Iliac pin and adapter

Information

  • Patent Grant
  • 11896445
  • Patent Number
    11,896,445
  • Date Filed
    Wednesday, July 7, 2021
    2 years ago
  • Date Issued
    Tuesday, February 13, 2024
    3 months ago
  • Inventors
  • Original Assignees
    • AUGMEDICS LTD.
  • Examiners
    • Boles; Sameh R
    Agents
    • KNOBBE, MARTENS, OLSON & BEAR, LLP
Abstract
Apparatus for mounting in a bone of a patient, consisting of a rigid elongated member having an axis of symmetry and a distal section, a proximal section, and an intermediate section connecting the distal and proximal sections. The apparatus has n helical blades, formed in the distal section, distributed symmetrically about the axis, each of the blades having a helix angle greater than zero and less than 45°. A cross-section of the distal section, taken orthogonally to the axis of symmetry, includes n mirror planes containing the axis of symmetry, wherein n is a whole number greater than one, and wherein the blades are configured to penetrate into the bone and engage stably therein. Adapters coupling the apparatus to different types of markers are also described.
Description
FIELD OF THE INVENTION

The present invention relates generally to surgery, and specifically to surgery performed using augmented reality.


BACKGROUND OF THE INVENTION

In an augmented reality system used by a physician performing surgery, it is typically necessary to register a frame of reference of a patient with a frame of reference of the augmented reality system used by the physician. Methods for registration are known in the art.


U.S. Pat. Nos. 7,835,734 and 3,467,351 to Mire et al. describe a dynamic reference frame that can be used to maintain localization of a patient space with an image space. The dynamic reference frame can be fixedly interconnected with a bone portion of the anatomy of the patient.


U.S. Pat. No. 9,066,151 to Sasso describes mounting a surgical navigation reference frame to a patient. A bone anchor having a bone engaging portion is inserted through a cannula for anchoring to bone. The bone anchor cooperates with the cannula to form a mounting device that is adapted for coupling with the surgical navigation reference frame.


U.S. Pat. No. 9,339,448 to Reckling, et al. describes placement of an implant into bone, such across the sacro-iliac joint. It is stated that placement can be facilitated using various CT imaging views that allow the implants to be placed in bone associated with articular cartilage.


Documents incorporated by reference in the present patent application are to be considered an integral part of the application except that, to the extent that any terms are defined in these incorporated documents in a manner that conflicts with definitions made explicitly or implicitly in the present specification, only the definitions in the present specification should be considered.


SUMMARY OF THE INVENTION

An embodiment of the present invention provides apparatus for mounting in a bone of a patient, including:

    • a rigid elongated member having an axis of symmetry and a distal section, a proximal section, and an intermediate section connecting the distal and proximal sections; and
    • n helical blades, formed in the distal section, distributed symmetrically about the axis, each of the blades having a helix angle greater than zero and less than 45°, and wherein a cross-section of the distal section, taken orthogonally to the axis of symmetry, has n mirror planes containing the axis of symmetry, wherein n is a whole number greater than one, wherein the blades are configured to penetrate into the bone and engage stably therein.


In a disclosed embodiment the n helical blades taper by respective tapering planes to a common point at a distal tip of the section, so that the distal tip acts as a dilator.


In a further disclosed embodiment the n helical blades are configured to connect with the intermediate section in curved surfaces, so that the curved surfaces act as a support shoulder section when the blades penetrate the bone.


In a yet further disclosed embodiment the n helical blades have n respective edges, and the n respective edges are in the form of n cylindrical helices.


In an alternative embodiment the n helical blades have n respective edges, and the n respective edges are in the form of n conical helices.


In a further alternative embodiment the apparatus includes a plurality of ribs, formed on an outer surface of the proximal section, each of the ribs being parallel to the axis of symmetry. The apparatus may include an adapter, having multiple independent modes of motion, that is configured to accept an alignment target for the patient, wherein the ribs are configured to removably engage the adapter.


In a yet further alternative embodiment the helix angle is configured so as to require a preselected force for extraction of the rigid member when the blades penetrate the bone, and the preselected force is a metric of a stability of the member.


There is further provided, according to an embodiment of the inventions, an adapter for coupling a pin to a marker, including:

    • a cross-piece formed of a first cylindrical structure having a first axis of symmetry, intersecting a second cylindrical structure having a second axis of symmetry, the two axes of symmetry intersecting orthogonally;
    • a wedge, disposed in the first cylindrical structure, comprising a wedge plane surface;
    • a wedge receiver, disposed in the second cylindrical structure, consisting of a receiver plane surface parallel to and contacting the wedge plane surface, so that the wedge and the wedge receiver engage;
    • a pin grip having a cylindrical grip axis of symmetry, connected to the wedge receiver so that the cylindrical grip axis of symmetry and the second axis of symmetry are congruent, the pin grip including a first aperture, having a third axis of symmetry orthogonal to the cylindrical grip axis of symmetry, configured to receive the pin;
    • a receiving base holder including a second cylindrical section, having a receiver axis of symmetry, connected to the second cylindrical structure so that the receiver axis of symmetry and the second axis of symmetry are congruent, the receiving base holder including a second aperture configured to retain a receiving base able to receive the marker; and
    • a lock, connected to the wedge, which in a lock position translates the wedge so that the wedge plane surface contacts the receiver plane surface in a first contact area, so as to lock the pin grip with respect to the first axis of symmetry, the pin with respect to the third axis of symmetry, and the receiving base holder with respect to the second axis of symmetry, and in an unlock position translates the wedge so that the wedge plane surface contacts the receiver plane surface in a second contact area less than the first contact area, so as to permit the pin grip to rotate about the first axis of symmetry, the pin to move with respect to the third axis of symmetry, and the receiving base holder to rotate about the second axis of symmetry.


Movement of the pin with respect to the third axis of symmetry may consist of translation of the pin along the third axis and/or rotation of the pin around the third axis.


The second aperture may define a fourth axis of symmetry, the adapter including:

    • a further lock connected via a supporting rod, disposed in the second aperture along the fourth axis of symmetry, to the receiving base.


In an unlocked position of the further lock the receiving base may be free to rotate around the fourth axis of symmetry.


In a locked position of the further lock the receiving base may be unable to rotate around the fourth axis of symmetry.


The adapter may include a pin holder configured to retain the pin grip and having a first set of teeth, and the first cylindrical structure may have a second set of teeth congruent with and configured to mate with the first set of teeth.


There is further provided, according to an embodiment of the present invention, an adapter for coupling a pin to one of a registration marker and a patient marker, including:

    • a cylindrical housing, including a first aperture and a second aperture therein, having a cylindrical housing axis of symmetry;
    • a receiving base mount including a cylindrical section fixedly attached to a spherical ball disposed within the housing so that the cylindrical section penetrates the first aperture, the cylindrical section having a mount axis of symmetry;
    • a receiving base support having a cylindrical receiving base support axis of symmetry, and having a first termination and a second termination including a conical section, the support being disposed within the receiving base mount so that the receiving base support axis of symmetry aligns with the mount axis of symmetry;
    • a receiving base coupled rotatably to the first termination of the receiving base support;
    • a wedge, comprising a plane face, disposed within the cylindrical housing so that the plane face contacts a conical face of the conical section;
    • a pin retainer including a pin opening, coupled to the wedge, and disposed within the cylindrical housing so that the pin opening aligns with the second aperture of the housing; and
    • a lock, attached to the cylindrical housing, which in a locked state translates the wedge along the cylindrical housing axis of symmetry so that the plane face thereof is a preselected distance from the receiving base support axis of symmetry, thereby preventing rotation of the receiving base, rotation of the receiving base mount, and motion of the pin when disposed in the pin opening, and which in an unlocked state translates the wedge along the cylindrical housing axis of symmetry so that the plane face thereof is at a greater distance than the preselected distance from the receiving base axis of symmetry, thereby permitting rotation of the receiving base, rotation of the receiving base mount, and motion of the pin when disposed in the pin opening.


In a disclosed embodiment the spherical ball includes a first plane surface, the adapter further including a mount holder, disposed within the cylindrical housing, having a second plane surface that mates with the first plane surface so as to constrain the rotation of the receiving base mount to be parallel to the plane surfaces. The spherical ball may include a plurality of valleys orthogonal to the first plane surface, and the mount holder may include a pin configured to mate with a selected one of the valleys.


Typically, the lock in the locked state prevents the rotation of the receiving base mount and locks the mount in a position according to the selected one of the valleys.


Typically, the lock in the unlocked state permits the rotation of the receiving base mount from a position determined by the selected one of the valleys.


In a further disclosed embodiment the mount holder includes a third plane surface orthogonal to the housing axis of symmetry, the third plane surface including a plurality of spheres distributed symmetrically around the housing axis of symmetry, the adapter including a mount holder retainer, disposed in the cylindrical housing, having a retainer surface parallel to the third plane surface and including a plurality of sets of indentations distributed symmetrically around the housing axis of symmetry, wherein the plurality of spheres are configured to mate with selected ones of the indentations.


Typically, the lock in the locked state prevents the rotation of the receiving base mount and locks the mount in a position according to the selected ones of the indentations.


Typically, the lock in the unlocked state permits the rotation of receiving base mount from a position determined by the selected ones of the indentations.


The present disclosure will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a medical procedure, according to an embodiment of the present invention;



FIGS. 2A, 2B, 2C, and 2D are schematic diagrams of an iliac pin, according to an embodiment of the present invention;



FIG. 3 is a schematic diagram of an adapter in an assembled and also in a partially exploded form, according to an embodiment of the present invention;



FIGS. 4A, 4B, 4C, and 4D are schematic diagrams of an adapter, according to an alternative embodiment of the present invention;



FIG. 5 is a schematic graph of an additional extraction force required for an iliac pin, vs. a helix angle of the pin, according to an embodiment of the present invention;



FIGS. 6A and 6B are schematic figures of mating teeth implemented in an adapter, according to an embodiment of the present invention; and



FIG. 7 is a schematic figure illustrating a head-up display (HUD), according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS
Overview

In a medical procedure using augmented reality, it is typically necessary to initially register a position of a patient undergoing the procedure with an augmented reality assembly, optionally being worn by a professional performing the procedure (e.g., by using Head Mounted Display systems). During the procedure, the registration then enables images generated within the assembly to be aligned with the patient, as a location of the patient is determined and/or tracked.


The localization and/or tracking is typically performed by rigidly anchoring a marker, e.g., a patient marker to the patient, typically to a bone of the patient. Once the patient marker has been so anchored, the augmented reality assembly may acquire images of the marker, in real time, so as perform the required localization and/or tracking.


Embodiments of the present invention provide a pin which may be rigidly inserted into the bone of the patient such as the iliac bone or iliac crest and the posterior superior iliac spine, for performing spine related medical procedures, for example. Embodiments of the invention also provide an adjustable adapter which can couple to the pin, and to which can also be attached the patient marker. (The pin may also be used to receive a registration marker, for the earlier registration stage referred to above, or any other marker used, e.g., for localization, detection and/or tracking.) Typically, the professional may adjust the adapter so that the attached patient marker is in a location permitting images of the marker to be acquired by the assembly.


In embodiments of the present invention the pin comprises a plurality of helical blades, the blades being configured to penetrate a selected bone of the patient. Forming the blades to be helical enhances the stability of the pin, once the blades are within the bone, compared to prior art pins having straight blades. The enhancement in stability is because a non-zero helical angle of the blades requires an increase in the force required to extract the pin. The increase depends, in a monotonically increasing manner, on a value of the helical angle.


In embodiments of the present invention the adapter has five degrees of freedom, providing five independent modes of motion, the different modes of motion facilitating adjustment of the position of the attached patient marker as well as the registration marker. In a disclosed embodiment the adapter has two locks, a first lock locking four of the modes of motion simultaneously, a second lock locking the fifth mode motion. In an alternative disclosed embodiment the adapter has one lock which locks all five modes of motion simultaneously.


System Description

In the following, all directional references (e.g., upper, lower, upward, downward, left, right, top, bottom, above, below, vertical, and horizontal) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of embodiments of the invention.


Reference is now made to FIG. 1, which is a schematic illustration of a medical procedure, according to an embodiment of the present invention. During the procedure, performed by a professional 22, the professional uses a surgical navigation system 20, which assists the professional in performance of the procedure. Surgical navigation system 20 comprises a processor 26, which operates elements of the system, and which communicates with an augmented reality assembly 24, worn by professional 22, that is incorporated in the system. While assembly 24 may be incorporated for wearing into a number of different retaining structures on professional 22, in the present description the retaining structure is assumed to be similar to a pair of spectacles. Those having ordinary skill in the augmented reality art will be aware of other possible structures, such as incorporation of the augmented reality assembly into a head-up display that is integrated into a helmet worn by the user of system 20, and all such structures are assumed to be comprised within the scope of the present invention. One such head-up display is described below with reference to FIG. 7.


In one embodiment processor 26 is assumed to be incorporated within a stand-alone computer, and the processor typically communicates with other elements of the system, including assembly 24, wirelessly, as is illustrated in FIG. 1. Alternatively or additionally, processor 26 may use optical and/or conducting cables for the communication. In further alternative embodiments processor 26 is integrated within assembly 24, or in the mounting of the assembly. Processor 26 is typically able to access a database 38, wherein are stored images and other visual elements used by system 20. Software enabling processor 26 to operate system 20 may be downloaded to the processor in electronic form, over a network, for example. Alternatively or additionally, the software may be provided on non-transitory tangible media, such as optical, magnetic, or electronic storage media.


Assembly 24 comprises, inter alia, one or more image capturing devices 72, also termed herein a camera 72. According to some aspects, image capturing device 72 is configured to capture images in the infra-red spectrum. Assembly 24 may then also comprise an infra-red projector 69. Assembly 24 and functions of system 20, processor 26, projector 69, and device 72 are described below. An assembly similar to augmented reality assembly 24, and its operation, are described in U.S. Pat. No. 9,928,629, to Benishti, et al., whose disclosure is incorporated herein by reference.


