pair of output pins


162


and


164


, a current-to-voltage divider


156


connected between the ignitor


112


and the input pin


160


of the opto-isolator


138


, and a combination of a diode


140


and a resistor


142


in series and connected between the inducer


128


and the input pin


158


of the opto-isolator


138


. Among other functions, the opto-isolator


138


electrically isolates the high voltage components of the ignitor distinguishing control system


111


from its low voltage components. The input pins


158


and


160


of the opto-isolator


138


are connected by a diode


166


, while the output pins


162


and


164


of the opto-isolator are connected by a transistor


168


. Output pin


162


is connected to the controller


134


, while output pin


164


is connected to ground


170


. The current-to-voltage divider


156


consists of a resistor


132


connected in parallel with a transistor


144


. Transistor


144


has a base


172


connected between the ignitor


112


and the resistor


132


, an emitter


174


connected to the power terminal


127


and a collector


176


connected to the input pin


160


. Once a sufficient amount of current passes through the ignitor


112


to turn on the transistor


144


, a signal representative of that current passes through the opto-isolator


138


and is input to the controller


134


.




In one embodiment, the diode


140


is a IN4004 diode, the resistor


142


is a 47 kOhm resistor, the transistor


144


is a MPSA42 transistor, the resistor


132


is a 0.250 Ohm resistor, the igniter switch


114


is a MAC8, the resistor


148


is a 10 kOhm resistor, the opto-isolator


138


is a 4N25, the ignitor


112


is a silicon nitride ignitor, and the controller


134


is a MC68HC705P6. It can be appreciated by one skilled in the art, however, that other types of inducers, ignitors, transistors, controller, and opto-isolators may be implemented.





FIG. 3

shows an ignitor distinguishing control system


111


′, according to another embodiment of the present invention. In particular, an ignitor


112


′ is powered by a conventional 120 volt alternating current (AC) power source having power terminals


126


′ and


127


′. It is to be understood, however, that power sources of a different voltage, such as for example, 97 Volts or 132 Volts may be implemented. The ignitor


112


′ is controlled by an ignitor switch


114


′, such as a triac, having terminals


116


′ and


118


′. An inducer


128


′ is connected to the power source terminal


126


′ through normally-open inducer relay contacts


130


′. The switch


114


′ and the inducer


128


′ operate in a similar manner as those of

FIG. 2. A

controller


134


′, preferably in the form of a microprocessor, having an analog-to-digital converter (not shown) operates off a power supply


146


′, preferably of 5 Volts. It can be understood that the analog-to-digital converter can be provided separate from the controller


134


′. The controller


134


′ is connected to the ignitor


112


′ via an ignitor distinguishing circuit


154


′. The ignitor distinguishing circuit


154


′ comprises a current-to-voltage divider


156


′ in series with a voltage divider


150


. Current-to-voltage divider


156


′ includes a transformer


136


having a primary winding


137


in parallel with a secondary winding having a connection to ground. The voltage divider


150


includes a first resistor


180


connected in series with the power source


146


′ and a second resistor


182


connected in series between the current-to-voltage divider


156


′ and the microprocessor


134


′. The voltage divider


150


acts in part to electrically isolate the high voltage components of the ignitor distinguishing control system


111


′ from its low voltage components. The voltage divider


150


outputs a signal representative of the current passing through the ignitor


112


′.




In one embodiment, the ignitor switch


114


′ is a MAC8, the controller


134


′ is a MC68HC705P6, the ignitor


112


′ is a silicon nitride ignitor, the transformer


136


has a 200 mVolt Amp rating and 1000/1 turns, and the first and second resistors


180


and


182


are 100 KOhm resistors. It can be understood by one skilled in the art that any other types of ignitors, ignitor switches, controller, and transformers may be implemented. While the ignitor distinguishing control systems


111


,


111


′ are shown in two different embodiments, it can be appreciated that any system which can generate a signal representative of the current passing through an ignitor in an ignition system of a gas appliance as an input to a controller in communication therewith and having the functionability described herein can be used. Likewise, while both ignitor distinguishing control systems


111


,


111


′provide a similar function, due to the varying costs of the different components thereof, one circuit may be more economically favorable than the other.




