Illuminable wall socket plates and systems and methods thereof

Information

  • Patent Grant
  • 9482426
  • Patent Number
    9,482,426
  • Date Filed
    Tuesday, September 6, 2011
    13 years ago
  • Date Issued
    Tuesday, November 1, 2016
    8 years ago
Abstract
The invention relates generally to an illuminable wall socket plate for replacing existing wall sockets in one simple installation step. The illuminable wall socket plate obtains electric current from a socket to power a light by connecting metal tabs on the back side of the illuminable wall socket plate to socket terminals, and transferring electric current from the socket terminals to a light in the wall socket plate through conductive material, in accordance with the invention described herein.
Description
FIELD OF THE INVENTION

The invention relates generally to an easy to install illuminable wall socket plate that obtains power from wall socket terminals, to light one or more lights embedded in the illuminable wall socket plate.


BACKGROUND INFORMATION

The invention relates generally to an illuminable wall socket plate that can be installed easily to replace existing wall socket plates. The wall socket plate in accordance with the present invention has metal tabs and conductive material on the back of the plate to supply electric current to a light in the plate. More particularly, the metal tabs conduct electric current from socket terminal screws for lighting a light in the illuminable wall socket plate.


Various wall socket plates have been devised and constructed with features that enhance or add to the standard wall socket plate. Examples of enhanced wall socket plates include U.S. Pat. No. 7,318,653 which covers a multiple function wall cover plate with a front cover and a bottom base, prongs to supply electricity from an existing receptacle, a light between the front cover and the back base and a fragrance refill means. The multiple function wall cover plate uses one prong set to plug into an existing wall socket receptacle to power one or more new receptacles on the multiple function wall cover plate and to power the added features of the multiple function wall cover plate. Unlike the present invention, the '653 patent requires the use of existing receptacles to power the multiple function wall cover plate and requires a bulky system to provide new receptacles in order to maintain the original number of receptacles in the wall socket.


In a search for light emitting diode nightlights the following patents were reviewed: U.S. Pat. Nos. 5,816,682, and 7,036,948. U.S. Pat. No. 5,816,682 claims an electric faceplate and a method for attaching a nightlight adjacent to an electrical receptacle. The application shows that electrical wires from the existing electrical receptacle are used to power the adjacent nightlight, unlike the invention described herein. The nightlight in the '682 patent further is adjacent to the electrical receptacle, designed to fit onto the side of a faceplate, and is powered by electrical wires in the faceplate. U.S. Pat. No. 7,036,948 describes a light embedded in the electric receptacle that is receptive to the lighting in the room and can increase or decrease it's power based on the voltage in the room. The '948 patent described standard copper wire means to provide current to the lighting system embedded in the light receptacle cover, unlike the invention disclosed herein.


Other U.S. references found include U.S. Pat. Nos. 2,015,698; 3,307,030; 3,895,225; 4,774,641; 5,683,166; 6,089,893; 6,709,126; 6,648,496. None of the prior references discovered describe or show the ability to power an illuminable wall socket plate without blocking one socket receptacle or using the prongs of one socket receptacle to power a light. The ability to use electric current in wall socket terminals to power a light in an illuminable wall socket plate is a unique discovery in accordance with the present invention.


SUMMARY

An illuminable wall socket plate in accordance with the present invention provides an easy method for replacing standard wall socket plates. The illuminable wall socket plate utilizes a simple technique where metal tabs are used to conduct power in the existing wall socket terminal screws to convert and provide electric current to a light in a wall socket plate. In accordance with at least one of the methods and devices described herein, the illuminable wall socket plate remains powered once the plate is screwed into the existing wall socket.


There are many uses for an illuminable wall socket plate that can easily be screwed into a wall socket. Those uses include, but are not limited to, a nightlight for a child's room, a continuous dim light source for a room or a hallway, a decorative light for an outdoor or indoor socket, and any other desired use that a consumer may choose.





BRIEF DESCRIPTION OF DRAWINGS

These objectives and features of the invention shall now be described in relationship to the following figures, which are an integral part of the specifications and are incorporated herein.



FIG. 1 is a front view of the illuminable wall socket plate in accordance with an embodiment of the present invention.



FIG. 2 is a back perspective view of the illuminable wall socket plate in accordance with an embodiment of the present invention.



FIG. 3 is a side perspective view of the illuminable wall socket plate and a wall socket showing the metal tabs and the socket terminal screws for supplying electric current to the light in the illuminable wall socket plate in accordance with an embodiment of the present invention.



