The present application is a U.S. national stage of, and claims the priority benefit of, International Patent Application Serial No. PCT/DK2014/050428, filed Dec. 12, 2014 and Denmark Patent Application Serial No. PA 2013 00688, filed Dec. 13, 2013, the text and drawings of which are hereby incorporated by reference in their entireties.
The present invention relates to a method to configure a surface on a device, and to generate illuminated patterns on a hard surface, e.g. metal and an apparatus having such a configured surface.
In the art it is well-known to process and anodize Aluminum surfaces to obtain decorative effects this e.g. being translucent aluminum surfaces as disclosed by Bang & Olufsen a/s in U.S. Pat. No. 7,334,362 and by Apple Inc. in U.S. Pat. No. 7,880,131.
There is a demand for more and more advanced graphical surfaces on consumer products, this to add new functionality and differentiate one company's products from a competitor's products.
For the decorative aspects of the surface it is important that the final processing is well defined and fully controlled within specific premises. With the hightech technology tools that are available in the process industry it has become possible and feasible to apply these technologies in manufacturing of consumer goods.
It is the object of the present invention to further enhance decorative effects to maximize the quality of the visual appearance by adding engraved graphical—or textual patterns as effect elements onto the surface of a product, and additionally illuminate distinctive patterns on the same surface.
Primary features obtained by the invention are:
A first aspect of the invention is to provide a method for creating a surprisingly attractive display surface, having various characteristics.
A further aspect of the invention is an illuminated surface on a device configured with graphical patterns, where the patterns may include text and/or symbols where the display device is characterized by:
This is achieved by the invention by providing a method according to claim 1 wherein the method of providing a contrast area in a display surface, where said contrast area may contain graphical patterns, text, symbols, geometrical figures or other indications, where said display surface has an aluminum body, said body having a front side which in use is the display side and a rear side, said method comprising the following steps:
This method provides the possibility of obtaining a marked surface. A first manner is by creating a dark area by changing the characteristics of the material preferably aluminum such that the amount of light reflected from it will be reduced. In this manner a dark area may be provided. This is created by traversing a laser beam across the display pattern such that the metal at the interface or underneath the interface, i.e. underneath the oxide layer, has changed the material characteristics. Typically by using a laser it is possible to alter the structure of the metal layer at the interface in such a manner that it will turn dark.
The method also provides for the provision of other colours also including dark colours by a dying process where a desired pattern or area of the anodized, unsealed surface is dyed by a desired dye colour. The area may typically be masked off such that a dye is not allowed to transgress into areas which are not desired or designated to be dyed. After having placed or applied the dye, the surface is sealed in order to retain the dye in place in the marked area. In this manner it is possible to create markings, patterns, or areas having distinctive different colours than the surrounding surface.
Naturally, the surrounding surface where the dye was not applied is sealed too and keeps its original appearance.
In a further advantageous embodiment of the invention the surface working in step a) may include milling, turning, grinding, ice, sand or glass blasting or polishing. Depending on the structure and particularly the texture which it is desired to impart to the display surface any of the above mentioned methods may be used. Naturally sand, glass or ice blasting and polishing provides for very smooth surfaces whereas milling and grinding provide slightly more rough or uneven surfaces which may also be desirable for certain applications.
Turning is particularly useful for circular cylindrical objects.
In a still further advantageous embodiment of the method a method step between step a) and step c) is introduced where a thin protecting anodizing layer of between 2 and 6 μm is established, which protective anodizing layer is removed again by etching prior to step c).
The temporary anodizing layer stabilizes the surface sufficiently such that when the apertures are formed for example by laser drilling or laser ablation the material does not erode close to the surface such that very sharp edged and well-defined apertures may be provided. In order to enlarge the holes/apertures the holes may be enlarged by etching, if it is desirable to enlarge the holes.
An advantageous method for forming the apertures in the aluminum body in step B is/are when they are made by laser machining from the rear side of the body. Typically, for displays integrated in a relatively thick material other means for removing part of the material thickness such as for example grinding or milling may be used in order to work the display material thickness down to a relatively low thickness at least in the areas where the apertures are to be established. After having done this pre-thinning the laser machining is applied in order to make the very well-defined and very closely spaced apertures which will provide the desired clear and distinctive pattern on the front side of the display.
In a further advantageous embodiment different method steps of providing the contrasting area is disclosed, where method steps d) and e) are substituted by method steps f), g), h) and i), such that the method comprises the following steps also:
The coloring in step f) is in a still further embodiment applied to the surface by silkscreen printing, inkjet printing or rollers, optionally using masks, paintbrush or airbrush.
Particularly by using silkscreen printing very smooth, even, and colourful layers, areas, or patterns may be obtained an by aligning both the display and the silk screen print very well defined edges/borders of the colored area may be obtained. Also, the types of colour/dye used in the silkscreen printing process may be selected having a very wide range of different characteristics such that substantially any and all desired colours, textures and surfaces may be obtained. Multi-coloured patterns or areas may be obtained by additional silkscreen print steps.