The medical procedure exemplified here is performed on a patient 30, and during an initial stage of the procedure professional 22 makes an incision 32 into the patient's back. The professional then inserts a pin 42 into the incision, with minimal damage, so that a distal tip 46 of the pin contacts a desired point on a surface of a bone of the patient. In some embodiments the pin is inserted to the bone surface via a cannula (not shown in the figure). In some embodiments the desired point is on an iliac crest of the patient's ilium, so that pin 42 is also referred to herein as iliac pin 42. The structure and operation of pin 42 is described in more detail below.


It will be understood that pin 42 may be inserted with or without a cannula. Even without a cannula, distal tip 46 facilitates the entry of the pin with minimal damage, and the tip acts as a dilator.


Once distal tip 46 contacts the bone surface desired point, professional 22 may hammer pin 42 into the contacted bone, as shown schematically in the figure. Pin 42 is hammered in until a distal section 50 of the pin enters the bone so that the pin stably engages with the bone. When the pin is stably engaged with the bone, professional 22 may insert an adapter 54 to mate with a proximal section 58 of pin 42. The structure and operation of adapter 54 is described in more detail below.


As is apparent from the construction of distal section 50, described below, as the distal section enters the bone, the pin rotates slightly. The rotation contributes to the stable engagement of the pin with the bone, by increasing the extraction force required for the pin, by virtue of its helical blades, compared to the force required for a pin with straight blades. The increase in stability is described below, with reference to FIG. 5, and contributes to a bidirectional bone anchoring mechanism, also described below.


The professional attaches an alignment target 62 to a receiving base 66 of the adapter, the target when attached to the base operating as a patient marker 70. Patient marker 70 thus comprises alignment target 62 coupled to base 66. As is described below, patient marker 70 is used by system 20 to determine the position and orientation of patient 30 during the medical procedure.


In some embodiments, prior to attaching patient marker 70 to receiving base 66, a registration marker 71 is attached to the receiving base, when the pin engages the patient bone. Registration marker 71 comprises elements which may be imaged fluoroscopically, and which are in a known pre-set dimensional relationship with each other. Imaging registration marker 71 and patient 30 fluoroscopically, typically by computerized tomography (CT), enables the marker to be registered with the patient. The registration is used in the tracking of patient 30 that is described below.


A marker similar to registration marker 71 is described in U.S. Patent Application 2021/0030511 which is incorporated herein by reference.


In system 20, marker 70 may be tracked using images acquired by device 72, the images being formed in response to infra-red radiation produced by projector 69.



FIGS. 2A, 2B, 2C, and 2D are schematic diagrams of iliac pin 42, according to an embodiment of the present invention. Pin 42 is a rigid elongated member, also herein termed a rod, having a central axis of symmetry 74, that is generally cylindrical. In one embodiment pin 42 is formed from titanium alloy, and in a disclosed embodiment the pin has an outside diameter of approximately 6 mm and a length of approximately 150 mm. However, it will be understood that other embodiments may have outside diameters and lengths that are greater or smaller than those of the disclosed embodiment.


Pin 42 is formed in three sections: distal section 50, which acts as a bone engaging section, and is also referred to herein as bone engaging section 50; a proximal section 58, which acts an adapter receiving section, and is also referred to herein as adapter receiving section 58; and a central section 56 which connects the distal and proximal sections.



FIG. 2B illustrates distal section 50 of pin 42, the distal section being comprised of three regions: a distal region 86, a central region 90, and a proximal region 94. In one embodiment section 50 has a length of 32 mm, but other embodiments may have lengths of section 50 larger or smaller than 32 mm.


Central region 90 comprises a plurality of two or more substantially similar sharp helical blades 78A, 78B, 78C, . . . separated by the same number of helical undercuts 98A, 98B, 98C, . . . , also herein termed grooves 98A, 98B, 98C, . . . and the blades and grooves are distributed symmetrically around central axis 74. Blades 78A, 78B, 78C, . . . and grooves 98A, 98B, 98C, . . . are generically referred to herein as blades 78 and grooves 98. In the description herein pin 42 is assumed to comprise three blades 78 and grooves 98, and those with ordinary skill in the art will be able to adapt the description, mutatis mutandis, for numbers of helical blades and grooves other than three.



FIG. 2D illustrates a cross-section 100 of central region 90, taken orthogonally to axis 74 and the cross-section has rotational symmetry and also has mirror symmetry. For the three blades and grooves of the illustrated embodiment, there is three-fold rotational symmetry, and three mirror planes 104A, 104B, 104C. In general, embodiments with n blades, where n is a whole number equal to or greater than 2, have cross-sections for their central region with n-fold rotational symmetry and n mirror planes.


As is also illustrated in FIG. 2D, in central section 90 each helical blade 78A, 78B, 78C, . . . is respectively comprised of two planes 80A, 84A; 80B, 84B; 80C, 84C; . . . meeting at respective helical sharp edges 82A, 82B, 82C, . . . generically termed edges 82. In one embodiment a helix angle α of blades 78 (illustrated in FIG. 2B), and of their edges 82, is approximately 3° for a pin with approximate diameter 6 mm, and the edges meet at an approximate angle of 60°. In general, embodiments of the invention have a non-zero helix angle that is less than 45°. Helix angle α corresponds to the angle made by an orthogonal projection of edge 82 onto a plane comprising axis of symmetry 74. Typically, each edge 82 is a cylindrical helix, so that the distance from each point on a given edge to axis 74 is constant. In some embodiments each edge 82 is a conical helix, wherein the distance from a given point on the edge to axis 74 reduces monotonically as the given point moves distally, i.e., towards distal section 86.


As shown in FIG. 2C, which is a view of distal tip 46 along axis 74 from below the tip, in distal section 86 each blade 78A, 78B, 78C, . . . is respectively tapered by a tapering plane 102A, 102B, 102C, . . . , generically termed tapering planes 102. Tapering planes 102 meet at a common point, i.e., distal tip 46. In one embodiment each plane 102 makes an angle of approximately 20° with axis 74. By forming blades 78 to meet at a common point, section 86 may act as a trocar or a dilator, and is also referred to herein as dilator section 86.


In proximal section 94 planes 80A, 84A; 80B, 84B; 80C, 84C; . . . are curved so that grooves 98A, 98B, 98C, . . . meet with central section 56 in curved surfaces, typically respective partially spherical or non-spherical surfaces 106A, 106B, 106C, . . . , generically termed surfaces 106. In use of pin 42, once it engages with a bone, the curved portions of planes 80A, 84A; 80B, 84B; 80C, 84C; . . . , together with surfaces 106, act as a support shoulder for the pin, so that section 94 is also referred to herein as support shoulder section 94.


As stated above, in support shoulder section 94 planes 80A, 84A; 80B, 84B; 80C, 84C; . . . are curved, so that each pair of planes as they curve forms a respective wedge 87A; 87B; 87C; . . . (illustrated in FIG. 2B). Wedges 87A, 87B, 87C, . . . , generically termed wedges 87, act as terminations of sharp edges 82A, 82B, 82C, . . . . When pin 42 is inserted in a bone of patient 30, blades 78 are able to penetrate the bone until wedges 87 enter the bone. As they enter the bone the wedges force the bone to separate, so there is a countervailing force from surfaces 106 on the wedges that both prevents further penetration of pin 42 into the bone and that acts to stabilize and anchor the pin in position.


In addition, the helical configuration of blades 78 increases the resistance to extraction of pin 42 from the bone (compared to straight blades). Consequently, the combination of the helically configured blades and the wedge terminations of the edges of the blades operates to stably anchor the pin against penetration and extraction, i.e., as the bidirectional bone anchoring mechanism referred to above.


Adapter receiving section 58 comprises a plurality of substantially similar ribs 110A, 110B, 110C, . . . generically termed ribs 110, formed on the outer surface of pin 42. Ribs 110 are parallel to axis 74 and are distributed symmetrically about the axis. In one embodiment there are 16 ribs 110 having a height of approximately 670 μm formed on the outer surface of pin 42, but other embodiments may have different numbers of ribs, as well as different rib heights. Section 58 terminates proximally in a plane disclike region 114, and it is this region that professional 22 hammers on when inserting pin 42 into the bone of a patient, to prevent rib deformation.


Formed within ribs 110 are a plurality of circular grooves 118A, 118B, . . . , each groove being orthogonal to, and having a respective center on, axis 74. The grooves are generically termed grooves 118. In she illustrated embodiment there are two grooves 118 separated by approximately 10 mm, with an upper groove being approximately 10 mm from disclike region 114, but other embodiments may have more than two grooves 118, and the spacing may be different from 10 mm.


As is described below an adapter 354 mates with adapter receiving section 58, and ribs 110 and grooves 118 ensure that when the adapter is inserted into the receiving section, the mating is positive. In positive mating there are countervailing forces on the adapter from at least one of the ribs and from at least one of the grooves that keep the adapter in a set position, so that frictional forces alone do not maintain the adapter in the position.


For adapter 54 grooves 118 enable a slap hammer to be used for extraction of pin 42. Grooves 118 may also be configured to provide positive mating for adapter 54, as for adapter 354.


It will be appreciated that pin 42 is a single piece, and that ribs 110 and grooves 118 enable the pin 42 to be adjusted and fixated radially and axially, with respect to axis of symmetry 74. Furthermore, grooves 118 may also be used for extraction of the pin.



FIG. 3 is a schematic diagram of adapter 54 in an assembled and also in a partially exploded form, according to an embodiment of the present invention. Adapter 54 is configured to mate with proximal section 58 of pin 42, and is also configured to receive alignment target 62 on receiving base 66 of the adapter. Adapter 54 has multiple independent modes of motion, so having corresponding multiple independent degrees of freedom. In the disclosed embodiment adapter 54 has four different modes of rotation, and one mode of translation. The multiple modes of motion enable professional 22 to adjust the adapter, after it has been positioned on pin 42 and after target 62 has been attached to receiving base 66, so that the target is in a satisfactory position with respect to assembly 24 (FIG. 1). Once in position, professional 22 may lock the adapter in position using knobs 200 and 204.


Adapter 54 comprises a generally cylindrical pin holder 208 having a cylindrical symmetry axis. Pin holder 208 has two aligned approximately cylindrical protrusions 212, protruding orthogonally from opposite sides of the pin holder, that are configured to accept pin 42. For clarity the following description assumes that adapter 54 has been drawn on a set of orthogonal axes, where a z-axis corresponds to a symmetry axis of cylindrical protrusions 212, an x-axis is parallel to the symmetry axis of pin holder 208, and a y-axis is orthogonal to the x and z axes.


Protrusions 212 have internal projections that align with the surface of ribs 110, and that, when a pin grip 216 is translated parallel to the x-axis, are configured to mate with ribs of pin 42. Pin grip 216 is retained within holder 208 and comprises an opening 220, parallel to the z-axis, that accepts pin 42. Opening 220 is contoured so that in one direction of the translation of pin grip 216 it holds the pin, and in the reverse direction of the translation it releases the pin. The grip is configured, when knob 204 is rotated in a clockwise direction, to translate parallel to the x-axis so as to mate ribs 110 with the projections of protrusions 212. When ribs 110 are mated with the projections, holder 208, and thus adapter 54, cannot translate along the z-axis, so is locked with respect to this axis.


On the other hand, when knob 204 is rotated counterclockwise, adapter 54 may translate along the z-axis, i.e., is free to move with respect to the z-axis. In an alternative embodiment knob 204 also prevents rotation around the z-axis when rotated clockwise, and permits rotation when rotated counterclockwise. The possible rotations and translations are shown schematically in FIG. 3 by the double headed arrows proximate to the z-axis. Knob 204 thus acts as a lock for adapter 54, having a first locked position when turned clockwise wherein the adapter cannot move with respect to the z-axis, and a second unlocked position when turned counterclockwise wherein the adapter is able to move with respect to the z-axis. Knob 204 is herein also termed lock 204.


Adapter 54 further comprises a housing 224, having a first structure 228 intersecting with a second structure 232. The two structures are typically cylindrical and have respective cylindrical axes of symmetry 236, 240, and the housing is constructed so that the two axes of symmetry intersect orthogonally at an intersection point 242. Structures 228 and 232 of housing 224 intersect in the shape of a cross, and so the housing is also herein termed cross-piece 224. Pin holder 208 mates with first structure 228 of housing 224 by virtue of the fact that the two entities have mating sets of teeth—a set 244 for the pin holder and a set 248 for the first structure.


The operation of lock 204 in its locked and unlocked positions is described further below. Turning lock 204 between its locked and unlocked positions translates a wedge 252, resident in structure 224, along axis 240. Wedge 252 comprises a plane face 254 that is perpendicular to the xy plane and that makes an acute angle in an approximate range of 30°-60°, and typically approximately 45°, with the x-axis.


Wedge 252 in turn partially or fully engages a wedge receiver 256, resident in structure 228 and able to translate along axis 236. Wedge receiver 256 comprises a plane face 258, parallel to face 254 of wedge 252, and the two faces contact to provide the engagement described. Wedge receiver is coupled to pin grip 216.


When lock 204 is in its locked position, wedge 252 fully engages with wedge receiver 256 by translating towards intersection point 242, so that faces 258 and 254 have a maximum overlapping contact area. In the locked position, wedge receiver 256 pulls pin grip 216 towards intersection point 242, and the pin grip pushes on pin holder 208 so that teeth 244 and teeth 248 engage.


The movement of pin grip 216 towards intersection point 242 mates ribs 110 of pin 42 with the internal projections of protrusions 212, so locking the adapter with respect to the pin i.e., preventing translation along, and rotation around, the z-axis.


The engagement of teeth 244 with teeth 248 prevents pin holder 208 from rotating around axis 236.