FIG. 4A is a front perspective view of the illuminable wall socket plate with the plate not shown to show the connection of the metal tabs to the socket terminal screws.



FIG. 4B is a front perspective view of the illuminable wall socket plate attached to a wall socket in accordance with an embodiment of the present invention.



FIG. 5 is a front perspective view of a socket and the socket wires connecting to an illuminable wall socket plate in accordance with an embodiment of the present invention.



FIG. 6 is a front view of the illuminable wall socket plate attached to a wall socket, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following detailed description of the invention, reference is made to the accompanying drawings, which form a part hereof, and which is shown by way of illustration of specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, but other embodiments may be utilized and logical and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.


In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known steps, tools and techniques and socket types known to one of ordinary skill in the art have not been shown in detail in order not to obscure the invention. Referring to the figures, it is possible to see the various major elements constituting the methods and systems of the present invention.


As shown in the drawings wherein like numerals represent like parts throughout the several views, there is generally disclosed in FIG. 1 a front view of an illuminable wall socket plate 100, showing a plate 110, a first receptacle 130a, a second receptacle 130b, and a hole for a screw 120 for attaching the illuminable wall socket plate 100 to a wall with a screw 125. At the bottom of the plate 110 a light 150 is shown, as part of the illuminable wall socket plate 100 in accordance with the first embodiment of the present invention. In accordance with the embodiment shown, the illuminable wall socket plate 100 can easily replace a standard socket plate by simply removing the socket plate and screwing in the illuminable wall socket plate 100. The light 150 may also be located anywhere on the illuminable wall socket plate 100 including the top, bottom, side or middle of the illuminable wall socket plate 100, as may be desired.



FIG. 2 depicts a back perspective view of the illuminable wall socket plate 200 in accordance with the first embodiment of the present invention. The back perspective view shows metal tabs 208a and 208b for attaching the illuminable wall socket plate around existing terminal screws in the wall socket (shown in FIG. 3) for transporting electric current from the terminal screws through the circuit connectors 228a and 228b and a circuit board 235 to power a light 250. The metal tabs 208a and 208b are designed in this embodiment to easily clip around the terminal screws in the wall socket, for easy and safe installation by a user. A hole for a screw 220 is shown in FIG. 2 centered in the plate 210 for attaching the plate 210 to the wall socket with a screw. A first plate receptacle 230a and a second plate receptacle 230b are provided so that a user can use the original receptacles in the wall socket without covering or using the wall socket receptacles to power the light 250 in the plate 210 or having to add new receptacles on the illuminable wall socket plate 200 to power the light 250.


As a further description of the first embodiment in accordance with the present invention, the metal tabs 208a and 208b are provided to obtain power surrounding the screws in the wall socket, as further shown in FIG. 2. The diameter of the illuminable wall socket plate with the metal tabs 208a and 208b is preferably between 0.01 and 0.07 mm for ease of use by a consumer to replace an already existing wall plate. In accordance with the back perspective view of the embodiment shown in FIG. 2, the light may be any kind of light suitable for a wall socket plate, including but not limited too, E.L elements, light emitting diodes, incandescent bulbs, neon lights, florescent tubes, black lights, gas filled bulbs, halogen lights, or any other light capable of fitting into or connecting to the illuminable wall socket plate 200. In addition, the light may be located anywhere on the back or front of the illuminable wall socket plate 200 in accordance with the first embodiment shown.



FIG. 3 shows a side perspective view of the illuminable wall socket plate 300 being attached to an existing wall socket 360 in accordance with an embodiment of the present invention. In accordance with the embodiment shown, the metal tabs 308a and 308b are formed to surround the terminal screws 390a and 395a, with a corresponding set of terminal screws not shown on the other side of the wall socket 360. A first plate receptacle 330a and a second plate receptacle 330b are fitted to surround a first wall receptacle 370a and a second wall receptacle 370b respectively, when the plate 310 is screwed into the wall socket 360. A hole for a screw 320 in the plate 300 is further provided to align the screw 325 in the wall socket 360 to affix the illuminable wall socket plate 300 to the wall socket 360. FIG. 3 also shows a light 350 for illuminating the illuminable wall socket plate 300.


