The present invention generally relates to illuminated jewelry systems or jewelry systems that may be selectively illuminated (i.e., illuminatable jewelry) and methods for making the same. More specifically, the assembly of these jewelry systems may permit an end user to customize lighting elements (e.g., light emitting diodes (LEDs) into a wide variety of jewelry systems, which will be described in more detail below.
The present invention generally relates to a system for illuminating transparent jewelry elements such as, but not limited to, glass beads, clear acrylic elements or translucent stones that may be part of a larger piece of jewelry such as a bracelet or a necklace. Transparent and translucent jewelry elements are broadly referred to as illuminatable jewelry elements herein. The jewelry system may include a small light source such as, but not limited to, a light emitting diode (LED) attached to stringing material, a power source and a connector designed to enforce polarity requirements for the illuminatable jewelry elements.
In one aspect of the present invention, an illuminatable jewelry system includes a length of jewelry stringing wire; a first magnetic connector coupled to a first end of the wire; a second magnetic connector coupled to a second end of the wire; a jewelry element made from a material that permits visible light to travel through a thickness of jewelry element; a light source located in the jewelry element; and a power cell coupled between the first and second magnetic connectors, the power cell in electronic communication with the light source to selectively modulate the visible light emanating from the light source.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings may not be necessarily drawn to scale. For example, the shapes of various elements and angles may not be drawn to scale, and some of these elements may be arbitrarily enlarged or positioned to improve drawing legibility. Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well-known structures associated with jewelry, to include assemblies, subassemblies and detail components thereof, and methods of using, assembling and installing any of the above may not have been shown or described in detail to avoid unnecessarily obscuring descriptions or other aspects of the embodiments of the invention. For purposes of the description and claims herein, the term “jewelry” should be broadly interpreted to mean any type of gem, rock, precious metal, trinket medallion, brooch, pin pendant, as well as any physical element that may be considered to have aesthetic beauty or and/or other aesthetic qualities.
The illuminatable elements 106 may take the form of glass beads, clear acrylic elements, translucent stones, or any other type of material that allows some amount of visible light penetration through its thickness. The decorative elements 102 may also be transparent or translucent, and likewise the light source 108 may be small enough to thread through and into the decorative elements such as, but not limited to, stones or beads. Overall, the various system components are compatible with a variety of other jewelry components both in function and in aesthetics.
For example in one embodiment, the stringing material 104 may take the form of an industry standard nylon-coated multi-strand silver, copper or brass wire (also referred to as beading wire) designed for beaded jewelry. The stringing material 104 operates as a structural element and as a conductive electrical element to complete the electric circuit between the power cell 110 and the light source 108. The nylon coating prevents accidental electrical shorts. Electrical connections may be secured with aesthetically compatible jewelry crimps.
The jewelry system 100 may be provided to the end user fully assembled and ready to accept beads. The end user may thread the light source 108 into a focal element such as a transparent or translucent bead or stone.
In one embodiment, the end user attaches each magnetic connector 402 to the two separate sections of the jewelers beading wire 404 after the wire has been strung with beads or other decorative elements.
Magnets are now commonly used as clasps within the jewelry industry. In the illustrated embodiment, the magnetic connector 402 includes a small hole 412 for threading the conductive wire 404, and a larger hollow region 414 to house and secure the jewelry crimp 406. Preferably, the magnetic connector 402 is coated with a conductive silver finish, but it is appreciated the coating or finish may be made of another material or combination of materials such as, but not limited to, gold or copper. The jewelry crimp 406 may take the form of a crushable-tube crimp (hereinafter referred to as the “tube crimp”). The end user deforms and crushes tube crimp 406 around the conductive wire 404. In the jewelry industry, such a tube crimp 406 typically functions as a mechanical stop. In this illustrated embodiment, the tube crimp 406 pierces a nylon coating protecting the conductive wire 404 to make an electrical connection.
