The present subject matter relates generally to refrigerator appliances, and more particularly to adjustable dividers for storage bins of refrigerator appliances.
Refrigerator appliances generally include a cabinet that defines a chilled chamber for receipt of food articles for storage. In addition, refrigerator appliances can also include various storage components mounted within the chilled chamber and designed to facilitate storage of food items therein. Such storage components can include racks, bins, shelves, or drawers that receive food items and assist with organizing and arranging of such food items within the chilled chamber.
While food articles or other items may be conveniently stored in storage bins, items located in the bottom of the storage bin may frequently not be visible due to insufficient lighting. In this regard, for example, a light located on a back wall of the chilled chamber may not provide sufficient lighting for ease of viewing items located in storage bins positioned within the chamber. For example, a freezer drawer of a bottom mount refrigerator typically includes a large storage bin that slides out when the drawer is opened. Light generated within the cabinet is often insufficient for illuminating the freezer drawer when opened. Therefore, a user may need to remove and/or rearrange items in a storage bin in order to locate a specific item. These difficulties can lead to consumer frustration and increased time when searching for items located in storage bins.
Accordingly, a refrigerator appliance with features for improved illumination of storage bins within the chilled chambers of the appliance would be useful. More particularly, a storage bin for a refrigerator appliance including adjustable and/or removable dividers having lighting features for improved illumination and visibility would be particularly beneficial.
Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first exemplary embodiment, a refrigerator appliance defining a vertical direction, a lateral direction, and a transverse direction is provided. The refrigerator appliance includes a cabinet defining a chilled chamber, a door providing selective access to the chilled chamber, and a drawer assembly. The drawer assembly includes a storage bin positioned within the chilled chamber and an adjustable divider positioned within the storage bin, the adjustable divider including a top support arm and a window mounted to the top support arm. A light source is mounted on the adjustable divider and a power supply assembly is electrically connected to the light source as the adjustable divider slides within the storage bin.
According to another exemplary embodiment, a drawer assembly for an appliance is provided. The appliance includes a cabinet defining a chamber. The drawer assembly includes a storage bin positioned within the chamber and an adjustable divider positioned within the storage bin, the adjustable divider including a top support arm and a window mounted to the top support arm. A light source is mounted on the adjustable divider and a power supply assembly is electrically connected to the light source as the adjustable divider slides within the storage bin.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Housing 102 defines chilled chambers for receipt of food items for storage. In particular, housing 102 defines fresh food chamber 122 positioned at or adjacent top 104 of housing 102 and a freezer chamber 124 arranged at or adjacent bottom 106 of housing 102. As such, refrigerator appliance 100 is generally referred to as a bottom mount refrigerator. It is recognized, however, that the benefits of the present disclosure apply to other types and styles of refrigerator appliances such as, e.g., a top mount refrigerator appliance, a side-by-side style refrigerator appliance, or a single door refrigerator appliance. Consequently, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any aspect to any particular refrigerator chamber configuration.
Refrigerator doors 128 are rotatably hinged to an edge of housing 102 for selectively accessing fresh food chamber 122. In addition, a freezer door 130 is arranged below refrigerator doors 128 for selectively accessing freezer chamber 124. Freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within freezer chamber 124. Refrigerator doors 128 and freezer door 130 are shown in the closed configuration in
Referring again to
Dispensing assembly 140 and its various components may be positioned at least in part within a dispenser recess 142 defined on one of refrigerator doors 128. In this regard, dispenser recess 142 is defined on a front side 112 of refrigerator appliance 100 such that a user may operate dispensing assembly 140 without opening refrigerator door 128. In addition, dispenser recess 142 is positioned at a predetermined elevation convenient for a user to access ice and enabling the user to access ice without the need to bend-over. In the exemplary embodiment, dispenser recess 142 is positioned at a level that approximates the chest level of a user.
Dispensing assembly 140 includes an ice dispenser 144 including a discharging outlet 146 for discharging ice from dispensing assembly 140. An actuating mechanism 148, shown as a paddle, is mounted below discharging outlet 146 for operating ice or water dispenser 144. In alternative exemplary embodiments, any suitable actuating mechanism may be used to operate ice dispenser 144. For example, ice dispenser 144 can include a sensor (such as an ultrasonic sensor) or a button rather than the paddle. Discharging outlet 146 and actuating mechanism 148 are an external part of ice dispenser 144 and are mounted in dispenser recess 142. By contrast, refrigerator door 128 may define an icebox compartment 150 (
A control panel 152 is provided for controlling the mode of operation. For example, control panel 152 includes one or more selector inputs 154, such as knobs, buttons, touchscreen interfaces, etc., such as a water dispensing button and an ice-dispensing button, for selecting a desired mode of operation such as crushed or non-crushed ice. In addition, inputs 154 may be used to specify a fill volume or method of operating dispensing assembly 140. In this regard, inputs 154 may be in communication with a processing device or controller 156. Signals generated in controller 156 operate refrigerator appliance 100 and dispensing assembly 140 in response to selector inputs 154. Additionally, a display 158, such as an indicator light or a screen, may be provided on control panel 152. Display 158 may be in communication with controller 156, and may display information in response to signals from controller 156.