In accordance with the embodiment shown in FIG. 3, three simple steps are provided for affixing the illuminable wall socket plate 300 to the wall socket 360. In a first step, a user unscrews an existing socket plate from a wall socket 360. In a second step, a user places the metal tabs 308a and 308b to surround terminal screws 390a, 395a and their corresponding terminal screws on the other side of the wall socket 360, and in a final step a user places a screw 325 through a hole for a screw 320 in the wall socket 360 to attach the illuminable wall socket plate 300 to the wall socket 360. In accordance with the steps described in this embodiment, the light 350 is automatically lit when the illuminable wall socket plate is screwed into place, where electric current is carried from the metal tabs 308a and 308b to the light 350 through the circuit connectors (not shown), a process which is described in more detail in FIG. 5. While the present embodiment does not show an on/off switch to the illuminable wall socket plate 300, an on/off switch can easily be added to turn off or to dim the light 350 in accordance with a user's desired lighting activity.



FIGS. 4A shows a perspective view of the illuminable wall socket plate 400 attached to the wall socket 460 with the plate removed to show the circuit connectors 428a and 428b in accordance with an embodiment of the present invention. In accordance with the embodiment shown, the metal tabs 408a and 408b are shown surrounding the terminal socket screws 490a and 495a (and the corresponding screws for the metal tab 408b, not shown), with circuit connectors 428a and 428b provided to carry electric current obtained through the metal tabs 408a and 408b to a circuit board 435 for lighting a light 450. In this embodiment, the circuit board 435 is formed with a capacitor and resistors to lower the voltage from alternating current to direct current power, or to convert form high alternating current power of about 240volts to 120volts to low alternating current power, in a range of about 1 to 5 volts for powering a light emitting diode light. In other embodiments rectifiers are used convert high power current to low power current to illuminate a light in the illuminable wall socket plate 400.



FIG. 4B shows the illuminable wall socket plate 400 as shown in FIG. 4A with the plate 410 intact, showing the illuminable wall socket plate 400 installed. In this embodiment a first plate receptacle 430a surrounding a first wall receptacle 470a and a second plate receptacle 430b surrounding a second wall receptacle 370b are shown both remaining open for use when the illuminable wall socket plate 400 is installed, while the light 450 is lit from the socket terminal screws as described and shown in FIG. 4A. A screw 425 is also shown being used to affix the illuminable wall socket plate 400 to the wall socket.



FIG. 5 shows a front perspective view of a more detailed analysis of the unique method used in accordance with an embodiment of the present invention to provide power to the light 550 in an illuminable wall socket plate 500 in accordance with the present invention. A socket is shown with the illuminable wall socket plate 500 attached, where the metal tabs 508a and 508b are surrounding the socket terminal screws 590a and 595a (and the corresponding socket terminal screws not shown for metal tab 508b) to obtain electric current from the socket terminal screws. In this embodiment circuit connectors 528a and 528b are provided for transferring electric current from the metal tabs 508a and 508b to the circuit board 535 and to a light 550. In accordance with this embodiment, a capacitor and resistor are provided to lower 120 volt alternating current power to 3 volt power to light a light emitting diode light. A junction box 596 is shown in the wall socket with green safety wires 596, return white wires 597 and hot black wires 598 extending from the junction box 596 to the wall socket 500. In accordance with the electric socket shown, the green wires 596 are safety wires preventing electric shock by initiating shortages at a fuse box. In a typical socket in the United States, along with several other countries implementing type A and B electrical outlets, there are approximately 120 volts of electricity between the black wires 598 and the white wires 597. In accordance with the embodiment of the present invention shown, metal tabs transfer electric current from the socket terminal screws 590a and 595a, and the corresponding socket terminal screws not shown, through the metal tabs 508a and 508b, to the circuit connectors 528a and 528b and converts the high alternating current power to low alternating current power in the circuit board 535, to light a light emitting diode light 550 in the illuminable wall socket plate 500 in accordance with the present invention.


There are many additional features and safety features that can be added to the illuminable wall socket plates described in accordance with the embodiments of the present invention shown. Those features include but are not limited too, the addition of rubber or other non-conductive gripping pieces to the illuminable wall socket plate 500 or to the metal tabs 508a and 508b for ease of installation by a user, shortage safeguards in the circuit board to prevent any possibility of shock to a user, providing an on/off switch for ease of use by a user, along with many other features that a user may desire for safety or aesthetic purposes. In yet other embodiments, sensors may be embedded in the illuminable wall socket plate so that a light turns on and off when a signal is given, such as when a user walks by the sensors. In yet other embodiments, fragrance features, decorations, colored lights and/or decorated lights that release patterns, removable lights or light decoration patterns, designs, characters or the like, air fresheners, sound recordings, such as music for a child's room, may be further desired aspects of the present invention as features to add to an illuminable wall socket plate 500 in accordance with the present invention. For instance, in one embodiment of the present invention an improved wall socket plate with a chamber containing a fragrance is further described, wherein the chamber containing the fragrance is connected to the one or more tabs in accordance with the present invention by a conductive material and wherein the chamber releases the liquid fragrance when the chamber is heated, thereby providing an air freshener to any room from a wall socket plate, without covering any of the existing wall socket receptacles.