The screw-type crimp 410 takes the form of a re-useable, non-deformable tube with a small set screw 416 perpendicular to a central channel 418. As shown in the illustrated embodiments of
Rechargeable batteries typically have limits on their input charging voltage. Thus, the energy harvesting circuit 602 may operate to limit the charging voltage to prevent damage to the battery 610. The energy harvesting circuit 602 may take the form of a multi-terminal integrated circuit and several sub-components such as, but not limited to a small, simple six-pin integrated circuit made by SEIKO®.
The solar cell 706 preferably generates sufficient voltage for charging the battery 702. By way of example, the solar cell 706 may include several cells in series. Further, the properties of the solar cell 706 are matched to meet the charging requirements of the battery 702.
When the solar cell 706 is exposed to light a voltage is generated across its terminals. When this voltage exceeds a predetermined threshold then the battery 702 will charge. If the voltage across the battery 702 is greater than the voltage across the solar cell 706 then the battery 702 may discharge through the solar cell 706. To prevent this backwards or reverse discharge, the solar cell 706 is connected to the battery 702 through a Schottkey diode 708, which allows current to flow from the solar cell 706 into the battery 702 with minimal voltage losses (potential drop across the diode) while preventing current flow from the battery 702 back into the solar cell 706.
Rechargeable batteries have limits on the input charging voltage. A Zener diode 710 may be used to insure that the voltage generated by the solar cell 706 does not exceed the recommended charging voltage. The reverse breakdown voltage of the Zener diode 710 should preferably be matched to the recommended charging voltage of the battery 702. Using a single-cell battery 702, a small solar cell 706, and two diodes 708, 710, all with carefully selected properties, preferably provides the minimal number of components to make a safe solar-rechargeable power source.
Referring to
It may be desirable to modulate the light intensity as a function of time. By way of example the power cell circuit may be configured such that the LED flashes periodically, dims or changes color. To achieve different visual effects the end user may incorporate or exchange differently configured power cells.
Modifying circuits may also be introduced by the end user via a second ‘clasp’ unit. The second unit, designed with similar magnet connectors, could connect in series with the clasp-battery unit. The modifying circuit could modulate the light as described above, or modulate the light in response to some other stimuli such as, but not limited to, a solar sensor could be used to change the illumination level based on the ambient lighting; a sound sensor could modulate the illumination level based on ambient sounds; a ‘mood’ necklace could change illumination based on a temperature measurement made at the surface of the skin; and a wireless sensor could couple the necklace response to any number of wireless compatible devices such as cell phones etc.
The system may advantageously allow that jewelers or artisans with little or no knowledge of electricity can easily incorporate the clasp, power cell, and light source into their own work. The proper electrical connections are provided by the design of the magnetic clasp and power cell.
The various embodiments described above can be combined to provide further embodiments. All of the above U.S. patents, patent applications and publications referred to in this specification are incorporated herein by reference. Aspects can be modified, if necessary, to employ devices, features, and concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all types of dispensers, organizers and methods of making and installing the same that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims
The present application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/033,994, and wherein its subject matter is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5477433 | Ohlund | Dec 1995 | A |
6233971 | Ohlund | May 2001 | B1 |
7104668 | Lee | Sep 2006 | B1 |
7441917 | Underdown | Oct 2008 | B1 |
20040196650 | Phlippeau | Oct 2004 | A1 |
20050002180 | Kamara | Jan 2005 | A1 |
20050174800 | Clegg | Aug 2005 | A1 |
20060262531 | Schrimmer | Nov 2006 | A1 |
20060291210 | Lee | Dec 2006 | A1 |
20080048609 | Kuhlmann | Feb 2008 | A1 |
20090044566 | Underdown | Feb 2009 | A1 |
20120324947 | Opperman | Dec 2012 | A1 |
20140230487 | Vasguez | Aug 2014 | A1 |
20140338397 | Andreini, III | Nov 2014 | A1 |
20150164188 | Gelfand | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160037883 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62033994 | Aug 2014 | US |