As used herein, “processing device” or “controller” may refer to one or more microprocessors or semiconductor devices and is not restricted necessarily to a single element. The processing device can be programmed to operate dispensing assembly 140 and other systems of refrigerator appliance 100. The processing device may include, or be associated with, one or more memory elements (e.g., non-transitory storage media). In some such embodiments, the memory elements include electrically erasable, programmable read only memory (EEPROM). Generally, the memory elements can store information accessible processing device, including instructions that can be executed by processing device. Optionally, the instructions can be software or any set of instructions and/or data that when executed by the processing device, cause the processing device to perform operations.
Referring now to
As best shown in
Referring now to
Referring now also to
Referring now generally to
As illustrated, top support arm 216 extends along the transverse direction T between a front end 240 which is slidably mounted on front wall 232 of storage bin 202 and a rear end 242 which is slidably mounted on rear wall 234 of storage bin 202. In this manner, the weight of adjustable divider 210 is supported by front wall 232 and a rear wall 234 of storage bin 202, such that window 214 does not need to be supported by bottom wall 230 of storage bin 202. In this manner, adjustable divider 210 may be more easily moved or slid by a user of refrigerator appliance 100 along the lateral direction L. Indeed, as best shown in
According to various exemplary embodiments of the present subject matter, adjustable divider 210 may be slidably mounted on storage bin 202 using rollers, a slide assembly or mechanism, or any other suitable low friction interface. For example, according to the illustrated embodiment, top support arm 216 generally includes one or more front rollers 250 and rear rollers 252 which are rotatably mounted to front end 240 and rear end 242 of top support arm 216, respectively. In addition, front wall 232 of storage bin 202 includes a front guide track 254 and rear wall 234 of storage bin 202 defines a rear guide track 256, both of which extend substantially along the lateral direction L. Front guide track 254 and rear guide track 256 provide vertical support to top support arm 216 and are configured for slidably receiving front end 240 and rear end 242, respectively, of top support arm 216.
More specifically, according to the illustrated embodiment, for each adjustable divider, front end 240 includes two laterally spaced front rollers 250 and rear end 242 includes two laterally spaced rear rollers 252. These rollers 250, 252 are received in their respective guide tracks 252, 254 to provide vertical support while permitting adjustable divider 210 to move within storage bin 202. According to the embodiment illustrated in
It should be appreciated that front guide track 254 and rear guide track 256 may vary according to alternative embodiments while remaining within scope of the present subject matter. For example, referring briefly to
Referring still briefly to
For example, as illustrated, drawer assembly 200 may include a double cable assembly 270 which generally comprises two cables passed between rollers mounted on adjustable dividers 210 in a manner that substantially equalized forces acting on front end 240 and second end 242 of adjustable divider 210 during movement. Specifically, as illustrated, double cable assembly 270 includes a first cable 272 and a second cable 274. In addition, each adjustable divider 210 may include a first pulley 276 and a second pulley 278 mounted on front end 240 of top support arm 216 and a third pulley 280 and a fourth pulley 282 mounted on rear end 242 of top support arm 216.
First cable 272 may be fixedly attached to a corner where front wall 232 and first side wall 236 meet, may wrap around first pulley 276, then around fourth pulley 282. If more than one adjustable divider 210 is used, first cable 272 may then pass around third pulley 280, then second pulley 278, before being fixedly attached to another corner where front wall 232 and a second side wall 238 meet. Similarly, second cable 274 may be fixedly attached to a corner where rear wall 234 and first side wall 236 meet, may wrap around third pulley 280, then around second pulley 278. If more than one adjustable divider 210 is used, second cable 274 may then pass around first pulley 276, then fourth pulley 282, before being fixedly attached to another corner where rear wall 234 and a second side wall 238 meet. Pulleys 276-282 are rotatably mounted about a vertical axis V on top support arm 216 such that first cable 272 and second cable 274 may pass easily over the pulleys.