As shown in

FIG. 4

, different types of ignitors operate differently during the ignitor in-rush state (i.e., between 0 and 2 seconds of ignition), than during a steady state. For example, with a 97 Volt power source, the current through a silicon carbide ignitor increases from 1.92 Amps to 2.97 Amps during the in-rush state, while the current through the silicon nitride and mini-silicon carbide ignitors decreases during that state; namely from 4.78 Amps to 2.2 Amps and from 1.25 Amps to 0.57 Amps, respectively. The silicon nitride ignitor and the mini-silicon carbide ignitor are further distinguished based on the ignitor current during a steady state. In the case of a 97 Volt power source, the steady state current in a silicon nitride ignitor is greater than that of a mini-silicon carbide ignitor; namely 1.3 Amps versus 0.57 Amps, respectively. The controllers


134


,


134


′ store the information in the table of

FIG. 4

in their memory (not shown).




Controllers


134


,


134


′ use the signal input thereto from the ignitor distinguishing circuits


154


,


154


′ and the information of

FIG. 4

stored in their memory to determine whether an ignitor is installed and; if so, what type. If no ignitor is installed in the ignition system


106


, no signal will be generated from the ignitor distinguishing circuits


154


,


154


′ to the controllers,


134


,


134


′. If an ignitor is installed, a signal will be generated from which the microprocessor


134


,


134


′ can then determine its type. In the case of the ignitor distinguishing circuit


154


of

FIG. 2

, the signal is in the form of a square wave, wherein the width of each pulse corresponds to the magnitude of the current through the ignitor


112


per a look-up table. Such a table may equate a pulse width of approximately 7 ms. to 1.25 Amps exemplary of a mini silicon nitride ignitor, or a pulse width of approximately 1 ms. to 5.5 Amps exemplary of a silicon nitride ignitor. In the case of the ignitor distinguishing circuit


154


′ of

FIG. 3

, the signal is in the form of a sine wave, wherein the magnitude of the voltage associated therewith corresponds to the magnitude of the current through the ignitor


112


′ per a look-up table. Such a table may equate a magnitude of 4.5 Volts to 5.5 Amps exemplary of a silicon nitride ignitor or a magnitude of approximately 3.0 Volts to 1.25 Amps exemplary of a mini silicon nitride ignitor. These tables are stored in the controller


134


,


134


′ so that it can calculate the ignitor current therefrom based on the signal received from the ignitor distinguishing circuit


154


,


154


′. Based on the changes to the ignitor current during the igniter in-rush state and on the magnitude of the ignitor current during the steady state, controller


134


,


134


′, using the information of the table of

FIG. 4

stored therein, can determine the type of ignitor installed.




The controller


134


,


134


′ further stores a plurality of control programs for controlling the various types of ignitors of FIG.


4


. In the case of a silicon carbide ignitor, controller


134


,


134


′ simply sends a signal to apply the full voltage of the AC power source to the ignitor


112


,


112


′. Controller


134


,


134


′ stops sending the signal when the ignitor flame is detected or the pre-determined ignitor activation period ends. In the case of either a silicon nitride ignitor or mini-silicon carbide ignitor, a routine as described in U.S. Pat. Nos. 4,925,386 and 4,978,292 and incorporated herein by reference may be used.





FIG. 5

is a flowchart outlining one preferred method of distinguishing the type of ignition in the ignitor system


106


of

FIG. 1

using either ignitor distinguishing control systems


111


,


111


′ of

FIGS. 2 and 3

, respectively. At


200


, the furnace system


100


checks whether there is a request for heat. If not, at


202


furnace system


100


remains in standby mode. If so, at


204


, the retry and cycle counters (not shown) of the ignition system


106


are cleared. These counters are used to keep track of the number of times required to light the ignitor


112


,


112


′ or the number of times it is recycled. If the counters exceed a certain predetermined limit, the ignitor system


106


is locked out. At


206


, a diagnostic check is made of various components of the furnace system


100


to detect any errors or malfunctions. If such errors or malfunctions are detected, at