Receiving base 66 is connected, as is explained in more detail below, to a receiving base holder 260. Base holder 260 consists of a first cylindrical structure 264 and a second cylindrical structure 268, the two structures intersecting in the shape of a “T” so that the leg of T corresponds to first structure 264 and the arms of the T correspond to structure 268. The two structures are hollow and structure 268 is also herein termed aperture 268. Base holder 260 is held in place in adapter 54 by a base holding rod 272, which at a proximal termination of the rod is threaded into lock 204, while a distal termination 284 of the rod end engages an internal wall of the holder. Teeth 280 are formed in a base of structure 264, and these teeth may engage with teeth 276 formed in a distal termination cylindrical structure 232.


Lock 204 has a female thread which engages a male thread of holding rod 272. Thus, when lock 204 is rotated clockwise into its locked position, in addition to the actions referred to above the lock translates holding rod 272 along axis 240 so that termination 284 pushes base holder 260 proximally, i.e., towards intersection point 242.


The translation also causes a spring 274 to compress, and teeth 276 and 280 to engage, so that holder 260 is locked in position, i.e., is not able to rotate around axis 240.


When lock 204 is rotated counterclockwise, into its unlocked position, the locking actions described above are reversed as is described hereinbelow.


Spring 274 decompresses, and rod 272 translates so that termination 284 moves distally, away from intersection point 242. Consequently, base holder 260 may be moved distally along axis 240 so that teeth 280 and teeth 276 disengage, so the holder may be freely rotated about axis 240.


Wedge 252 is able to translate proximally along axis 240, i.e., away from termination point 242. Consequently, pin holder 208 may be translated along axis 236, away from point 242, since wedge receiver 256 and wedge 252 are not forced into full engagement, but may partially engage. I.e., faces 258 and 254 no longer overlap to the contact area when lock 204 is in its locked position, but rather overlap with a lesser contact area. The pin holder translation disengages teeth 244 and teeth 248, so that the pin holder may be freely rotated about axis 236.


The disengagement also neutralizes the engagement of ribs 110 with the projections of protrusions 212. Consequently, when lock 204 is in its unlocked position, adapter 54 is able to translate along, the z-axis.


The description above describes how lock 204 locks and unlocks four movements adapter 54, the movements comprising translation and rotation with respect to the z-axis, rotation about axis 236, and rotation about axis 240. Embodiments of the invention comprise a further lock, knob 200, also herein termed lock 200, which is able to lock and unlock a fifth movement of adapter 54, as is described below.


Receiving base 66 is connected to an upper end of a supporting rod 288, and the rod aligns with an axis of symmetry 292 of aperture 268. A portion of rod 288 resides within aperture 268, and penetrates a circular opening 296 in termination 284. A lower end of rod 288 is threaded into lock 200.


A first set of teeth 300, symmetrical about axis 292, is formed at the upper end of rod 288 and teeth 300 are configured to mate with a second set of teeth 304 formed at an upper end of cylindrical structure 268.


Lock 200 has a female thread which engages a male thread in the lower part of rod 288. Thus, when lock 200 is rotated clockwise into its locked position, it compresses a spring 290 and lowers rod 288 along axis 292, so that teeth 300 and teeth 304 engage. The spring compression and teeth engagement lock rod 288, and thus receiving base 66 and attached target 62 or registration marker 71, with respect to adapter 54, so that the markers and the adapter cannot rotate about each other.


When lock 200 is rotated counterclockwise into its unlocked position, spring 290 decompresses, and rod 288 is raised along axis 292 so that teeth 300 and teeth 304 disengage. Once the teeth have disengaged, rod 288 and attached target 62 or registration marker 71 may be rotated freely about axis 292.



FIGS. 4A, 4B, 4C, and 4D are schematic diagrams of an adapter 354, according to an alternative embodiment of the present invention. FIG. 4A is a view of adapter 354 with a cylindrical housing 362 separated from other elements of the adapter. FIG. 4B is an exploded view of adapter 354. FIG. 4C is a cross-sectional view of adapter 354 when it is in an unlocked position, and FIG. 4D is a cross-sectional view of the adapter when it is in a locked position.


Apart from the differences described below, the operation of adapter 354 is generally similar to that of adapter 54 (FIGS. 1-3), and elements indicated by the same reference numerals in the description of both adapters 54 and 354 are generally similar in construction and in operation.


Referring to FIGS. 4A and 4B, as for adapter 54, adapter 354 is configured to mate with proximal section 58 of pin 42, and is also configured to receive alignment target 62 or registration marker 71 on receiving base 66 of the adapter. Adapter 354, like adapter 54, has multiple independent modes of motion, so having corresponding multiple independent degrees of freedom. In the disclosed embodiment adapter 354 has four different modes of rotation, and one mode of translation. The multiple modes of motion enable professional 22 to adjust adapter 354, after it has been positioned on pin 42 and after target 62 or registration marker 71 have been attached to receiving base 66, so that the target or the marker is in a satisfactory position with respect to assembly 24 (FIG. 1). Once in position, professional 22 may lock adapter 354 in position.


However, in contrast to adapter 54, which uses two locks 200 and 204 to lock the adapter in position, adapter 354 only uses one lock, a knob 358, also herein termed lock 358, to lock all five modes of motion of the adapter. I.e., knob 358 has two states: an unlocked state, where all of the five modes of motion are possible, and a locked state, where none of the five modes of motion are possible.


Adapter 354 comprises cylindrical housing 362, and in the description of the adapter the housing is assumed to define a set of xyz orthogonal axes wherein an x-axis corresponds to a symmetry axis of the housing. There is an approximately rectangular aperture 366 in the housing, and there is assumed to be a z-axis through the center of the aperture orthogonal to the x-axis. A y-axis is assumed to be orthogonal to the x and z axes. In the following description, proximal directions are assumed to be out of the paper, e.g., along the positive x-axis and along the negative y-axis, and distal directions are assumed to be into the paper, e.g., along the negative x-axis and along the positive y-axis.


Housing 362 is terminated at a distal end of the housing by lock 358, and at a proximal end of the housing by a pin retainer 360. Lock 358 is held to the distal end of the housing by pins 356 which permit the lock to rotate about the x-axis.


A receiving base mount 370, consisting a cylindrical section 374 fixedly attached to a spherical ball 378 is located within housing 362 so that a center of the spherical ball lies on the x-axis, and so that an axis of symmetry of the cylindrical section lies on the z-axis. Cylindrical section 374 protrudes from housing 362, through aperture 366. Mount 370 is coupled to receiving base 66, as is described below.


Ball 378 has formed on one side of its surface a set 382 of linear ridges, parallel to the y-axis, the set terminating in planes 386, 390 parallel to the xz plane. The ridges are typically separated by equal angles, as measured with respect to the center of the ball. In one embodiment there are six ridges distributed evenly with respect to the y-axis, separated by five linear valleys 384, and each of the valleys is separated by approximately 15°, but other numbers of ridges and other angular separations are possible.


Mount 370 is held in place within housing 362 by a first mount holder 394 and a second mount holder 398. First mount holder 394 is held in place by pins 351 which mate with internal grooves in housing 362. First mount holder 394 has, on its proximal side, a spherical surface that mates with the spherical surface of ball 378. Second mount holder 398 has, on its distal side, two planar mount retaining surfaces, parallel to the xz plane, that are configured to mate with surfaces 386 and 390, and that constrain the rotation of the mount holder as described below. In addition, second mount holder 398 retains a linear pin 402 that is parallel to the y-axis and that is configured to mate with any of linear valleys 384. Pin 402 also constrains the rotation of the mount holder, as is also described below.


Mount 370, the first and second mount holders, and pin 402 are held in place by a spring 406. In operation of adapter 354 spring 406 exerts a force on the mount, the mount holders, and linear pin 402, as well as on intervening elements within the housing that are described in more detail below. The force exerted by the spring depends on the position of lock 358.


Lock 358 has an internal female thread which mates with a male threaded portion of a distal end of first mount holder 394. In the unlocked position of the lock 358, illustrated in FIG. 4C, the lock is rotated to translate the first mount holder towards the lock. In the locked position of lock 358, illustrated in FIG. 4D, the lock is rotated so that the first mount holder translates away from the lock.


In the lock's unlocked position, spring 406 is compressed so that it exerts a first force, sufficient to maintain the elements within the housing in position, while permitting those designed to rotate to do so, as is described herein. In the lock's locked position, the spring is further compressed so that it exerts a second force greater than the first force. The second force is sufficient to prevent rotatable elements within the housing from rotating, so that they are locked in position.


Consequently, when lock 358 is in its unlocked position, mount 370 is free to rotate within its designed constraints I.e., surfaces 386 and 390 and the mating surfaces of mount holder 398 constrain mount 370 to rotate about the y-axis, in an xz plane. Furthermore, within this rotation, the mount may be maintained in any of the angles wherein pin 402 rests within a selected valley 384. Typically, in the unlocked position of the lock, professional 22 rotates mount 370 between valleys 384, hearing a click as pin 402 disengages and engages a valley, until the mount is in a satisfactory position. In one embodiment there is 15° between each of five valleys 384.


As is stated above, when lock 358 is in its locked position, mount 370 is locked in position, according to the valley 384 engaged by pin 402, so is not free to rotate from this position.


Second mount holder 398 (and thus mount 370) may also rotate about the x-axis, when lock 358 is in its unlocked position, and is prevented from such rotation when the lock is in its locked position, as is described below.


A plurality of substantially similar balls 410 are retained in a proximal side of the second mount holder, and are distributed symmetrically about the x-axis. In the illustrated embodiment and in the description below there are assumed to be three balls 410, but in other embodiments there may be more than three.


Second mount holder 398 and balls 410 are retained in contact with a cylindrically symmetrical mount holder retainer 414 by spring 406. Retainer 414 on its distal side comprises three sets of semispherical indentations 418, distributed symmetrically about, and equidistant from, the x-axis, and configured to mate with balls 410. On the proximal side of retainer 414 the retainer is held in alignment with pin retainer 360 by pins 352, the pins being retained by grooves within housing 362 and also permitting linear movement to retainer 414 and pin retainer 360. In the illustrated embodiment and in the description herein there are assumed to be five indentations 418 in each set, but other embodiments may have more or fewer than five indentations.


Thus, when lock 358 is in its unlocked position, second mount holder 398, and thus mount 370, may be rotated about the x-axis so that balls 410 align with and engage selected indentations 418, and it will be understood that there are five such stable alignments. In one embodiment the alignments are separated from each other by 15°.


When lock 358 is in its locked position, mount holder 398, and thus mount 370, is locked in position, according to the indentations 418 engaged by balls 410, so is not free to rotate from this position.


Independent of the rotations of mount 370 about the x and y axes as described above, receiving base 66 may rotate about the z-axis, when lock 358 is in its unlocked position, and is prevented from such rotation when the lock is in its locked position, as is described below.


Retained within mount 370, and aligned with the z-axis, is a cylindrically symmetrical receiving base support 422 comprised of a lower conical section 426, a central cylindrical section 430, and an upper disc-like section 434, the three sections being fixed together and having an axis of symmetry corresponding to the z-axis. Receiving base 66 is fixedly attached by a pin 432 to disc-like section 434.


A lower surface of section 434 comprises a plurality of indentations distributed symmetrically about and equidistantly from the z-axis, and the indentations retain respective balls 438. In the illustrated embodiment there are three indentations and three balls, but other embodiments may have more than three indentations and balls.


In an upper surface of mount 370 are formed a plurality of indentations 442 distributed symmetrically about the z-axis. The indentations are located at the same distance as balls 438 are from the axis. In the illustrated embodiment there are 15 indentations 442, separated by 24°, so as to encompass 360°, and so as to simultaneously receive balls 438. However, other embodiments may have fewer or more indentations 442, separated accordingly to encompass 360° and configured to simultaneously receive balls 438.


Once adapter 354 is assembled, balls 438 are maintained in contact with indentations 442 by a spring 446, retained within mount 370, that is configured to push down on a disc extension 448 of cylindrical section 430, and thus to push down disc-like section 434.


Support 422 is maintained in its position within mount 370 by a wedge element 450, which has a plane surface 454 that engages the conical surface of conical section 426.


When lock 358 is in its locked position first mount holder 394 is configured to push wedge element 450 proximally, so that plane surface 454 is a preselected distance from the z-axis, and so that the engagement of the plane surface with the conical surface is full. The full engagement translates support 422 down by a preselected distance along the z-axis, so that balls 438 are maintained in their respective indentations 442, and so that base 66 is locked in position.


When lock 358 is in its unlocked position first mount holder 394 does not push wedge element 450 proximally, so that plane surface 454 is at a greater distance from the z-axis than the locking preselected distance described above, and so that the engagement of plane surface 454 with the conical surface is partial. The partial engagement does not translate support 422 down by the preselected distance along the z-axis, so that balls 438 may be moved to other indentations 442, and so that base 66 may rotate freely about the z-axis.


The description above describes how receiving base 66 and adapter 354 have three independent modes of rotation, about the x, y and z axes, all of which may be locked by lock 358. The description below explains how lock 358 may also be used to lock and unlock adapter 354 with respect to pin 42.


Pin retainer 360 is held in position within housing 362 by spring 406, and also by a pin 460 that traverses a slot 464 in the retainer. Slot 464 is dimensioned to permit the retainer a small amount of proximal and distal motion, i.e., along the x-axis. Pin retainer 360 has formed in it an approximately cylindrical aperture 468 that is configured to accept and retain ribs 100 of pin 42. When pin retainer 360 is in housing 362, pin retainer aperture 468 aligns with apertures 368 in housing 362. When pin 42 is within aperture 468, axis 74 of the pin is assumed to lie on an r-axis of the aperture, the r-axis crossing the x-axis of adapter 354 at a pre-selected angle θ and lying in a pre-selected plane. In the illustrated embodiment θ is approximately 25° and the preselected plane is the xz plane. However, other embodiments may have other values of θ, including 90°, and the r-axis may lie in any plane that includes the x-axis.


