The present invention relates to a keyswitch structure, and more particularly to an illuminated keyswitch structure.
Some illuminated keyswitch structures on the market are equipped with an exclusive light source under the base plate to emit light upward. The base plate forms an opening corresponding to the light source so that the light can pass through the base plate. Generally, in order to avoid electrostatic discharges between the base plate and the light source and protect the light source, an insulation sheet is attached onto the light source and a circuit board on which the light source is disposed. In principle, the light source protrudes from the circuit board, so that the insulation sheet as a whole is a convex structure. The convex structure will make the portion of the illuminated key switch structure near the light source appear uneven, which is not conducive to the assembly of the components of the illuminated key switch structure and the overall thin design of the illuminated keyswitch structure. Furthermore, the convex insulation sheet will enter the opening of the base plate, and even the light source will also partially enter the opening. This structural configuration will increase the chance of structural interference with the structural parts above the base plate (e.g. the supports supporting the keycap), causing the keycap to fail to move up and down smoothly, or indirectly damage the light source.
An objective of the invention is to provide an illuminated keyswitch structure, which uses a flat spacer to separate a base plate and a light-emitting part thereof. This structural configuration helps to control the size of the structure, ensure the distance for mixing light, and protect the light-emitting part, which prevents the light-emitting part from structurally interfering with other components above the bottom plate and causing damage.
An illuminated keyswitch structure according to the invention includes a base plate, a drive circuit board, a spacer, and a light-emitting part. The base plate has a bottom surface and an opening. The drive circuit board is disposed under the base plate. The spacer is disposed between the drive circuit board and the base plate. The spacer has a through hole. The through hole communicates with the opening in the vertical direction. A sidewall of the through hole is opaque. The light-emitting part is disposed on the drive circuit board and in the through hole. The light-emitting part is located within a projection of the opening of the base plate in the vertical direction. The light-emitting part has a top surface. The top surface is lower than or equal to the bottom surface. Thereby, through the spacer, the structure of the illuminated keyswitch structure around the light-emitting part can keep flat, which is conducive to the control on the structural size. The spacer can prevent the light-emitting part from structurally entering the opening of the base plate, which can prevent the light-emitting part from structurally interfering with other components above the bottom plate in the illuminated key structure and causing damage.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
In practice, the lift mechanism 14, the switch circuit board 16, and the resilient restoration part 18 may be achieved by other structures capable of producing the same effect. For example, the lift mechanism 14 may be achieved by a butterfly support or other me4chanisms capable of moving the keycap up and down. In practice, the lift mechanism for long keycaps (e.g. space bar, enter/return key, backspace key, shift key, and so on) maybe achieved by multiple scissors supports, butterfly supports, or a combination thereof. For another example, the switch circuit board 16 may be achieved by a circuit board with a tactile switch. For another example, the switch circuit board 16 may be achieved by a printed circuit board or a flexible circuit board, on which two adjacent contacts are formed as the switch 162. The resilient restoration part 18 has a conductive portion corresponding to the two contacts and can simultaneously touch the two contacts through the conductive portion to achieve the triggering of the switch 162. For another example, the resilient restoration part 18 may be achieved by a spring or other elastic structures.
Furthermore, in the embodiment, the drive circuit board 20 is disposed under the base plate 10 and has an upper surface 202. The light-emitting part 22 is electrically disposed on the upper surface 202 of the drive circuit board 20. The light-emitting part 22 may be a single monochromatic light-emitting diode (e.g., white), or multiple light-emitting diodes of different colors (e.g., red, green, and blue). The spacer 24 is disposed between the base plate 10 and the drive circuit board 20. The base plate 10 has a bottom surface 102 and one or more openings 104 and 104′. The switch circuit board 16 has a through hole 164. The spacer 24 has a through hole 242. The opening 104 of the base plate 10, the through hole 164 of the switch circuit board 16, and the through hole 242 of the spacer 24 are communicated in a vertical direction Dl (indicated by a double-headed arrow in the figures). The projections of the above three in the vertical direction Dl can be completely aligned, or at least partially overlap. That is, the opening 104, the through hole 164, and the through hole 242 in the vertical direction Dl at least partially overlap, so that in the vertical direction Dl, there is a straight channel passing through the opening 104, the through hole 164, and the through hole 242. In other instances, the switch circuit board 16 is light-transmissive except for the circuitry of the switch circuit board 16, and the through hole 164 is not absolutely necessary. The light-emitting part 22 has a top surface 222 located in the through hole 242. The top surface 222 is lower in height than the bottom surface 102 of the base plate 10. Thereby, the structure of the illuminated keyswitch structure 1 around the light-emitting part 22 can keep flat, which helps to control the size of the structure. Furthermore, in other instances, the light-emitting part 22 and the through hole 242 may be located corresponding to other openings 104′ of the base plate 10. For multiple-width keys of larger size or keys that need one more indication light source, multiple light-emitting parts 22 may be located corresponding to the different openings 104 and 104′ of the base plates 10 respectively.