208


a diagnostic error is generated by the microcomputer


134


,


134


′ and an appropriate LED of the microcomputer


134


,


134


′ corresponding to the error or malfunction is flashed a predetermined number of times. If no errors or malfunctions are detected, at


212


a check is made whether an ignitor is installed. If not, at


214


, controller


134


,


134


′ generates an ignitor error message and at


216


, an LED on the microprocessor


134


,


134


′ corresponding to the error flashes on and off for a predetermined number of times. If an ignitor is installed and once a sufficient amount of current passes through the voltage divider


156


, at


218


the ignitor distinguishing circuit


154


,


154


′ is turned on, and at


220


, the type of ignitor


112


,


112


′installed in the ignition system


106


of the furnace system


100


is determined by the microprocessor


134


,


134


′.





FIG. 6

is a flowchart outlining one preferred method of the step


220


of

FIG. 5

for determining the type of ignitor installed in the ignition system


106


of the furnace system


100


. At


222


, microprocessor


134


,


134


′ determines whether the magnitude of the ignitor current represented by the signal generated from the ignitor distinguishing circuit


154


,


154


′ has increased during the in-rush state of the ignitor


112


,


112


′. If so, the microprocessor


134


,


134


′ determines that the ignitor


112


,


112


′ must be a silicon carbide ignitor based on the parameters outlined in the table of FIG.


4


and stored within the controller


134


,


134


′. At


224


, microprocessor


134


,


134


′ executes the silicon carbide ignitor control program stored therein accordingly.




If the ignitor current decreases during the in-rush state of ignitor


112


,


112


′, at


226


the controller


134


,


134


′ determines the voltage of the power source applied to ignitor


112


,


112


′ via a voltage measurement circuit (not shown) and at


228


, it determines the magnitude of the ignitor current represented by the signal generated by the ignitor distinguishing circuit


154


,


154


′ during the steady state operation of the ignitor


112


,


112


′. At


230


, controller


134


,


134


′ compares the magnitude of the ignitor current with the value of the steady state ignitor current for a silicon nitride operating at the power source voltage stored within the controller


134


,


134


′. At


231


, a check is made whether they are equal. If so, at


232


, controller


134


,


134


′ executes a silicon nitride ignitor control program stored therein accordingly. If not, at


234


controller


134


,


134


′ compares the magnitude of the ignitor current with the value of the steady state ignitor current for a mini-silicon carbide ignitor operating at the power source voltage stored within the controller


134


,


134


′. At


235


, a check is made whether they are equal. If so, at


236


, controller


134


,


134


′ executes a mini-silicon carbide ignitor control program stored therein accordingly. If not, at


238


, the controller


134


,


134


′ generates an unknown ignitor error message, and at


240


, a corresponding LED on the controller


134


,


134


′ flashes a predetermined number of times.




The foregoing constitutes a description of various features of a preferred embodiment. Numerous changes to the preferred embodiment are possible without departing from the spirit and scope of the invention. Hence, the scope of the invention should be determined with reference not to the preferred embodiment, but to the following claims.