Aperture 468 has formed on its distal side a rib engagement protrusion 472 that is parallel to the r-axis. In addition, a pin 416 is configured to penetrate pin retainer 360 diametrically, to cut protrusion 472, and to be parallel to the y-axis.


It will be understood that slot 464 permits pin retainer 360 to be pushed distally, i.e., into housing 362. Thus, when professional 22 pushes the pin retainer distally, the professional may insert ribs 100 of pin 42 into opening 468. Once inserted, the pin may be translated up and down along the r-axis, and may also be rotated around the r-axis. The translation and the rotation may be substantially completely free while the pin retainer is pushed distally.


When pin retainer 360 is not pushed distally, the force from spring 406 causes pin 476 to be able to engage grooves 118, and also causes protrusion 472 to engage ribs 100.


Spring 406 is configured, i.e., its size and spring constant are selected, so that when lock 358 is in its unlocked position, the engagement of grooves 118 and ribs 100 permits both translation of pin 42 along the r-axis and rotation around the r-axis. However, when lock 358 is in its locked position, spring 406 is configured to exert sufficient force to prevent disengagement of pin 476 from a retaining groove 118, and to prevent ribs 100 disengaging from protrusion 412.


In addition, the size and spring constant of spring 406 are such that when lock 358 is in its unlocked position, the rotations of mount 370 about the x and y axes, as described above, are permitted, and when the lock is in its locked position, the rotations are prevented.


It will be understood that in adapter 354 knob 358 acts as a single lock that locks all five modes of motion of the adapter. In addition, pin retainer 360, which together with knob 358 is within housing 362 so that the retainer and the knob are on a common axis, the x-axis of the housing, controls the motion of pin 42. Thus, as described above, pin retainer 360 may be pushed distally permitting pin 42 to rotate and translate freely, while when not pushed distally grooves 118 and ribs 100 may be engaged so as to prevent rotation and translation of the pin.


When knob 358 is in its unlocked state, all five degrees of freedom i.e., four rotations and one translation, are simultaneously possible, and each corresponding mode of motion may be adjusted independently and simultaneously without affecting the other modes.


When knob 358 is in its locked state, each of the five modes of motion may be locked in steps. In addition to the positive locking in steps, described above, the locking is typically assisted by friction between elements of adapter 354.


As stated above, pin 42 within aperture 468 lies on the r-axis which is at an angle θ to the x-axis, the axis of symmetry of adapter housing 362. Angle θ is typically selected to facilitate an anatomical procedure that uses pin 42



FIG. 5 is a schematic graph of an additional extraction force required for iliac pin 42 (FIGS. 2A-2D), vs. helix angle α of the pin, according to an embodiment of the present invention. Once pin 42 has been inserted into a patient's bone, it may be extracted providing a countervailing force is overcome. The countervailing force is a frictional force between the blades and the bone, and in embodiments of the present invention the frictional force is enhanced because of the non-zero helix angle α of blades 78. The enhancement to the frictional force, i.e., the increase in extraction force, ΔFext, required, compared to the extraction force required for pins with straight blades, is comprised of two elements, a first element due to the increase on force on the blades due to the non-zero angle α, plus a second element due to the increased area of the blades also due to the angle α.


Thus, the increase in the extraction force ΔFext is given by equation (1):

ΔFext=f(α)  (1)

    • where f(α) is a function of helix angle α



FIG. 5 is a schematic graph of ΔFext vs. α for an embodiment wherein pin 42 has an external diameter of 6 mm. The graph plots ΔFext as a percentage compared to the extraction force for a pin with straight blades. Those having ordinary skill in the art will be able to derive such graphs for pins of other diameters. The value of ΔFext is a metric of the increased stability of embodiments of the present invention, with pins having helical blades, compared to pins having straight blades. It will be appreciated from inspection of the graph that a preselected stability ΔFext may be achieved by producing the pin with a helix angle α given by the graph, and by an inverse of equation (1).



FIGS. 6A and 6B are schematic figures of mating teeth 244 and 248 implemented in adapter 54, according to an embodiment of the present invention. As described above, teeth 244 are formed in pin holder 208, and teeth 248 are formed in first structure 228 of housing 224. FIG. 6A illustrates the teeth when pin holder 208 rotates relative to first structure 228 so that the teeth are completely disengaged. FIG. 6B illustrates the teeth when the pin holder and first structure are rotated relative to each other so that the teeth are completely engaged.


Teeth 244 and teeth 248 are geometrically congruent to each other, and each tooth in the sets of teeth is in the general form of a wedge. In the following description teeth 244 are assumed to be comprised of wedges 644A, 644B, 644C, . . . , generically termed wedges 644, and teeth 248 are assumed to be comprised of wedges 648A, 648B, 648C, . . . , generically termed wedges 648. In the following description wedges 644A, 644B, 644C, . . . , and 648A, 648B, 648C, . . . , are also referred to as individual teeth 644A, 644B, 644C, . . . , and 648A, 648B, 648C, . . . .


Each wedge or tooth 644A, 644B, 644C, . . . , and 648A, 648B, 648C, . . . , is formed of two planes 644A1, 644A2; 644B1, 644B2; 644C1, 644C2, . . . , and 648A1, 648A2; 648B1, 648B2; 648C1, 648C2, . . . . The planes of any given wedge, for example planes 644B1 and 644B2 of wedge 644B, are oriented symmetrically with respect to the axis of symmetry of pin holder 208 and first structure 228, i.e., axis 236. Thus, each wedge, when projected orthogonally onto a plane comprising axis 236, appears as an isosceles triangle, since the two planes of the wedge are mirror images of each other and have substantially similar dimensions. In one embodiment an apex angle β of the isosceles triangle, illustrated schematically in FIG. 6B, is approximately 60°, but β may be larger or smaller than this.


The planes of a given tooth do not meet at a sharp line; rather the meeting region of the two planes, corresponding to the apex of the tooth, is curved or rounded, and the edges of the rounded sections are parallel to each other. In the figures, apices 644A3, 644B3, 644C3, . . . are the respective apices of Individual teeth 644A, 644B, 644C, . . . , and apices 648A3, 648B3, 648C3, . . . are the respective apices of individual teeth 648A, 648B, 648C, . . . . In addition, as shown in a callout 650 illustrating teeth 644B and 648B when disengaged, the edges of the two planes 644B1, 644B2, and 648B1, 648B2, are configured so that lines representing respective apices 644B3, 648B3 are not orthogonal to axis 236, but form a non-zero angle γ with a line orthogonal to the axis. In one embodiment γ is approximately 7°. Thus, in the completely disengaged state illustrated in FIG. 6A, meeting regions of teeth 244 and 248, for example, region 644B4 of tooth 644B and region 648B4 of tooth 648B are two approximately spherical surfaces that meet. Consequently, this is not an equilibrium position, so any possibility of a “dead position” for the mating teeth (at disengagement) is prevented. In addition, there is minimal wear when the surfaces do meet, thanks to the spherical and multispherical surfaces.


As stated above, apices 644A3, 644B3, 644C3, . . . and apices 648A3, 648B3, 648C3 of individual teeth are rounded. The planes of adjacent teeth are relieved at their meeting region. For example, planes 644A2 and 644B1, of teeth 644A and 644B meet at a relief region 644AB rather than meeting at a line. Other examples illustrated are relief regions 644BC of the meeting of teeth 644B and 644C, relief regions 648AB of the meeting of teeth 648A and 648B, and relief regions 648BC of the meeting of teeth 648B and 648C.


When teeth 244 and 248 are completely engaged, the symmetry of the teeth causes both planes of any given wedge of a tooth to contact both planes of mating teeth. For example, if in the completely engaged state tooth 644B lies between teeth 648A and 648B, plane 644B1 contacts plane 648A2, and plane 644B2 contacts plane 648B1. However, when completely engaged, the rounded apices of the teeth do not contact relief regions between the contacting teeth. For example, apex 644B3 of tooth 644B, aligns with relief region 648AB, but apex 644B3 does not contact any portion of teeth 648A and 648B.


The lack of contact in the engaged state is illustrated in a callout 66C, which shows rounded apex 648A3 of tooth 648A aligning with, but not contacting, relief region 644AB of teeth 644A and 644B. The rounded apex of each tooth, and the parallel edges of each apex, are illustrated in a callout 670 which is a perspective view of tooth 648A with apex 648A3.


It will be understood that because, in the completely engaged state, both planes of any given wedge are in contact with planes of mating teeth, there is no backlash in the completely engaged state.


It will be appreciated that in embodiments of the invention every single tooth has five inclined surfaces, and a rounded apex that has parallel edges as well as a spherical tip. In addition, at contact in the disengaged state, the two contacting spherical surfaces act to prevent a dead position occurring.


The above description applies to mating teeth 244 and 248. The description also applies, mutatis mutandis, to mating teeth 300 (on rod 288) with teeth 304 (on cylindrical structure 268), and to teeth 276 (on structure 232) mating with teeth 28C (on structure 264).



FIG. 7 is a schematic figure illustrating a head-up display (HUD) 700, according to an embodiment of the present invention. HUD 700 is worn by professional 22, and may be used in place of assembly 24 (FIG. 1). HUD 700 comprises an optics housing 704 which incorporates an infrared camera 708. Housing 704 also comprises an infrared transparent window 712, and within the housing, i.e., behind the window, are mounted one or more infrared projectors 716. Mounted on housing 704 are a pair of augmented reality displays 720, which allow professional 22 to view entities, such as part or all of patient 30 through the displays, and which are also configured to present to the professional images that may be received from database 38.


The HUD includes a processor 724, mounted in a processor housing 726, which operates elements of the HUD. Processor 724 typically communicates with processor 26 via an antenna 728, although in some embodiments processor 724 may perform some of the functions performed by processor 26, and in other embodiments may completely replace processor 26.


Mounted on the front of HUD 700 is a flashlight 732. The flashlight projects visibly spectrum light onto objects so that professional 22 is able to clearly see the objects through displays 720. Elements of the head-up display are typically powered by a battery (not shown in the figure) which supplies power to the elements via a battery cable input 736.


HUD 700 is held in place on the head of professional 22 by a head strap 740, and the professional may adjust the head strap by an adjustment knob 744.