FIG. 6 shows a front view of the illuminable wall socket plate 600 attached to a wall socket with a screw 625. In accordance with the embodiment described and shown the light 650 is continuously on when the illuminable wall socket plate 600 is attached to a wall socket. The light may be a dim light that requires a very small amount of electricity to maintain the light system. As such, the illuminable wall socket plate 600 provides safer lighting systems, allowing users to readily light hallways, bedrooms, bathrooms and the like, at a user's convenience without consideration to high additional electricity costs that may otherwise be incurred. In addition, the present invention maintains both socket receptacle 630a and 630b open for use, without blocking one receptacle to power the light 650 in the illuminable wall socket plate 600.


In yet another embodiment of the present invention, a method is disclosed for easily powering and installing an illuminable wall socket light comprising the following steps: providing metal tabs on the back of the wall socket plate for connecting to at least two wall socket screw terminals in a socket; connecting the metal tabs to the wall socket screw terminals by screwing the illuminable wall socket plate into a wall socket; obtaining electricity from the wall socket screw terminals through the metal tabs; converting the electricity from high alternating current power to low alternating current power for powering a light in the illuminable wall socket plate; and powering a light in the illuminable wall socket plate.


The method described in accordance with the present invention described in the above paragraph can further be used to power any number of devices suitable to be fitted onto a wall socket, including but not limited to, nightlights, fragrance plug-ins, motion sensors, optical sensors, sensors combined as a light switch, for safety signals in emergency systems, and for alarm systems.


In yet further embodiments of the present invention an on/off switch may be added to an illuminable wall socket plate in accordance with the present invention, for control and ease of use by a user. In accordance with this embodiment, an optical sensor switch may be used to power on and off a light, or a manual switch may be placed on the illuminable wall socket plate to adjust light settings.


The installation requirements of the illuminable wall socket plate in accordance with the present invention are very simple and easy to use for a consumer. Nonetheless the applicant suggests the following simple procedure:


a) Unscrewing an existing socket plate,


b) Aligning the metal tabs about the socket terminal screws, and


c) Screwing the illuminable wall socket plate to the wall socket.


In accordance with the steps described, the direct contact the metal tabs with the socket terminal screws results in the electric current being transferred to a light in the illuminable wall socket plate as shown and described in FIG. 5. In yet other embodiments the electric current passing through the socket terminal screws may be conducted from other side tabs, metal plates or other variations of the embodiments described herein that would be obvious to one of ordinary skill in the art.


In addition, across the world there are many different types of sockets and socket plates available in the market. The embodiments of the present invention can be easily altered to accommodate any wall socket, including but not limited to type A, B, C, D, E, F, G, H, I, J, K, L, M electrical outlets, as each socket and receptacle varies in blade, pin, plug, power, and grounding mechanism, connecting and lighting an illuminable wall socket plate through power conducted through socket terminals is a unique finding in accordance with the present invention that can be easily implemented in any socket, socket box, or socket plate.


The applicant has given a non-limiting description of the devices, methods and system of the present invention. Many changes may be made to this design without deviating from the spirit of this invention. Examples of such contemplated variations include, but are not limited to the following:


a) The shape and size, thickness and material used for the illuminable wall socket plate or parts thereof may be modified.


b) The color, aesthetics and materials may be enhanced or varied, including a feature package of designs or stickers developed to decorate the illuminable wall socket plates described.


c) Additional complimentary and complementary functions and features may be added.


d) A more economical version and/or size of the illuminable wall socket plate may be adapted.


e) The illuminable wall socket plate may be operated manually with a switch or controlled or powered by a different energy, movement, light or other force.


f) The light and light durations may be varied.


Other changes such as aesthetics and substitution of newer materials remain within the spirit of the invention disclosed herein.


While this invention has been described with reference to illustrative embodiments, the embodiments are not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention will be apparent to a person of ordinary skill in the art upon reference to this description. It is therefore contemplated that the appended claim(s) cover any such modifications and embodiments that fall within the true scope of the invention.