The spacer 24 can also prevent the light-emitting part 22 form structurally entering the opening 104 of the base plate 10, which can prevent the light-emitting part 22 from structurally interfering with other components (e.g., temporarily enter the opening 104 due to the movement thereof) above the bottom plate 10 in the illuminated key structure 1 and causing damage. In addition, in the embodiment, the spacer 24 is plate-shaped and has a profile equivalent to that of the drive circuit board 20. This structural configuration helps the base plate 10, drive circuit board 20 and spacer 24 to keep flat; however, it is not limited thereto. For example, the spacer 24 is ring-shaped (e.g., circle, square, or other geometric shapes) and surrounds the light-emitting part 22, which still can make the structure of the illuminated keyswitch structure 1 around the light-emitting part 22 keep flat. In addition, in practice, the switch circuit board 16 may be disposed under the base plate 10 and structurally integrated with the drive circuit board 20 into a single circuit board. For example, with removing the switch circuit board 16, a tactile switch is disposed on the drive circuit board 20 corresponding to the triggering protrusion that extends from any of the resilient restoration part 18, the lift mechanism 14, and the keycap 12. The base plate 10 forms an opening correspondingly, so that the resilient restoration part 18 can move downward to touch the tactile switch.
In the embodiment, the sidewall 242a of the through hole 242 of the spacer 24 surrounds the light-emitting part 22 and is close enough to the side surfaces of the light-emitting part 22. The top edge of the sidewall 242a is higher than the light-emitting part 22, protecting the light-emitting part 22. Therefore, regardless of whether the light-emitting part 22 is covered by insulation material, the light-emitting part 22 can be protected from interference and collision during assembly or operation. Moreover, the sidewall 242a of the through hole 242 is opaque, so that light emitted by the light-emitting part 22 will not enter the spacer 24, which can avoid unintended a side leakage of light from the periphery of the keyswitch or keyboard. In practice, when the spacer 24 is made of light-transmissive materials, the sidewall 242a can be coated with an opaque layer. Moreover, the spacer 24 can be made directly of opaque materials, so that the entire spacer 24 is opaque. Furthermore, in the embodiment, the through hole 242 of the spacer 24 is larger than the opening 104 of the base plate 10 (e.g., in the vertical direction Dl, the projection of the opening 104 is located within the projection of the through hole 242, and the light-emitting part 22 is located with the projection of the opening 104), which helps to prevent the light reflected by the through hole 242 and the sidewall 242a from being directly emitted from the opening 104. Moreover, the through hole 164 of the switch circuit board 16 is larger than the opening 104 of the base plate 10 (e.g., in the vertical direction Dl, the projection of the opening 104 is located within the projection of the through hole 164), which helps to reduce the entry of the light emitted from the opening 104 into the switch circuit board 16 from the sidewall of the through hole 164. In other instances, as long as the two projections at least partially overlap in the vertical direction Dl, and the light-emitting part 22 completely falls within the projections of the openings 104 and 104′ of the base plate 10 in the vertical direction Dl and is not covered directly by the base plate 10, the sizes of the openings 104 and 104′ of the base plate 10 are not necessarily smaller than the size of through hole 242 of the spacer 24.
Furthermore, in the embodiment, the illuminated keyswitch structure 1 includes a top adhesive 26 and a bottom adhesive 28 (which are not shown in
In practice, the spacer 24 may first be coated with the top adhesive 26 and the bottom adhesive 28 on the upper surface 244 and the lower surface 246 respectively. Then, the spacer 24 is bonded to the drive circuit board 20 with the bottom adhesive 28; finally, the spacer 24 is bonded to the base plate 10 with the top adhesive 26. In general, the top adhesive 26 and the bottom adhesive 28 will not overflow into the through hole 242 of the spacer 24 and contact the sidewall 242a of the through hole 242 or the light-emitting part 22. In the embodiment, the coverage of the top adhesive 26 on the upper surface 244 is shown as the hatched area in
Furthermore, as shown by
Please refer back to
Furthermore, in the embodiment, the highest point of the light-permeable covering structure 30 is substantially equal to the bottom surface 102 of the base plate 10, which prevents the light-permeable covering structure 30 from structurally interfering with other components above the bottom plate 10 in the illuminated key structure 1. The light-permeable covering structure 30 may be designed to be lower than the bottom surface 102. Furthermore, in practice, the light-permeable covering structure 30 may be obtained by dropping glue (e.g. after the spacer 24 is fixed on the drive circuit board 20) or other methods (e.g. by assembling an additional component to the light-emitting part 22). In addition, in practice, the illuminated keyswitch structure 1 can be provided without the light-permeable covering structure 30 covering the light-emitting part 22. In this instance, the top surface 222 of the light-emitting part 22 may be equal to the bottom surface 102 of the base plate 10 in height.
In the embodiment, the light-permeable covering structure 30 includes a first covering layer 302 and a second covering layer 304. The first covering layer 302 is disposed on the top surface 222. The second covering layer 304 is disposed on the first covering layer 302. Therein, the first covering layer 302 covers the top surface 222 and side surface 224 of the light-emitting part 22 and the connection pads 206 at the same time. The second covering layer 304 is disposed on the first covering layer 302 opposite to the top surface 222; however, it is not limited thereto in practice. For example, the second covering layer 304 covers the entire first covering layer 302. Furthermore, in practice, the first covering layer 302 or the second covering layer 304 may be an optical wavelength conversion layer, e.g., but not limited to including phosphors, quantum dots. In addition, the light-permeable covering structure 30 may be a single-layer structure or a multi-layer structure in practice.
Furthermore, in the embodiment, the light-permeable covering structure 30 does not completely fill up the through hole 242, and there is a gap formed between the light-permeable covering structure 30 and the sidewall 242a of the through hole 242. As shown by
In addition, as shown by
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
110100264 | Jan 2021 | TW | national |