It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. Apparatus for mounting in a bone of a patient, comprising: a rigid elongated member having an axis of symmetry and a distal section, a proximal section, and an intermediate section connecting the distal and proximal sections; n helical blades, formed in the distal section, distributed symmetrically about the axis, each of the n helical blades having a helix angle greater than zero and less than 45°, and wherein a cross-section of the distal section, taken orthogonally to the axis of symmetry, comprises n mirror planes containing the axis of symmetry, wherein n is a whole number greater than one, wherein the n helical blades are configured to penetrate into the bone and engage stably therein; and a plurality of ribs, formed on an outer surface of the proximal section, each of the plurality of ribs being parallel to the axis of symmetry, wherein the proximal section further comprises one or more circular grooves positioned orthogonal to the axis of symmetry.
  • 2. The apparatus according to claim 1, wherein the n helical blades taper by respective tapering planes to a common point at a distal tip of the distal section, so that the distal tip acts as a dilator.
  • 3. The apparatus according to claim 1, wherein the n helical blades are configured to connect with the intermediate section in curved surfaces, so that the curved surfaces act as a support shoulder section when the n helical blades penetrate the bone.
  • 4. The apparatus according to claim 1, wherein the n helical blades have n respective edges, and wherein the n respective edges are in the form of n cylindrical helices.
  • 5. The apparatus according to claim 1, wherein the n helical blades have n respective edges, and wherein the n respective edges are in the form of n conical helices.
  • 6. The apparatus according to claim 1, wherein the helix angle is configured so as to require a preselected force for extraction of the rigid elongated member when the n helical blades have penetrated into the bone, and wherein the preselected force is a metric of a stability of the rigid elongated member.
  • 7. Apparatus for mounting in a bone of a patient, comprising: a rigid elongated member defining a central axis, the rigid elongated member having a distal section, a proximal section, and an intermediate section connecting the distal and proximal sections; n helical blades, formed in the distal section, distributed about the central axis, each of the n helical blades having an acute helix angle greater than zero and less than 45°, wherein n is a whole number greater than one, wherein the n helical blades are configured to penetrate into the bone and engage stably therein, and wherein the n helical blades taper by respective tapering planes to a common point at a distal tip of the distal section, so that the distal tip can act as a dilator; and a plurality of ribs, formed on an outer surface of the proximal section, each of the plurality of ribs being parallel to the central axis, wherein the proximal section further comprises one or more circular grooves positioned orthogonal to the central axis.
  • 8. The apparatus according to claim 7, wherein the n helical blades are configured to connect with the intermediate section in surfaces that form wedges, so that the surfaces act to stabilize the rigid elongated member in position when the n helical blades have penetrated into the bone.
  • 9. The apparatus according to claim 7, wherein the acute helix angle is configured so as to require a preselected force for extraction of the rigid elongated member when the n helical blades have penetrated into the bone, and wherein the preselected force is a metric of a stability of the rigid elongated member.
  • 10. The apparatus according to claim 7, wherein a cross-section of the distal section, taken orthogonally to the central axis, comprises n mirror planes containing the central axis.
US Referenced Citations (1076)
Number Name Date Kind
3690776 Zaporoshan Sep 1972 A
4459358 Berke Jul 1984 A
4711512 Upatnieks Dec 1987 A
4863238 Brewster Sep 1989 A
4944739 Torre Jul 1990 A
5441042 Putman Aug 1995 A
5442146 Bell et al. Aug 1995 A
5510832 Garcia Apr 1996 A
D370309 Stucky May 1996 S
5636255 Ellis Jun 1997 A
5665092 Mangiardi et al. Sep 1997 A
5771121 Hentschke Jun 1998 A
5792046 Dobrovolny Aug 1998 A
5841507 Barnes Nov 1998 A
6006126 Cosman Dec 1999 A
6038467 De Bliek et al. Mar 2000 A
6125164 Murphy et al. Sep 2000 A
6147805 Fergason Nov 2000 A
6227667 Halldorsson et al. May 2001 B1
6256529 Holupka et al. Jul 2001 B1
6285505 Melville et al. Sep 2001 B1
6314310 Ben-Haim et al. Nov 2001 B1
6349001 Spitzer Feb 2002 B1
6444192 Mattrey Sep 2002 B1
6447503 Wynne et al. Sep 2002 B1
6449090 Omar et al. Sep 2002 B1
6456405 Horikoshi et al. Sep 2002 B2
6456868 Saito et al. Sep 2002 B2
6474159 Foxlin et al. Nov 2002 B1
6518939 Kikuchi Feb 2003 B1
6527777 Justin Mar 2003 B2
6529331 Massof et al. Mar 2003 B2
6549645 Oikawa et al. Apr 2003 B1
6578962 Amir et al. Jun 2003 B1
6609022 Vilsmeier et al. Aug 2003 B2
6610009 Person Aug 2003 B2
D480476 Martinson et al. Oct 2003 S
6659611 Amir et al. Dec 2003 B2
6675040 Cosman Jan 2004 B1
6683584 Ronzani et al. Jan 2004 B2
6690964 Bieger et al. Feb 2004 B2
6714810 Grzeszczuk et al. Mar 2004 B2
6737425 Yamamoto et al. May 2004 B1
6740882 Weinberg May 2004 B2
6757068 Foxlin Jun 2004 B2
6759200 Stanton, Jr. Jul 2004 B1
6847336 Lemelson et al. Jan 2005 B1
6856324 Sauer et al. Feb 2005 B2
6856826 Seeley et al. Feb 2005 B2
6891518 Sauer et al. May 2005 B2
6900777 Hebert et al. May 2005 B1
6919867 Sauer Jul 2005 B2
6921167 Nagata Jul 2005 B2
6966668 Cugini et al. Nov 2005 B2
6980849 Sasso Dec 2005 B2
6993374 Sasso Jan 2006 B2
6997552 Hung Feb 2006 B1
6999239 Martins et al. Feb 2006 B1
7035371 Boese et al. Apr 2006 B2
7043961 Pandey et al. May 2006 B2
7103233 Stearns Sep 2006 B2
7107091 Jutras et al. Sep 2006 B2
7112656 Desnoyers et al. Sep 2006 B2
7141812 Appleby et al. Nov 2006 B2
7157459 Ohta et al. Jan 2007 B2
7169785 Timmer et al. Jan 2007 B2
7171255 Holupka et al. Jan 2007 B2
7176936 Sauer et al. Feb 2007 B2
7187792 Fu et al. Mar 2007 B2
7190331 Genc et al. Mar 2007 B2
7194295 Vilsmeier Mar 2007 B2
7215322 Genc et al. May 2007 B2
7229078 Lechot Jun 2007 B2
7231076 Fu et al. Jun 2007 B2
7235076 Pacheco Jun 2007 B2
7239330 Sauer et al. Jul 2007 B2
7259266 Carter et al. Aug 2007 B2
7260426 Schweikard et al. Aug 2007 B2
7269192 Hayashi Sep 2007 B2
7281826 Huang Oct 2007 B2
7320556 Vagn-Erik Jan 2008 B2
7330578 Wang et al. Feb 2008 B2
7359535 Salla et al. Apr 2008 B2
7364314 Nilsen et al. Apr 2008 B2
7366934 Narayan et al. Apr 2008 B1
7379077 Bani-Hashemi et al. May 2008 B2
7431453 Hogan Oct 2008 B2
7435219 Kim Oct 2008 B2
7458977 Mcginley et al. Dec 2008 B2
7462852 Appleby et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7507968 Wollenweber et al. Mar 2009 B2
7518136 Appleby et al. Apr 2009 B2
7525735 Sottilare et al. Apr 2009 B2
D592691 Chang May 2009 S
D592692 Chang May 2009 S
D592693 Chang May 2009 S
7536216 Geiger et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7556428 Sukovic et al. Jul 2009 B2
7557824 Holliman Jul 2009 B2
7563228 Ma et al. Jul 2009 B2
7567834 Clayton et al. Jul 2009 B2
7586686 Hall Sep 2009 B1
D602620 Cristoforo Oct 2009 S
7605826 Sauer Oct 2009 B2
7606613 Simon et al. Oct 2009 B2
7607775 Hermanson et al. Oct 2009 B2
7620223 Xu et al. Nov 2009 B2
7627085 Boyden et al. Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7633501 Wood et al. Dec 2009 B2
7645050 Wilt et al. Jan 2010 B2
7653226 Guhring et al. Jan 2010 B2
7689019 Boese et al. Mar 2010 B2
7689042 Brunner et al. Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7699486 Beiner Apr 2010 B1
7699793 Goette et al. Apr 2010 B2
7719769 Sugihara et al. May 2010 B2
D617825 Chang Jun 2010 S
7734327 Colquhoun Jun 2010 B2
D619285 Cristoforo Jul 2010 S
7751865 Jascob et al. Jul 2010 B2
7758204 Klipstein et al. Jul 2010 B2
7768702 Hirose et al. Aug 2010 B2
7769236 Fiala Aug 2010 B2
7773074 Arenson et al. Aug 2010 B2
7774044 Sauer et al. Aug 2010 B2
7822483 Stone et al. Oct 2010 B2
D628307 Krause-Bonte Nov 2010 S
7826902 Stone et al. Nov 2010 B2
7831096 Williamson, Jr. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7837987 Shi et al. Nov 2010 B2
7840093 Fu et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7854705 Pawluczyk et al. Dec 2010 B2
7857271 Lees Dec 2010 B2
7860282 Boese et al. Dec 2010 B2
D630766 Harbin Jan 2011 S
7865269 Prisco et al. Jan 2011 B2
7874686 Rossner et al. Jan 2011 B2
7881770 Melkent et al. Feb 2011 B2
7893413 Appleby et al. Feb 2011 B1
7894649 Fu et al. Feb 2011 B2
7920162 Masini et al. Apr 2011 B2
7938553 Beiner May 2011 B1
7945310 Gattani et al. May 2011 B2
7953471 Clayton et al. May 2011 B2
7969383 Eberl et al. Jun 2011 B2
7974677 Mire et al. Jul 2011 B2
7985756 Barlow et al. Jul 2011 B2
7991557 Liew et al. Aug 2011 B2
7993353 Roner et al. Aug 2011 B2
7996064 Simon et al. Aug 2011 B2
8004524 Deinzer Aug 2011 B2
8021300 Ma et al. Sep 2011 B2
8022984 Cheong et al. Sep 2011 B2
8045266 Nakamura Oct 2011 B2
8060181 Rodriguez et al. Nov 2011 B2
8068581 Boese et al. Nov 2011 B2
8068896 Daghighian et al. Nov 2011 B2
8077943 Williams et al. Dec 2011 B2
8079957 Ma et al. Dec 2011 B2
8085075 Huffman et al. Dec 2011 B2
8085897 Morton Dec 2011 B2
8090175 Fu et al. Jan 2012 B2
8092400 Warkentine et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8112292 Simon Feb 2012 B2
8116847 Gattani et al. Feb 2012 B2
8120847 Chang Feb 2012 B2
8121255 Sugiyama Feb 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8180429 Sasso May 2012 B2
8208599 Ye et al. Jun 2012 B2
8216211 Mathis et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8244012 Liang et al. Aug 2012 B2
8253778 Atsushi Aug 2012 B2
8271069 Jascob et al. Sep 2012 B2
8280491 Kuduvalli et al. Oct 2012 B2
8285021 Boese et al. Oct 2012 B2
8300315 Kobayashi Oct 2012 B2
8305685 Heine et al. Nov 2012 B2
8306305 Porat et al. Nov 2012 B2
8309932 Haselman et al. Nov 2012 B2
8317320 Huang Nov 2012 B2
8328815 Farr et al. Dec 2012 B2
8335553 Rubner et al. Dec 2012 B2
8335557 Maschke Dec 2012 B2
8340379 Razzaque et al. Dec 2012 B2
8369925 Giesel et al. Feb 2013 B2
8386022 Jutras et al. Feb 2013 B2
8394144 Zehavi et al. Mar 2013 B2
8398541 Dimaio et al. Mar 2013 B2
8444266 Waters May 2013 B2
8457719 Moctezuma De La Barrera et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8469902 Dick et al. Jun 2013 B2
8494612 Vetter et al. Jul 2013 B2
8509503 Nahum et al. Aug 2013 B2
8511827 Hua et al. Aug 2013 B2
8531394 Maltz Sep 2013 B2
8540364 Waters Sep 2013 B2
8545012 Waters Oct 2013 B2
8548567 Maschke et al. Oct 2013 B2
8556883 Saleh Oct 2013 B2