In this manner, double cable system 270 generally assists with synchronizing motion of front ends 240 and rear ends 242 of adjustable dividers 210, e.g., such that they translate along the lateral direction L at a common speed. Thus, a user may push on any location on adjustable divider 210, yet an off-center application of force, which might otherwise urge the adjustable divider 210 to “rack” or bind, is avoided. In particular, for example, as front end 240 of adjustable divider 210 moves towards second side wall 238, first pulley 276 may push against first cable 272 such that first cable 272 goes in tension and pulls fourth pulley 282 toward second side wall 238. Simultaneously, second cable 274 goes in tension, similarly urging front end 240 and rear end 242 of adjustable divider 210 toward second sidewall 238. Thus, with little slack in first cable 272 and second cable 274, the lengths of these cables from side walls 236, 238 to adjustable dividers 210 are relatively constant, thereby keeping adjustable divider 210 extending substantially along the transverse direction T.
According to an exemplary embodiment, double cable system 270 may also be used to power light sources 300. In this regard, for example, first cable 272 may be electrically connected to a positive power terminal of power supply assembly 302 and second cable 274 may be electrically connected to a negative power terminal of power supply assembly 302. Front rollers 250 and rear rollers 252 may be constructed from a conductive material or otherwise contain an electrical contact for electrically coupling to the energized cables 272, 274. According to such embodiment, areas where first cable 272 and second cable 274 cross or are otherwise likely to contact each other, insulation may be positioned to prevent such contact and electrical shorting.
According to another exemplary embodiment illustrated in
Referring again generally to
According to still another embodiment, light source 300 may include an ultraviolet (UV) light source for generating UV light for reducing or eliminating mold, bacteria, etc. In this regard, light source 300 may be configured to operate a UV light when sanitation or cleaning of storage bin 202 is desired. For example, light source 300 may activate a UV light intermittently when door is closed to periodically sanitize storage bin 202. In addition, light source 300 may be configured to vary the colors of LEDs or alternate the energized colored bulbs to create visible effects associated with particular operating conditions, such as chamber temperatures, or to display product logos or trademarks. In addition, for example, light sources 300 may be selectively colored to display information such as chamber temperature settings, an indication that one or more food items are out of date, or an indication of what food is stored in a particular area (e.g., green for vegetables, red for meat, etc.). Light source 300 may also be configured for simulating natural light, e.g., to improve food preservation.
According to exemplary embodiments, light source 300 is mounted onto support structure 212 and is configured for directing light through window 214. In this regard, window 214 may be a transparent, translucent, or semi-transparent pane of glass, acrylic, plastic, or other suitable material. Window 214 is generally used as a light guide or light diffuser for transmitting, projecting, and/or diffusing light generated by light source 300. According to still other embodiments, light source 300 need not be mounted directly to support structure 212, but may instead be mounted elsewhere within drawer assembly 200, but being configured for using window 214 as a light guide for directing light.
As illustrated in
Referring now generally to
As illustrated, according to one exemplary embodiment, power supply assembly 302 includes a bus bar assembly 310 which includes at least one negative strip terminal 312 and at least one positive strip terminal 314. Strip terminals 312 and 314 are generally elongated pieces of conductive material that are electrically connected with a negative terminal and a positive terminal of power supply assembly 302, respectively. As best illustrated in
Referring now to
Although bus bar assembly 310 is described above as providing power to light sources 300, it should be appreciated that according to alternative embodiments, any other suitable method of providing power can be used. For example, each light source 300 may be electrically coupled with dedicated power supply wires. Alternatively, as shown for example in
Referring now briefly to
By contrast, as illustrated in
As one skilled in the art will appreciate, the above described embodiments are used only for the purpose of explanation. Modifications and variations may be applied, other configurations may be used, and the resulting configurations may remain within the scope of the invention. For example, the configuration of adjustable divider 210 may vary, power may be provided using a different power supply assembly, and other control methods for regulating light operation may be used. One skilled in the art will appreciate that such modification and variations may remain within the scope of the present subject matter.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
8387405 | Johnson | Mar 2013 | B2 |
8764135 | Huang | Jul 2014 | B1 |
8911042 | Bassi et al. | Dec 2014 | B2 |
9766010 | Katu et al. | Sep 2017 | B2 |
9845986 | Sankhgond | Dec 2017 | B2 |
9897372 | Daniel | Feb 2018 | B2 |
20100319391 | Lim | Dec 2010 | A1 |
20130099651 | Hwang | Apr 2013 | A1 |
20140152166 | Baum | Jun 2014 | A1 |
20140265802 | Wilcox | Sep 2014 | A1 |
20140312759 | Song | Oct 2014 | A1 |
20140320040 | Katu | Oct 2014 | A1 |
20150069066 | Choi | Mar 2015 | A1 |
20160153704 | Burke | Jun 2016 | A1 |
20160282037 | Han | Sep 2016 | A1 |
20180149415 | Jo | May 2018 | A1 |
20180266671 | Hiemstra | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
WO2018001502 | Jan 2018 | WO |