Claims
  • 1. An improved wall socket plate comprising: a plate formed to surround one or more receptacles on a wall socket;one or more tabs connected to said plate, wherein said one or more tabs are designed to touch one or more socket terminal screws when said plate is screwed into a wall socket, wherein said one or more tabs conduct electric current from said one or more socket terminal screws;a light in said plate, wherein said light is connected to said one or more tabs by a conductive material and wherein said light is automatically turned on when said plate is screwed into a wall socket; and,a circuit board in said plate.
  • 2. The improved wall socket plate in accordance with claim 1 wherein said one or more tabs are metal tabs.
  • 3. The improved wall socket plate in accordance with claim 1 wherein said light is a light emitting diode light.
  • 4. The improved wall socket plate in accordance with claim 1 further comprising a capacitor, wherein said capacitor is connected to said conductive material.
  • 5. The improved wall socket plate in accordance with claim 4 further comprising a resistor, wherein said capacitor and said resistor reduces electric current from said conductive material from high power to low power to illuminate said light.
  • 6. The improved wall socket plate in accordance with claim 1 further comprising a rectifier.
  • 7. A method for illuminating a light in a socket plate while maintaining two or more receptacles open for use, comprising: providing metal tabs on a socket plate for connecting to one or more socket terminal screws;connecting said metal tabs to said socket terminal screws;obtaining electric current from said one or more socket terminal screws through said metal tabs;converting said electric current from high power to low power to power the light in said socket plate;powering a light in said socket plate.
  • 8. The method in accordance with claim 7 further comprising the step of screwing said socket plate into a wall socket.
  • 9. The method in accordance with claim 7 further comprising the step of converting alternating current power to direct current power, wherein a capacitor is used to convert said alternating current power to direct current power.
  • 10. The method in accordance with claim 7 further comprising the step of converting high alternating current power to low alternating current power, wherein a capacitor is used to convert high alternating current power to low alternating current power.
  • 11. The method in accordance with claim 7 further comprising the step of powering two or more lights in said plate.
  • 12. The method in accordance with claim 7 further including the step of turning an off switch, wherein said step of turning an off switch can turn off said light.
  • 13. An improved wall socket plate comprising: a plate formed to surround one or more receptacles on a wall socket;one or more tabs connected to said plate, wherein said one or more tabs are designed to touch one or more socket terminal screws when said plate is screwed into a wall socket, wherein said one or more tabs conduct electric current from said one or more socket terminal screws;a light in said plate, wherein said light is connected to said one or more tabs by a conductive material and wherein said light is automatically turned on when said plate is screwed into a wall socket;a capacitor, wherein said capacitor is connected to said conductive material; and,a resistor, wherein said capacitor and said resistor reduces electric current from said conductive material from high power to low power to illuminate said light.
  • 14. A method for illuminating a wall socket plate comprising: providing metal tabs on a socket plate for connecting to one or more socket terminal screws;connecting said metal tabs to said socket terminal screws;obtaining electric current from said one or more socket terminal screws through said metal tabs;converting said electric current to power a light in said socket plate;powering a light in said socket plate; and,converting high alternating current power to low alternating current power, wherein a capacitor is used to convert high alternating current power to low alternating current power.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. provisional application No. 61/380,561 filed Sep. 7, 2010, and incorporates the entire contents thereof herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/050524 9/6/2011 WO 00 4/5/2013
Publishing Document Publishing Date Country Kind
WO2012/033746 3/15/2012 WO A
US Referenced Citations (17)
Number Name Date Kind
2015698 Tiffany Oct 1935 A
3307030 De Francisco Feb 1967 A
3895225 Prior Jul 1975 A
4774641 Rice Sep 1988 A
5683166 Lutzker Nov 1997 A
5816682 Marischen Oct 1998 A
6089893 Yu et al. Jul 2000 A
6648496 Elghoroury et al. Nov 2003 B1
6709126 Leen Mar 2004 B1
6805469 Barton Oct 2004 B1
7036948 Wyatt May 2006 B1
7318653 Chien Jan 2008 B2
8797723 Hilton et al. Aug 2014 B2
8912442 Smith Dec 2014 B2
20040247300 He et al. Dec 2004 A1
20070206375 Piepgras et al. Sep 2007 A1
20080233780 Waters et al. Sep 2008 A1
Related Publications (1)
Number Date Country
20130221868 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61380561 Sep 2010 US