8559596 Thomson et al. Oct 2013 B2
8567945 Waters Oct 2013 B2
8571353 Watanabe Oct 2013 B2
8585598 Razzaque et al. Nov 2013 B2
8600001 Schweizer Dec 2013 B2
8600477 Beyar et al. Dec 2013 B2
8605199 Imai Dec 2013 B2
8611988 Miyamoto Dec 2013 B2
8612024 Stone et al. Dec 2013 B2
8634897 Simon et al. Jan 2014 B2
8641621 Razzaque et al. Feb 2014 B2
8643950 König Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8674902 Park et al. Mar 2014 B2
8686923 Eberl et al. Apr 2014 B2
8690581 Ruf et al. Apr 2014 B2
8690776 Razzaque et al. Apr 2014 B2
8692845 Fedorovskaya et al. Apr 2014 B2
8693632 Allison Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8699765 Hao et al. Apr 2014 B2
8705829 Frank et al. Apr 2014 B2
8737708 Hartmann et al. May 2014 B2
8746887 Shestak et al. Jun 2014 B2
8784450 Moskowitz et al. Jul 2014 B2
8786689 Liu Jul 2014 B1
D710545 Wu Aug 2014 S
D710546 Wu Aug 2014 S
8827934 Chopra et al. Sep 2014 B2
8831706 Fu et al. Sep 2014 B2
8838199 Simon et al. Sep 2014 B2
8848977 Bammer et al. Sep 2014 B2
8855395 Baturin et al. Oct 2014 B2
8878900 Yang et al. Nov 2014 B2
8885177 Ben-Yishai et al. Nov 2014 B2
8890772 Woo et al. Nov 2014 B2
8890773 Pederson Nov 2014 B1
8890943 Lee et al. Nov 2014 B2
8897514 Feikas et al. Nov 2014 B2
8900131 Chopra et al. Dec 2014 B2
8903150 Star-Lack et al. Dec 2014 B2
8908952 Isaacs et al. Dec 2014 B2
8911358 Koninckx et al. Dec 2014 B2
8917268 Johnsen et al. Dec 2014 B2
8920776 Gaiger et al. Dec 2014 B2
8922589 Laor Dec 2014 B2
8941559 Bar-Zeev et al. Jan 2015 B2
8942455 Chou et al. Jan 2015 B2
8950877 Northey et al. Feb 2015 B2
8953246 Koenig Feb 2015 B2
8965583 Ortmaier et al. Feb 2015 B2
8969829 Wollenweber et al. Mar 2015 B2
8989349 Thomson et al. Mar 2015 B2
8992580 Bar et al. Mar 2015 B2
8994729 Nakamura Mar 2015 B2
8994795 Oh Mar 2015 B2
9004711 Gerolemou Apr 2015 B2
9005211 Brundobler et al. Apr 2015 B2
9011441 Bertagnoli et al. Apr 2015 B2
9057759 Klingenbeck et al. Jun 2015 B2
9060757 Lawson et al. Jun 2015 B2
9066751 Sasso Jun 2015 B2
9081436 Berme et al. Jul 2015 B1
9084635 Nuckley et al. Jul 2015 B2
9085643 Svanborg et al. Jul 2015 B2
9087471 Miao Jul 2015 B2
9100643 Mcdowall et al. Aug 2015 B2
9101394 Arata et al. Aug 2015 B2
9111175 Strommer et al. Aug 2015 B2
9123155 Cunningham et al. Sep 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9129372 Kriston et al. Sep 2015 B2
9132361 Smithwick Sep 2015 B2
9141873 Takemoto Sep 2015 B2
9142020 Deguise et al. Sep 2015 B2
9149317 Arthur et al. Oct 2015 B2
9165203 McCarthy Oct 2015 B2
9179984 Teichman et al. Nov 2015 B2
D746354 Chang Dec 2015 S
9208916 Appleby et al. Dec 2015 B2
9220573 Kendrick et al. Dec 2015 B2
9225895 Kozinski Dec 2015 B2
9232982 Soler et al. Jan 2016 B2
9235934 Mandella et al. Jan 2016 B2
9244278 Sugiyama et al. Jan 2016 B2
9247240 Park et al. Jan 2016 B2
9259192 Ishihara Feb 2016 B2
9265572 Fuchs et al. Feb 2016 B2
9269192 Kobayashi Feb 2016 B2
9283052 Rodriguez Ponce Mar 2016 B2
9286730 Bar-Zeev et al. Mar 2016 B2
9289267 Sauer et al. Mar 2016 B2
9300949 Ahearn Mar 2016 B2
9310591 Hua et al. Apr 2016 B2
9320474 Demri et al. Apr 2016 B2
9323055 Baillot Apr 2016 B2
9330477 Rappel May 2016 B2
9335547 Takano et al. May 2016 B2
9335567 Nakamura May 2016 B2
9341704 Picard et al. May 2016 B2
9344686 Moharir May 2016 B2
9349066 Koo et al. May 2016 B2
9349520 Demetriou et al. May 2016 B2
9364294 Razzaque et al. Jun 2016 B2
9370332 Paladini et al. Jun 2016 B2
9373166 Azar Jun 2016 B2
9375639 Kobayashi et al. Jun 2016 B2
9378558 Kajiwara et al. Jun 2016 B2
9380287 Nistico et al. Jun 2016 B2
9387008 Sarvestani et al. Jul 2016 B2
9392129 Simmons Jul 2016 B2
9395542 Tilleman et al. Jul 2016 B2
9398936 Razzaque et al. Jul 2016 B2
9400384 Griffith Jul 2016 B2
9414041 Ko et al. Aug 2016 B2
9424611 Kanjirathinkal et al. Aug 2016 B2
9424641 Wiemker et al. Aug 2016 B2
9438894 Park et al. Sep 2016 B2
9443488 Borenstein et al. Sep 2016 B2
9453804 Tahtali Sep 2016 B2
9456878 Macfarlane et al. Oct 2016 B2
9465235 Chang Oct 2016 B2
9468373 Larsen Oct 2016 B2
9470908 Frankel et al. Oct 2016 B1
9473766 Douglas et al. Oct 2016 B2
9492222 Singh Nov 2016 B2
9495585 Bicer et al. Nov 2016 B2
9498132 Maier-Hein et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9507155 Morimoto Nov 2016 B2
9513495 Waters Dec 2016 B2
9521966 Schwartz Dec 2016 B2
9526443 Berme et al. Dec 2016 B1
9530382 Simmons Dec 2016 B2
9532846 Nakamura Jan 2017 B2
9532849 Anderson et al. Jan 2017 B2
9538962 Hannaford et al. Jan 2017 B1
9545233 Sirpad et al. Jan 2017 B2
9546779 Rementer Jan 2017 B2
9547174 Gao et al. Jan 2017 B2
9547940 Sun et al. Jan 2017 B1
9557566 Fujimaki Jan 2017 B2
9560318 Reina et al. Jan 2017 B2
9561095 Nguyen et al. Feb 2017 B1
9561446 Brecher Feb 2017 B2
9565415 Zhang et al. Feb 2017 B2
9572661 Robin et al. Feb 2017 B2
9576556 Simmons Feb 2017 B2
9581822 Morimoto Feb 2017 B2
9612657 Bertram et al. Apr 2017 B2
9629595 Walker et al. Apr 2017 B2
9633431 Merlet Apr 2017 B2
9645395 Bolas et al. May 2017 B2
9646423 Sun et al. May 2017 B1
9672597 Amiot et al. Jun 2017 B2
9672640 Kleiner Jun 2017 B2
9675306 Morton Jun 2017 B2
9675319 Razzaque et al. Jun 2017 B1
RE46463 Fienbloom et al. Jul 2017 E
9710968 Dillavou et al. Jul 2017 B2
9713502 Finkman et al. Jul 2017 B2
9724119 Hissong et al. Aug 2017 B2
9724165 Arata et al. Aug 2017 B2
9726888 Giartosio et al. Aug 2017 B2
9728006 Varga Aug 2017 B2
9729831 Birnkrant et al. Aug 2017 B2
9757034 Desjardins et al. Sep 2017 B2
9757087 Simon et al. Sep 2017 B2
9766441 Rappel Sep 2017 B2
9767608 Lee et al. Sep 2017 B2
9770203 Berme et al. Sep 2017 B1
9772102 Ferguson Sep 2017 B1
9772495 Tam et al. Sep 2017 B2
9791138 Feinbloom et al. Oct 2017 B1
9800995 Libin et al. Oct 2017 B2
9805504 Zhang et al. Oct 2017 B2
9808148 Miller et al. Nov 2017 B2
9839448 Reckling et al. Dec 2017 B2
9844413 Daon et al. Dec 2017 B2
9851080 Wilt et al. Dec 2017 B2
9861446 Lang Jan 2018 B2
9864214 Fass Jan 2018 B2
9872733 Shoham et al. Jan 2018 B2
9877642 Duret Jan 2018 B2
9885465 Nguyen Feb 2018 B2
9886552 Dillavou et al. Feb 2018 B2
9892564 Cvetko et al. Feb 2018 B1
9898866 Fuchs et al. Feb 2018 B2
9901414 Lively et al. Feb 2018 B2
9911187 Steinle et al. Mar 2018 B2
9927611 Rudy et al. Mar 2018 B2
9928629 Benishti et al. Mar 2018 B2
9940750 Dillavou et al. Apr 2018 B2
9943374 Merritt et al. Apr 2018 B2
9947110 Haimerl Apr 2018 B2
9956054 Aguirre-Valencia May 2018 B2
9958674 Border May 2018 B2
9959629 Dillavou et al. May 2018 B2
9965681 Border et al. May 2018 B2
9968297 Connor May 2018 B2
9980780 Lang May 2018 B2
9986228 Woods May 2018 B2
D824523 Paoli et al. Jul 2018 S
10010379 Gibby et al. Jul 2018 B1
10013531 Richards et al. Jul 2018 B2
10015243 Kazerani et al. Jul 2018 B2
10016243 Esterberg Jul 2018 B2
10022064 Kim et al. Jul 2018 B2
10022065 Ben-Yishai et al. Jul 2018 B2
10022104 Sell et al. Jul 2018 B2
10023615 Bonny Jul 2018 B2
10026015 Cavusoglu et al. Jul 2018 B2
10034713 Yang et al. Jul 2018 B2
10046165 Frewin et al. Aug 2018 B2
10066816 Chang Sep 2018 B2
10073515 Awdeh Sep 2018 B2
10080616 Wilkinson et al. Sep 2018 B2
10082680 Chung Sep 2018 B2
10085709 Lavallee et al. Oct 2018 B2
10105187 Corndorf et al. Oct 2018 B2
10107483 Oren Oct 2018 B2
10108833 Hong et al. Oct 2018 B2
10123840 Dorman Nov 2018 B2
10130378 Bryan Nov 2018 B2
10132483 Feinbloom et al. Nov 2018 B1
10134166 Benishti et al. Nov 2018 B2
10134194 Kepner et al. Nov 2018 B2
10139652 Windham Nov 2018 B2
10139920 Isaacs et al. Nov 2018 B2
10142496 Rao et al. Nov 2018 B1
10151928 Ushakov Dec 2018 B2
10154239 Casas Dec 2018 B2
10159530 Lang Dec 2018 B2
10166079 Mclachlin et al. Jan 2019 B2
10175507 Nakamura Jan 2019 B2
10175753 Boesen Jan 2019 B2
10181361 Dillavou et al. Jan 2019 B2
10186055 Takahashi et al. Jan 2019 B2
10188672 Wagner Jan 2019 B2
10194131 Casas Jan 2019 B2
10194990 Amanatullah et al. Feb 2019 B2
10194993 Roger et al. Feb 2019 B2
10195076 Fateh Feb 2019 B2
10197803 Badiali et al. Feb 2019 B2
10197816 Waisman et al. Feb 2019 B2
10207315 Appleby et al. Feb 2019 B2
10230719 Vaughn et al. Mar 2019 B2
10231893 Lei et al. Mar 2019 B2
10235606 Miao et al. Mar 2019 B2
10240769 Braganca et al. Mar 2019 B1
10247965 Ton Apr 2019 B2
10251724 Mclachlin et al. Apr 2019 B2
10274731 Maimone Apr 2019 B2
10278777 Lang May 2019 B1
10292768 Lang May 2019 B2
10296805 Yang et al. May 2019 B2
10319154 Chakravarthula et al. Jun 2019 B1
10326975 Casas Jun 2019 B2
10339719 Jagga et al. Jul 2019 B2
10352543 Braganca et al. Jul 2019 B1
10357146 Fiebel et al. Jul 2019 B2
10357574 Hilderbrand et al. Jul 2019 B2
10366489 Boettger et al. Jul 2019 B2
10368947 Lang Aug 2019 B2
10368948 Tripathi Aug 2019 B2
10382748 Benishti et al. Aug 2019 B2
10383654 Yilmaz et al. Aug 2019 B2
10386645 Abou Shousha Aug 2019 B2
10398514 Ryan et al. Sep 2019 B2
10405927 Lang Sep 2019 B1
10419655 Sivan Sep 2019 B2
10420626 Tokuda et al. Sep 2019 B2
10420813 Newell-Rogers et al. Sep 2019 B2
10424115 Ellerbrock Sep 2019 B2
10426554 Siewerdsen et al. Oct 2019 B2
10429675 Greget Oct 2019 B2
10431008 Djajadiningrat et al. Oct 2019 B2
10433814 Razzaque et al. Oct 2019 B2
10434335 Takahashi et al. Oct 2019 B2
10444514 Abou Shousha et al. Oct 2019 B2
10447947 Liu Oct 2019 B2
10448003 Grafenberg Oct 2019 B2
10449040 Lashinski et al. Oct 2019 B2
10453187 Peterson et al. Oct 2019 B2
10463434 Siegler et al. Nov 2019 B2
10465892 Feinbloom et al. Nov 2019 B1
10466487 Blum et al. Nov 2019 B2
10470732 Baumgart et al. Nov 2019 B2
10473314 Braganca et al. Nov 2019 B1
10485989 Jordan et al. Nov 2019 B2
10488663 Choi Nov 2019 B2
D869772 Gand Dec 2019 S
D870977 Berggren et al. Dec 2019 S
10499997 Weinstein et al. Dec 2019 B2
10504231 Fiala Dec 2019 B2
10507066 Dimaio et al. Dec 2019 B2
10511822 Casas Dec 2019 B2
10517544 Taguchi et al. Dec 2019 B2
10537395 Perez Jan 2020 B2
10540780 Cousins et al. Jan 2020 B1
10543485 Ismagilov et al. Jan 2020 B2
10546423 Jones et al. Jan 2020 B2
10548557 Lim et al. Feb 2020 B2
10555775 Hoffman et al. Feb 2020 B2
10568535 Roberts et al. Feb 2020 B2
10571696 Urey et al. Feb 2020 B2
10571716 Chapiro Feb 2020 B2
10573087 Gallop et al. Feb 2020 B2
10577630 Zhang et al. Mar 2020 B2
10586400 Douglas Mar 2020 B2
10592748 Cousins et al. Mar 2020 B1
10594998 Casas Mar 2020 B1
10595716 Nazareth et al. Mar 2020 B2
10601950 Devam et al. Mar 2020 B2
10602114 Casas Mar 2020 B2
10603113 Lang Mar 2020 B2
10603133 Wang et al. Mar 2020 B2
10606085 Toyama Mar 2020 B2
10610172 Hummel et al. Apr 2020 B2
10610179 Altmann Apr 2020 B2
10613352 Knoll Apr 2020 B2
10617566 Esmonde Apr 2020 B2
10620460 Carabin Apr 2020 B2
10625099 Takahashi et al. Apr 2020 B2
10626473 Mariani et al. Apr 2020 B2
10631905 Asfora et al. Apr 2020 B2
10631907 Zucker et al. Apr 2020 B2
10634331 Feinbloom et al. Apr 2020 B1