Claims
  • 1. An ignitor distinguishing control system for distinguishing the type of ignitor within a gas appliance, the ignitor operating between an in-rush state having a beginning and an end and a steady state, and being powered by a power source having a power source voltage, v, connected thereto, and an ignitor current having a magnitude, the system comprising:ignitor distinguishing circuit means in communication with the ignitor and having a signal representative of the ignitor current through the ignitor output therefrom; and a controller in communication with the ignitor distinguishing circuit means and adapted to determine the type of the ignitor based on the signal received from the ignitor distinguishing circuit means, the controller comprising storage means for storing a plurality of control programs for controlling a plurality of corresponding ignitor types including at least a silicon carbide control program, a silicon nitride control program, and a mini-silicon carbide control program, and wherein the plurality of corresponding ignitor types comprise a silicon carbide ignitor, a silicon nitride ignitor, and a mini-silicon carbide ignitor, respectively; and execution means for executing the control programs corresponding to the type of ignitor determined by the controller.
  • 2. The ignitor distinguishing control system of claim 1, wherein the controller comprises a comparator adapted to compare the signal from the ignitor distinguishing circuit at the beginning of the in-rush state to the signal from the ignitor distinguishing circuit at the end of the in-rush state, and wherein the execution means comprises means for executing the silicon carbide ignitor control program when the comparison of the signals from the ignitor distinguishing circuit indicates that the ignitor current increased between the beginning and the end of the in-rush state.
  • 3. The ignitor distinguishing control system of claim 2, wherein the storage means comprises means for storing an ignitor current value during steady state for each of the plurality of ignitor types and for a plurality of different power source voltages, vp, and wherein the comparator is further adapted to compare the signal from the ignitor distinguishing circuit during the steady state with the ignitor current value stored within the storage means for the power source voltage, vp, equal to the power source voltage, v, of the ignitor distinguishing control system, and wherein the execution means further comprises means for executing the control program for the ignitor type having the ignitor current value equal to the magnitude of the ignitor current.
  • 4. The ignitor distinguishing control system of claim 2 wherein the controller further comprises error message generation means for generating an error message to an operator of the appliance if no ignitor type is determined thereby.
  • 5. The ignitor distinguishing control system of claim 1, wherein the ignitor has a first terminal and a second terminal, and the controller is a microprocessor, and wherein the ignitor distinguishing circuit means comprises:an opto-isolator having a first and second input and a first and second output, the first output connected to the microprocessor, the second output connected to a ground, and the first input connected to the first terminal of the ignitor; and a current-to-voltage divider connected between the second terminal of the ignitor and the second input of the opto-isolator.
  • 6. The ignitor distinguishing control system of claim 5, wherein the current-to-voltage divider comprises:a resistor connected between the second terminal of the ignitor and the power source; and a transistor connected in parallel with the resistor between the second terminal and the second input of the opto-isolator.
  • 7. The ignitor distinguishing control system of claim 1, wherein the ignitor has a first terminal and a second terminal, and the controller is a microprocessor, and wherein the ignitor distinguishing circuit means comprises:a current-to-voltage divider connected to the second terminal of the ignitor; and a voltage divider connected in series between the microprocessor and the current-to-voltage divider.
  • 8. The ignitor distinguishing control system of claim 7, wherein the current-to-voltage divider comprises:a transformer having a primary winding and a secondary winding, the transformer connected between the second terminal of the ignitor and the power source; and a resistor connected in parallel with the transformer between the secondary winding of the transformer and the voltage divider.
  • 9. A method of distinguishing of the type of ignitor within a gas appliance, the ignitor powered by a power source having a power source voltage, v, and an ignitor current having a magnitude, the ignitor operating between an in-rush state having a beginning and an end and a steady state, the method comprising:receiving a signal from an ignitor distinguishing circuit that compares the magnitude of the ignitor current at the beginning of the in-rush state to the magnitude of the ignitor current and the end of the in-rush state; and determining the type of ignitor based on the signal received from the ignitor distinguishing circuit; executing one of a plurality of control programs for controlling a plurality of corresponding ignitor types, including at least a silicon carbide control program, a silicon nitride control program, and a mini-silicon carbide control program, corresponding to the type of ignitor determined, the silicon carbide ignitor control program being executed when the magnitude of the ignitor current increases between the beginning and the end of the in-rush state.
  • 10. The method of claim 9, further comprising:storing an ignitor current value during steady state for each of the plurality of ignitor types and for a plurality of power source voltages, vp; comparing the magnitude of the ignitor current of the signal during the steady state with the ignitor current value stored within the storage means for the power source voltage, vp, equal to the power source voltage, v, of the ignitor; and executing the control program for the ignitor type having the ignitor current value equal to the magnitude of the ignitor current.
  • 11. The method of claim 10, further comprising generating an error message to an operator of the appliance if no ignitor type is determined.
US Referenced Citations (8)
Number Name Date Kind
4068556 Foley Jan 1978 A
4518345 Mueller et al. May 1985 A
4741692 Sadakata et al. May 1988 A
4802414 Fiedler et al. Feb 1989 A
5170042 Bunn Dec 1992 A
5357076 Blankenship Oct 1994 A
5725368 Arensmeier Mar 1998 A
5911895 Porfido et al. Jun 1999 A
Foreign Referenced Citations (1)
Number Date Country
3-251613 Nov 1991 JP