The intention will now be described in more detail with reference to a few embodiments which are illustrated in the accompanying drawing wherein
The pattern effect is obtained by successive processing steps, each applying standard technologies and methods. Any graphical pattern may be configured on to an object according to any graphical or functional requirements.
In a preferred embodiment of an apparatus applying the disclosed aspect of the invention, functional features may be:
The light is directed from the back side through light guides—small holes drilled through the metal part within a pattern marked or engraved on the front side. The holes become part of the pattern marked or engraved on the surface.
In
In this manner even in darkness it is possible to see the graphical pattern 2 clearly in that it is illuminated as illustrated by the light-rays 3.
Turning to
In
The object 1 is provided with a rear cavity 5 which is created for example by milling or grinding in order to reduce the overall display thickness 7′ to the relatively thin thickness 7 in the area where the graphical patterns 2 are to be provided. The edge of the area where a pattern is provided is marked as 10.
In this embodiment the apertures/holes 4 have a conical shape such that a light source arranged in the cavity 5 will be able to shine light through the holes 4 illuminating the surface of the display is indicated in
The main difference between
A specific example is given below with typical values that do not limit the scope of the invention.
In a preferred embodiment standard laser mean is applied to configure the holes:
When using laser to configure the holes a preferred embodiment utilizes a standard laser. However, this specific example does give typical values, but should not limit the scope of the invention as other types of lasers and other values are usable within the same method as will be recognized by the skilled person.
As is evident from the parameters above the holes are very tiny and as such a large number of holes may be arranged very closely together and much more densely than indicated in
The graphical pattern (2) on top of the surface of the object (1) may be made by engraving, or marking.
The laser equipment may be used for engraving or marking according to the adjustment of the laser tool parameters.
Alternative means to configure the graphical pattern may be mechanical engraving, chemical engraving—selective etching.
According to product requirement the engraving or marking can be made so it appears to have a surface that is smooth, rough, colored, multicolored and alike in any variant.
The invention may be used in all types of equipment and apparatus, where there is a demand for a high quality user interaction surfaces including graphics patterns on the surface, with a very nice looking expression/display.
Examples of equipment are, but not limited to: Consumer electronics, furniture, control panels, loudspeaker grills in cars, boats and airplanes and alike.
Turning now to
In
In
The object 1 is again provided with a cavity 5 formed by any of the methods described above such that only a thin material thickness is left in the area where the holes/apertures are to be provided. The surface layer of the object 1 is in the embodiments illustrated in
Turning to
In a first step 10 the surface finish is performed on the object. This may for example be grinding, milling, ice- or sand blasting or glass blasting etc. in order to provide the display surface which is desired for the particular application.
Also, the cavity 5 illustrated in
At this time depending on the desired surface marking the object may either be subjected to sealing of the anodized layer in a further method step 40 after the sealing step 40 the surface of the object may be subjected to laser treatment as described above where the metal at the interface between the protective oxide layer and the aluminum as such is altered due to the energy from the laser. This alteration provides a “dark area”, i.e. a surface which reflects less light than the surrounding surface and as such will appear dark/black. This happens in a laser treatment step 50 following the sealing step 40. Alternatively, the unsealed anodized object may proceed to a dyeing station 60 where areas to be dyed may be subjected to a silkscreen printing process such that the dye from the silk screen printing process is directed onto the unsealed anodized surface locally where desired.
Following the dyeing step 60 a sealing step 70 is provided such that the dye is sealed into the anodized layer. Following the sealing the object is to be cleaned in a further step 80 such that the object at this point is free from any excess dye. Following both the laser treatment step 50 and the cleaning step 80 is a step where the apertures/holes are filled with a transparent agent such as for example a resin- or acrylic-based agent which is allowed to harden in step 90.
An optional process step is to fill the holes with a translucent sealing:
The material used for an object (1), may be of any “hard” type e.g. but not limited to ceramic, metal (iron, steel, bronze), aluminum, carbon-fiber, stone or any type of plastic and PVC and etc.
In a preferred embodiment the material applied is anodized Aluminum. This requires an optional additional etching and anodizing process.
Thus, the optional process for Aluminum is:
Number | Date | Country | Kind |
---|---|---|---|
2013 00688 | Dec 2013 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2014/050428 | 12/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/086032 | 6/18/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2812295 | Patrick | Nov 1957 | A |
7880131 | Andre et al. | Feb 2011 | B2 |
20090040790 | Payne | Feb 2009 | A1 |
20100008030 | Weber | Jan 2010 | A1 |
20100215926 | Askin | Aug 2010 | A1 |
20110017602 | Khosla | Jan 2011 | A1 |
20110089067 | Scott et al. | Apr 2011 | A1 |
20110236645 | Osako | Sep 2011 | A1 |
20130147715 | Nakamura | Jun 2013 | A1 |
20140061054 | Ye | Mar 2014 | A1 |
20160294002 | Matsuura | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2011002617 | Jan 2011 | WO |
Entry |
---|
PCT/DK2014/050428, European Patent Office, International Search Report, dated Mar. 25, 2015. |
PCT/DK2014/050428, European Patent Office, Written Opinion of the International Searching Authority, dated Mar. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20160321965 A1 | Nov 2016 | US |