10634921 Blum et al. Apr 2020 B2
10638080 Ovchinnikov et al. Apr 2020 B2
10646285 Siemionow et al. May 2020 B2
10650513 Penney et al. May 2020 B2
10650594 Jones et al. May 2020 B2
10652525 Woods May 2020 B2
10653495 Gregerson et al. May 2020 B2
10660715 Dozeman May 2020 B2
10663738 Carlvik et al. May 2020 B2
10682112 Pizaine et al. Jun 2020 B2
10682767 Grafenberg et al. Jun 2020 B2
10687901 Thomas Jun 2020 B2
10691397 Clements Jun 2020 B1
10702713 Mori et al. Jul 2020 B2
10709398 Schweizer Jul 2020 B2
10713801 Jordan et al. Jul 2020 B2
10716643 Justin et al. Jul 2020 B2
10722733 Takahashi Jul 2020 B2
10725535 Yu Jul 2020 B2
10731832 Koo Aug 2020 B2
10732721 Clements Aug 2020 B1
10742949 Casas Aug 2020 B2
10743939 Lang Aug 2020 B1
10747315 Tungare et al. Aug 2020 B2
10777094 Rao et al. Sep 2020 B1
10777315 Zehavi et al. Sep 2020 B2
10781482 Gubatayao et al. Sep 2020 B2
10792110 Leung et al. Oct 2020 B2
10799145 West et al. Oct 2020 B2
10799296 Lang Oct 2020 B2
10799316 Sela et al. Oct 2020 B2
10810799 Tepper et al. Oct 2020 B2
10818019 Piat et al. Oct 2020 B2
10818101 Gallop et al. Oct 2020 B2
10818199 Buras et al. Oct 2020 B2
10825563 Gibby et al. Nov 2020 B2
10831943 Santarone et al. Nov 2020 B2
10835296 Elimelech et al. Nov 2020 B2
10838206 Fortin-Deschnes et al. Nov 2020 B2
10839629 Jones et al. Nov 2020 B2
10839956 Beydoun et al. Nov 2020 B2
10841556 Casas Nov 2020 B2
10842002 Chang Nov 2020 B2
10842461 Johnson et al. Nov 2020 B2
10849691 Zucker et al. Dec 2020 B2
10849693 Lang Dec 2020 B2
10849710 Liu Dec 2020 B2
10861236 Geri et al. Dec 2020 B2
10865220 Ebetino et al. Dec 2020 B2
10869517 Halpern Dec 2020 B1
10869727 Yanof et al. Dec 2020 B2
10872472 Watola et al. Dec 2020 B2
10877262 Luxembourg Dec 2020 B1
10877296 Lindsey et al. Dec 2020 B2
10878639 Douglas et al. Dec 2020 B2
10893260 Trail et al. Jan 2021 B2
10895742 Schneider et al. Jan 2021 B2
10895743 Dausmann Jan 2021 B2
10895906 West et al. Jan 2021 B2
10898151 Harding et al. Jan 2021 B2
10921595 Rakshit et al. Feb 2021 B2
10921613 Gupta et al. Feb 2021 B2
10928321 Rawle Feb 2021 B2
10928638 Ninan et al. Feb 2021 B2
10935815 Cesar Mar 2021 B1
10935816 Ban et al. Mar 2021 B2
10936537 Huston Mar 2021 B2
10939973 Dimaio et al. Mar 2021 B2
10939977 Messinger et al. Mar 2021 B2
10941933 Ferguson Mar 2021 B2
10946108 Zhang et al. Mar 2021 B2
10950338 Douglas Mar 2021 B2
10951872 Casas Mar 2021 B2
10964095 Douglas Mar 2021 B1
10964124 Douglas Mar 2021 B1
10966768 Poulos Apr 2021 B2
10993754 Kuntz et al. May 2021 B2
11000335 Dorman May 2021 B2
11006093 Hegyi May 2021 B1
11013550 Rioux et al. May 2021 B2
11013560 Lang May 2021 B2
11013562 Marti et al. May 2021 B2
11013573 Chang May 2021 B2
11013900 Malek et al. May 2021 B2
11019988 Fiebel et al. Jun 2021 B2
11027027 Manning et al. Jun 2021 B2
11029147 Abovitz et al. Jun 2021 B2
11030809 Wang Jun 2021 B2
11041173 Zhang et al. Jun 2021 B2
11045663 Mori et al. Jun 2021 B2
11049293 Chae et al. Jun 2021 B2
11049476 Fuchs et al. Jun 2021 B2
11050990 Casas Jun 2021 B2
11057505 Dharmatilleke Jul 2021 B2
11058390 Douglas Jul 2021 B1
11061257 Hakim Jul 2021 B1
11065062 Frushour et al. Jul 2021 B2
11067387 Marell et al. Jul 2021 B2
11071497 Hallack et al. Jul 2021 B2
11079596 Hua et al. Aug 2021 B2
11087039 Duff et al. Aug 2021 B2
11090019 Siemionow et al. Aug 2021 B2
11097129 Sakata et al. Aug 2021 B2
11099376 Steier et al. Aug 2021 B1
11103320 Leboeuf et al. Aug 2021 B2
D930162 Cremer et al. Sep 2021 S
11109762 Steier et al. Sep 2021 B1
11112611 Kessler et al. Sep 2021 B1
11122164 Gigante Sep 2021 B2
11123604 Fung Sep 2021 B2
11129562 Roberts et al. Sep 2021 B2
11132055 Jones et al. Sep 2021 B2
11135015 Crawford et al. Oct 2021 B2
11135016 Frielinghaus et al. Oct 2021 B2
11137610 Kessler et al. Oct 2021 B1
11141221 Hobeika et al. Oct 2021 B2
11153549 Casas Oct 2021 B2
11153555 Healy et al. Oct 2021 B1
11163176 Karafin et al. Nov 2021 B2
11164324 Liu et al. Nov 2021 B2
11166006 Hegyi Nov 2021 B2
11172990 Lang Nov 2021 B2
11179136 Kohli et al. Nov 2021 B2
11180557 Noelle Nov 2021 B2
11181747 Kessler et al. Nov 2021 B1
11185891 Cousins et al. Nov 2021 B2
11202682 Staunton et al. Dec 2021 B2
11207150 Healy et al. Dec 2021 B2
11217028 Jones et al. Jan 2022 B2
11224763 Takahashi et al. Jan 2022 B2
11227417 Berlinger et al. Jan 2022 B2
11244508 Kazanzides et al. Feb 2022 B2
11253216 Crawford et al. Feb 2022 B2
11253323 Hughes et al. Feb 2022 B2
11257190 Mao et al. Feb 2022 B2
11263772 Siemionow et al. Mar 2022 B2
11269401 West et al. Mar 2022 B2
11272151 Casas Mar 2022 B2
11278359 Siemionow et al. Mar 2022 B2
11278413 Lang Mar 2022 B1
11280480 Wilt et al. Mar 2022 B2
11284846 Graumann et al. Mar 2022 B2
11291521 Im Apr 2022 B2
11294167 Ishimoda Apr 2022 B2
11297285 Pierce Apr 2022 B2
11300252 Nguyen Apr 2022 B2
11300790 Cheng et al. Apr 2022 B2
11304759 Kovtun et al. Apr 2022 B2
11307402 Steier et al. Apr 2022 B2
11311341 Lang Apr 2022 B2
11317973 Calloway et al. May 2022 B2
11337763 Choi May 2022 B2
11348257 Lang May 2022 B2
11350072 Quiles Casas May 2022 B1
11350965 Yilmaz et al. Jun 2022 B2
11351006 Aferzon et al. Jun 2022 B2
11360315 Tu et al. Jun 2022 B2
11382699 Wassall et al. Jul 2022 B2
11382700 Calloway et al. Jul 2022 B2
11382712 Elimelech et al. Jul 2022 B2
11382713 Healy et al. Jul 2022 B2
11389252 Gera et al. Jul 2022 B2
11432828 Lang Sep 2022 B1
11432931 Lang Sep 2022 B2
11452568 Lang Sep 2022 B2
11460915 Frielinghaus et al. Oct 2022 B2
11461983 Jones et al. Oct 2022 B2
11464581 Calloway Oct 2022 B2
11483532 Quiles Casas Oct 2022 B2
11490986 Ben-Yishai Nov 2022 B2
11648016 Hathaway May 2023 B2
11750794 Benishti et al. Sep 2023 B2
11766296 Wolf et al. Sep 2023 B2
20020082498 Wendt et al. Jun 2002 A1
20030059097 Abovitz et al. Mar 2003 A1
20030117393 Sauer et al. Jun 2003 A1
20030130576 Seeley et al. Jul 2003 A1
20030210812 Khamene et al. Nov 2003 A1
20030225329 Rossner et al. Dec 2003 A1
20040019263 Jutras et al. Jan 2004 A1
20040030237 Lee et al. Feb 2004 A1
20040138556 Cosman Jul 2004 A1
20040238732 State et al. Dec 2004 A1
20050017972 Poole et al. Jan 2005 A1
20050119639 Mccombs et al. Jun 2005 A1
20050203380 Sauer et al. Sep 2005 A1
20050215879 Chuanggui Sep 2005 A1
20060134198 Tawa et al. Jun 2006 A1
20070018975 Chuanggui et al. Jan 2007 A1
20070058261 Sugihara et al. Mar 2007 A1
20070183041 Mccloy et al. Aug 2007 A1
20070233371 Stoschek et al. Oct 2007 A1
20070273610 Baillot Nov 2007 A1
20080002809 Bodduluri Jan 2008 A1
20080007645 McCutchen Jan 2008 A1
20080035266 Danziger Feb 2008 A1
20080085033 Haven et al. Apr 2008 A1
20080159612 Fu et al. Jul 2008 A1
20080183065 Goldbach Jul 2008 A1
20080221625 Hufner et al. Sep 2008 A1
20080253527 Boyden et al. Oct 2008 A1
20080262812 Arata et al. Oct 2008 A1
20090018437 Cooke Jan 2009 A1
20090036902 Dimaio et al. Feb 2009 A1
20090062869 Claverie et al. Mar 2009 A1
20090099445 Burger Apr 2009 A1
20090123452 Madison May 2009 A1
20090227847 Tepper et al. Sep 2009 A1
20090300540 Russell Dec 2009 A1
20100076305 Maier-Hein et al. Mar 2010 A1
20100094308 Tatsumi et al. Apr 2010 A1
20100106010 Rubner et al. Apr 2010 A1
20100114110 Taft et al. May 2010 A1
20100138939 Bentzon et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100274124 Jascob et al. Oct 2010 A1
20110004259 Stallings et al. Jan 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110216060 Weising et al. Sep 2011 A1
20110245625 Trovato et al. Oct 2011 A1
20110254922 Schaerer et al. Oct 2011 A1
20110306873 Shenai et al. Dec 2011 A1
20120014608 Watanabe Jan 2012 A1
20120109151 Maier-Hein et al. May 2012 A1
20120143050 Heigl Jun 2012 A1
20120155064 Waters Jun 2012 A1
20120182605 Hall et al. Jul 2012 A1
20120201421 Hartmann et al. Aug 2012 A1
20120216411 Wevers et al. Aug 2012 A1
20120238609 Srivastava et al. Sep 2012 A1
20120289777 Chopra et al. Nov 2012 A1
20120320100 Machida et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130009853 Hesselink et al. Jan 2013 A1
20130050258 Liu et al. Feb 2013 A1
20130106833 Fun May 2013 A1
20130135734 Shafer et al. May 2013 A1
20130135738 Shafer et al. May 2013 A1
20130190602 Liao et al. Jul 2013 A1
20130209953 Arlinsky et al. Aug 2013 A1
20130234914 Fujimaki Sep 2013 A1
20130234935 Griffith Sep 2013 A1
20130245461 Maier-Hein et al. Sep 2013 A1
20130249787 Morimoto Sep 2013 A1
20130249945 Kobayashi Sep 2013 A1
20130265623 Sugiyama et al. Oct 2013 A1
20130300637 Smits et al. Nov 2013 A1
20130300760 Sugano et al. Nov 2013 A1
20130342571 Kinnebrew et al. Dec 2013 A1
20140031668 Mobasser et al. Jan 2014 A1
20140088402 Xu Mar 2014 A1
20140088990 Nawana et al. Mar 2014 A1
20140104505 Koenig Apr 2014 A1
20140105912 Noelle Apr 2014 A1
20140142426 Razzaque et al. May 2014 A1
20140168261 Margolis et al. Jun 2014 A1
20140176661 Smurro et al. Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140189508 Granchi et al. Jul 2014 A1
20140198129 Liu et al. Jul 2014 A1
20140243614 Rothberg et al. Aug 2014 A1
20140256429 Kobayashi et al. Sep 2014 A1
20140266983 Christensen Sep 2014 A1
20140268356 Bolas et al. Sep 2014 A1
20140270505 Mccarthy Sep 2014 A1
20140285404 Takano et al. Sep 2014 A1
20140285429 Simmons Sep 2014 A1
20140300632 Laor Oct 2014 A1
20140300967 Tilleman et al. Oct 2014 A1
20140301624 Barckow et al. Oct 2014 A1
20140303491 Shekhar et al. Oct 2014 A1
20140320399 Kim et al. Oct 2014 A1
20140333899 Smithwick Nov 2014 A1
20140336461 Reiter et al. Nov 2014 A1
20140340286 Machida et al. Nov 2014 A1
20150018672 Blumhofer et al. Jan 2015 A1
20150084990 Laor Mar 2015 A1
20150150641 Daon et al. Jun 2015 A1
20150182293 Yang et al. Jul 2015 A1
20150192776 Lee et al. Jul 2015 A1
20150209119 Theodore et al. Jul 2015 A1
20150261922 Nawana et al. Sep 2015 A1
20150277123 Chaum et al. Oct 2015 A1
20150282735 Rossner Oct 2015 A1
20150287188 Gazit et al. Oct 2015 A1
20150287236 Winne et al. Oct 2015 A1
20150297314 Fowler et al. Oct 2015 A1
20150310668 Ellerbrock Oct 2015 A1
20150350517 Duret et al. Dec 2015 A1
20150351863 Plassky et al. Dec 2015 A1
20150363978 Maimone et al. Dec 2015 A1
20150366620 Cameron et al. Dec 2015 A1
20160022287 Nehls Jan 2016 A1
20160030131 Yang et al. Feb 2016 A1
20160086380 Vayser et al. Mar 2016 A1
20160133051 Aonuma et al. May 2016 A1
20160153004 Zhang et al. Jun 2016 A1
20160175064 Steinle et al. Jun 2016 A1
20160191887 Casas Jun 2016 A1
20160228033 Rossner Aug 2016 A1
20160249989 Devam et al. Sep 2016 A1
20160256223 Haimerl et al. Sep 2016 A1
20160302870 Wilkinson et al. Oct 2016 A1
20160324580 Esterberg Nov 2016 A1
20160324583 Kheradpir et al. Nov 2016 A1
20160339337 Ellsworth et al. Nov 2016 A1
20170014119 Capote et al. Jan 2017 A1
20170027650 Merck et al. Feb 2017 A1
20170031163 Gao et al. Feb 2017 A1
20170068119 Antaki et al. Mar 2017 A1
20170086941 Marti et al. Mar 2017 A1
20170164919 Lavallee et al. Jun 2017 A1
20170164920 Lavallee et al. Jun 2017 A1
20170178375 Benishti et al. Jun 2017 A1
20170220224 Kodali et al. Aug 2017 A1
20170239015 Sela et al. Aug 2017 A1
20170245944 Crawford et al. Aug 2017 A1
20170251900 Hansen et al. Sep 2017 A1
20170252109 Yang et al. Sep 2017 A1
20170258526 Lang Sep 2017 A1
20170281283 Siegler et al. Oct 2017 A1
20170312032 Amanatullah et al. Nov 2017 A1
20170348055 Salcedo et al. Dec 2017 A1
20170348061 Joshi et al. Dec 2017 A1
20170366773 Kiraly et al. Dec 2017 A1
20170367766 Mahfouz Dec 2017 A1
20170367771 Tako et al. Dec 2017 A1
20170372477 Penney et al. Dec 2017 A1
20180028266 Barnes et al. Feb 2018 A1
20180049622 Ryan et al. Feb 2018 A1
20180078316 Schaewe et al. Mar 2018 A1
20180082480 White et al. Mar 2018 A1
20180092667 Heigl et al. Apr 2018 A1
20180092698 Chopra et al. Apr 2018 A1
20180116732 Lin et al. May 2018 A1
20180117150 O'Dwyer et al. May 2018 A1
20180133871 Farmer May 2018 A1
20180153626 Yang et al. Jun 2018 A1
20180182150 Benishti et al. Jun 2018 A1
20180185113 Gregerson et al. Jul 2018 A1
20180193097 Mclachlin et al. Jul 2018 A1
20180200002 Kostrzewski et al. Jul 2018 A1
20180247128 Alvi et al. Aug 2018 A1
20180262743 Casas Sep 2018 A1
20180303558 Thomas Oct 2018 A1
20180317803 Ben-Yishai et al. Nov 2018 A1
20180318035 Mclachlin et al. Nov 2018 A1
20180368898 Divincenzo et al. Dec 2018 A1
20190000372 Gullotti et al. Jan 2019 A1
20190000564 Navab et al. Jan 2019 A1
20190015163 Abhari et al. Jan 2019 A1
20190038365 Soper et al. Feb 2019 A1
20190043238 Benishti et al. Feb 2019 A1
20190046272 Zoabi et al. Feb 2019 A1
20190053851 Siemionow et al. Feb 2019 A1
20190069971 Tripathi et al. Mar 2019 A1
20190105116 Johnson et al. Apr 2019 A1
20190130792 Rios et al. May 2019 A1
20190142519 Siemionow et al. May 2019 A1
20190144443 Jackson et al. May 2019 A1
20190175228 Elimelech et al. Jun 2019 A1
20190192230 Siemionow et al. Jun 2019 A1
20190200894 Jung et al. Jul 2019 A1
20190201106 Siemionow et al. Jul 2019 A1
20190216537 Eltorai et al. Jul 2019 A1
20190254753 Johnson et al. Aug 2019 A1
20190273916 Benishti et al. Sep 2019 A1
20190310481 Blum et al. Oct 2019 A1
20190333480 Lang Oct 2019 A1
20190369717 Frielinghaus et al. Dec 2019 A1
20190387351 Lyren et al. Dec 2019 A1
20200015895 Frielinghaus et al. Jan 2020 A1
20200019364 Pond Jan 2020 A1
20200020249 Jarc et al. Jan 2020 A1
20200038112 Amanatullah et al. Feb 2020 A1
20200043160 Mizukura et al. Feb 2020 A1
20200078100 Weinstein et al. Mar 2020 A1
20200088997 Lee et al. Mar 2020 A1
20200117025 Sauer Apr 2020 A1
20200129058 Li et al. Apr 2020 A1
20200129136 Harding et al. Apr 2020 A1
20200129262 Verard et al. Apr 2020 A1
20200129264 Oativia et al. Apr 2020 A1
20200133029 Yonezawa Apr 2020 A1
20200138618 Roszkowiak et al. May 2020 A1
20200143594 Lal et al. May 2020 A1
20200146546 Chene et al. May 2020 A1
20200151507 Siemionow et al. May 2020 A1
20200156259 Ruiz et al. May 2020 A1
20200159313 Gibby et al. May 2020 A1
20200163723 Wolf et al. May 2020 A1
20200163739 Messinger et al. May 2020 A1
20200178916 Lalys et al. Jun 2020 A1
20200184638 Meglan et al. Jun 2020 A1
20200186786 Gibby et al. Jun 2020 A1
20200188028 Feiner et al. Jun 2020 A1
20200188034 Lequette et al. Jun 2020 A1
20200201082 Carabin Jun 2020 A1
20200229877 Siemionow et al. Jul 2020 A1
20200237256 Farshad et al. Jul 2020 A1
20200237459 Racheli et al. Jul 2020 A1
20200237880 Kent et al. Jul 2020 A1
20200242280 Pavloff et al. Jul 2020 A1
20200246074 Lang Aug 2020 A1
20200246081 Johnson et al. Aug 2020 A1
20200264451 Blum et al. Aug 2020 A1
20200265273 Wei et al. Aug 2020 A1
20200275988 Johnson et al. Sep 2020 A1
20200286222 Essenreiter et al. Sep 2020 A1
20200288075 Bonin et al. Sep 2020 A1
20200305980 Lang Oct 2020 A1
20200315734 El Amm Oct 2020 A1
20200323460 Busza et al. Oct 2020 A1
20200327721 Siemionow et al. Oct 2020 A1
20200330179 Ton Oct 2020 A1
20200341283 Mccracken et al. Oct 2020 A1
20200355927 Marcellin-Dibon et al. Nov 2020 A1
20200360091 Murray et al. Nov 2020 A1
20200375666 Murphy Dec 2020 A1
20200377493 Heiser et al. Dec 2020 A1
20200377956 Vogelstein et al. Dec 2020 A1
20200389425 Bhatia et al. Dec 2020 A1
20200390502 Holthuizen et al. Dec 2020 A1
20200390503 Casas et al. Dec 2020 A1
20200402647 Domracheva et al. Dec 2020 A1
20200409306 Gelman et al. Dec 2020 A1
20200410687 Siemionow et al. Dec 2020 A1
20200413031 Khani et al. Dec 2020 A1
20210004956 Book et al. Jan 2021 A1
20210009339 Morrison et al. Jan 2021 A1
20210015560 Boddington et al. Jan 2021 A1
20210015583 Avisar et al. Jan 2021 A1
20210022599 Freeman et al. Jan 2021 A1
20210022808 Lang Jan 2021 A1
20210022811 Mahfouz Jan 2021 A1
20210022828 Elimelech et al. Jan 2021 A1
20210029804 Chang Jan 2021 A1
20210030374 Takahashi et al. Feb 2021 A1
20210030511 Wolf et al. Feb 2021 A1
20210038339 Yu et al. Feb 2021 A1
20210049825 Wheelwright et al. Feb 2021 A1
20210052348 Stifter et al. Feb 2021 A1
20210065911 Goel et al. Mar 2021 A1
20210077195 Saeidi et al. Mar 2021 A1
20210077210 Itkowitz et al. Mar 2021 A1
20210080751 Lindsey et al. Mar 2021 A1
20210090344 Geri et al. Mar 2021 A1
20210093391 Poltaretskyi et al. Apr 2021 A1
20210093392 Poltaretskyi et al. Apr 2021 A1
20210093400 Quaid et al. Apr 2021 A1
20210093417 Liu Apr 2021 A1
20210104055 Ni et al. Apr 2021 A1
20210107923 Jackson et al. Apr 2021 A1
20210109349 Schneider et al. Apr 2021 A1
20210109373 Loo et al. Apr 2021 A1
20210110517 Flohr et al. Apr 2021 A1
20210113269 Vilsmeier et al. Apr 2021 A1
20210113293 Silva et al. Apr 2021 A9
20210121238 Palushi et al. Apr 2021 A1
20210137634 Lang May 2021 A1
20210141887 Kim et al. May 2021 A1
20210150702 Claessen et al. May 2021 A1
20210157544 Denton May 2021 A1
20210160472 Casas May 2021 A1
20210161614 Elimelech et al. Jun 2021 A1
20210162287 Xing et al. Jun 2021 A1
20210165207 Peyman Jun 2021 A1
20210169578 Calloway et al. Jun 2021 A1
20210169581 Calloway et al. Jun 2021 A1
20210169605 Calloway et al. Jun 2021 A1
20210186647 Elimelech et al. Jun 2021 A1
20210196404 Wang Jul 2021 A1
20210223577 Zhang et al. Jul 2021 A1
20210227791 De et al. Jul 2021 A1
20210235061 Hegyi Jul 2021 A1
20210248822 Choi et al. Aug 2021 A1
20210274281 Zhang et al. Sep 2021 A1
20210282887 Wiggermann Sep 2021 A1
20210290046 Nazareth et al. Sep 2021 A1
20210290336 Wang Sep 2021 A1
20210290394 Mahfouz Sep 2021 A1
20210295512 Knoplioch et al. Sep 2021 A1
20210306599 Pierce Sep 2021 A1
20210311322 Belanger et al. Oct 2021 A1
20210314502 Liu Oct 2021 A1
20210315636 Akbarian et al. Oct 2021 A1
20210315662 Freeman et al. Oct 2021 A1
20210325684 Ninan et al. Oct 2021 A1
20210332447 Lubelski et al. Oct 2021 A1
20210333561 Oh et al. Oct 2021 A1
20210346115 Dulin et al. Nov 2021 A1
20210349677 Baldev et al. Nov 2021 A1
20210369226 Siemionow et al. Dec 2021 A1
20210371413 Thurston et al. Dec 2021 A1
20210373333 Moon Dec 2021 A1
20210373344 Loyola et al. Dec 2021 A1
20210378757 Bay et al. Dec 2021 A1
20210386482 Gera et al. Dec 2021 A1
20210389590 Freeman et al. Dec 2021 A1
20210400247 Casas Dec 2021 A1
20210401533 Im Dec 2021 A1
20210402255 Fung Dec 2021 A1
20210405369 King Dec 2021 A1
20220003992 Ahn Jan 2022 A1
20220007006 Healy et al. Jan 2022 A1
20220008135 Frielinghaus et al. Jan 2022 A1
20220038675 Hegyi Feb 2022 A1
20220039873 Harris Feb 2022 A1
20220051484 Jones et al. Feb 2022 A1
20220071712 Wolf et al. Mar 2022 A1
20220079675 Lang Mar 2022 A1
20220121041 Hakim Apr 2022 A1
20220133484 Lang May 2022 A1
20220142730 Wolf et al. May 2022 A1
20220155861 Myung et al. May 2022 A1
20220159227 Quiles Casas May 2022 A1
20220179209 Cherukuri Jun 2022 A1
20220192776 Gibby et al. Jun 2022 A1
20220201274 Achilefu et al. Jun 2022 A1
20220245400 Siemionow et al. Aug 2022 A1
20220245821 Ouzounis Aug 2022 A1
20220287676 Steines et al. Sep 2022 A1
20220292786 Pelzl et al. Sep 2022 A1
20220295033 Quiles Casas Sep 2022 A1
20220304768 Elimelech et al. Sep 2022 A1
20220358759 Cork et al. Nov 2022 A1
20220405935 Flossmann et al. Dec 2022 A1
20230027801 Qian et al. Jan 2023 A1
20230034189 Gera et al. Feb 2023 A1
20230290037 Tasse et al. Sep 2023 A1
20230295302 Bhagavatheeswaran et al. Sep 2023 A1
20230329799 Gera et al. Oct 2023 A1
20230329801 Elimelech et al. Oct 2023 A1
Foreign Referenced Citations (100)
Number Date Country
3022448 Feb 2018 CA
3034314 Feb 2018 CA
103106348 May 2013 CN
111915696 Nov 2020 CN
112489047 Mar 2021 CN
202004011567 Nov 2004 DE
102004011567 Sep 2005 DE
102014008153 Oct 2014 DE
0933096 Aug 1999 EP
1640750 Mar 2006 EP
1757974 Feb 2007 EP
2134847 Dec 2009 EP
2891966 Jul 2015 EP
3034607 Jun 2016 EP
3076660 Oct 2016 EP
2654749 May 2017 EP
3216416 Sep 2017 EP
2032039 Oct 2017 EP
3224376 Oct 2017 EP
3247297 Nov 2017 EP
3123970 Apr 2018 EP
2030193 Jul 2018 EP
2892558 Apr 2019 EP
2635299 Jul 2019 EP
3505050 Jul 2019 EP
2875149 Dec 2019 EP
3593227 Jan 2020 EP
3634294 Apr 2020 EP
3206583 Sep 2020 EP
2625845 Mar 2021 EP
3789965 Mar 2021 EP
3858280 Aug 2021 EP
3952331 Feb 2022 EP
2507314 Apr 2014 GB
101379412 Mar 2009 IN
10-2014-0120155 Oct 2014 KR
0334705 Apr 2003 WO
2006002559 Jan 2006 WO
2007051304 May 2007 WO
2007115826 Oct 2007 WO
2008103383 Aug 2008 WO
2010067267 Jun 2010 WO
2010074747 Jul 2010 WO
2012061537 May 2012 WO
2012101286 Aug 2012 WO
2013112554 Aug 2013 WO
2014014498 Jan 2014 WO
2014024188 Feb 2014 WO
2014037953 Mar 2014 WO
2014113455 Jul 2014 WO
2014125789 Aug 2014 WO
2014167563 Oct 2014 WO
2014174067 Oct 2014 WO
2015058816 Apr 2015 WO
2015061752 Apr 2015 WO
2015109145 Jul 2015 WO
2016151506 Sep 2016 WO
2018052966 Mar 2018 WO
2018073452 Apr 2018 WO
2018200767 Nov 2018 WO
2018206086 Nov 2018 WO
2019083431 May 2019 WO
2019161477 Aug 2019 WO
2019195926 Oct 2019 WO
2019210353 Nov 2019 WO
2019211741 Nov 2019 WO
2020109903 Jun 2020 WO
2020109904 Jun 2020 WO
2021017019 Feb 2021 WO
2021019369 Feb 2021 WO
2021021979 Feb 2021 WO
2021023574 Feb 2021 WO
2021046455 Mar 2021 WO
2021048158 Mar 2021 WO
2021061459 Apr 2021 WO
2021062375 Apr 2021 WO
2021073743 Apr 2021 WO
2021087439 May 2021 WO
2021091980 May 2021 WO
2021112918 Jun 2021 WO
2021130564 Jul 2021 WO
2021137752 Jul 2021 WO
2021141887 Jul 2021 WO
2021145584 Jul 2021 WO
2021154076 Aug 2021 WO
2021183318 Sep 2021 WO
2021188757 Sep 2021 WO
2021255627 Dec 2021 WO
2021257897 Dec 2021 WO
2021258078 Dec 2021 WO
2022009233 Jan 2022 WO
2022053923 Mar 2022 WO
2022079565 Apr 2022 WO
2023281395 Jan 2023 WO
2023007418 Feb 2023 WO
2023021448 Feb 2023 WO
2023021450 Feb 2023 WO
2023021451 Feb 2023 WO
2023026229 Mar 2023 WO
2023047355 Mar 2023 WO
Non-Patent Literature Citations (1)
Entry
International Application # PCT/IB2022/056212 Search Report dated Oct. 3, 2022.
Related Publications (1)
Number Date Country
20230009793 A1 Jan 2023 US