This application claims priority to Japanese Patent Application No. 2006-249634 filed on Sep. 14, 2006. The entire disclosure of Japanese Patent Application No. 2006-249634 is hereby incorporated herein by reference.
1. Field of the Invention
The present invention relates to an illuminated push button unit. More specifically, the present invention relates to an illuminated push button unit in which light from a light source is emitted around a push-down control.
2. Background Information
A conventional illuminated push button unit is formed such that a light emission face is displaced along with a pushing down of a push-down control. With the illuminated push button unit, a light emission window that faces the light emission face is provided in an external housing of an electrical device in which the illuminated push button unit is mounted.
As shown in
With the illuminated push button unit U, the push-down control 7 is provided in a middle of the light emission window 6 of the lens holder 5. When the push-down control 7 is pushed in, the light-guide lens 1 is displaced along with the lens holder 5, with the hinge 8 as a fulcrum. When switching is performed by operation of a tact switch (not shown) by the switch pressing tab 9 of the lens holder 5, a light source such as an LED (not shown) is lit. The light from the LED is guided through the light-guide lens 1 to the light emission face 2. Then, the light exiting the light emission face 2 is emitted through the light emission window 6 of the lens holder 5.
As shown in
Accordingly, with the illuminated push button unit U, the light emission window 6 ends up being partitioned into two small windows 6a by the ribs 5a at two locations. Therefore, even though the light is emitted circularly by the light emission face 2 of the light-guide lens 1, the ribs 5a create a shadow. As a result, the light is emitted discontinuously from the two small windows 6a of the light emission window 6. In other words, even though it is intended to obtain a ring of light by having a basic circular shape of the light emission window 6, and emitting light all the way around the push-down control 7, the ribs 5a end up creating a shadow. As a result, only arc-shaped light that is discontinuous between the small windows 6a is actually obtained. Thus, a completely continuous ring of light is not obtained.
In view of the above, it will be apparent to those skilled in the art from this disclosure that there exists a need for an improved illuminated pushed button unit. This invention addresses this need in the art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
The present invention was conceived in light of the above problems. It is one object of the present invention to provide an illuminated push button unit with which light is emitted from a light emission face in a continuous ring shape.
In accordance with one aspect of the present invention, an illuminated push button unit includes a light-guide lens, a lens holder and a push-down control. The light-guide lens is configured to guide light from a light source to a light emission face disposed at a front end of the light-guide lens and emit the light from the light emission face. The lens holder is attached to the light-guide lens. The lens holder includes a light emission window through which the light emission face of the light-guide lens emits the light. The push-down control is attached to the light emission face in a middle of the light emission face so that the light emission face emits the light in an annular shape.
With the illuminated push button unit, it is possible to provide an illuminated push button unit with which light is emitted from the light emission face in a continuous ring shape.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the art from the following detailed descriptions, which, taken in conjunction with the annexed drawings, discloses selected embodiments of the present invention.
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
As shown in
As shown in
The light-guide lens 10 is made transparent from a resin that is translucent. The light-guide lens 10 includes a light emission face 11, a light-guide component 12, attachment tabs 13 and 14, an attachment shaft 15 and an annular groove 16.
The light emission face 11 is formed at a front end face of the light-guide lens 10. The light emission face 11 has a circular outline. The light emission face 11 is integrally provided with the light-guide component 12. The light-guide component 12 is formed cylindrically. The light-guide component 12 is located concentrically with the light emission face 11. The attachment tabs 13 and 14 stick out from two places in a peripheral direction at a front end of the light-guide component 12. More specifically, the attachment tabs 13 and 14 protrude radially outwardly from an outer periphery of the light-guide component 12. The attachment shaft 15 protrudes integrally from a middle of the front end face of the light-guide lens 10. The attachment shaft 15 has a tapered peripheral surface. The annular groove 16 is formed in the light-guide lens 10 around a base of the attachment shaft 15.
The lens holder 50 includes a boss 51, an engagement hole 52, a light emission window 53, a hinge 54, a switch depressing tab 55 and a fusion attachment component 56. The boss 51 is affixed by fusion to the attachment tab 13. The engagement hole 52 latches the attachment tab 14. Specifically, the attachment tab 14 is latched by being inserted into the engagement hole 52. As shown in
The push-down control 20 is formed as a convex shaft. The push-down control 20 faces the circular opening 120 of the front panel 100. The push-down control 20 is configured to be pushed down from the front side of the front panel 100.
The push-down control 20 is made of a resin that is opaque. The push-down control 20 and the light-guide lens 10 are formed independently from one another. In other words, the push-down control 20 and the light-guide lens 10 are separately formed. The push-down control 20 is coupled to the light-guide lens 10. Specifically, the attachment shaft 15 is press fitted and fixed in a hole 21 formed in the push-down control 20. Furthermore, a proximal end portion 22 of the push-down control 20 is fitted into the annular groove 16. Since the illuminated push button unit U1 has the opaque push-down control 20 protruding from a middle of the light emission face 11 of the light-guide lens 10, the light emission face 11 of the light-guide lens 10 emits in a complete ring shape all the way around the push-down control 20.
When the user pushes down on the push-down control 20 from the front side of the front panel 100 with the finger, the lens holder 50 is displaced along with the light-guide lens 10. As a result, the switch depressing tab 55 of the lens holder 50 presses the tact switch S. When switching is performed by operation of the tact switch S by the switch depressing tab 55, a light source P such as an LED (light emitting element) is lit. The tact switch S and the light source P are mounted on a wiring board B, as shown in
The translucent body 30 is provided to plug the gap produced between the front panel 100 and the front face of the lens holder 50. The translucent body 30 is made from a translucent resin. The translucent body 30 is formed in a cylindrical shape. The translucent body 30 is mated with the front panel 100. Specifically, the translucent body 30 is fitted into the circular opening 120 of the front panel 100. The push-down control 20 penetrates the translucent body 30 and is pushed in relative to the translucent body 30. The translucent body 30 is superposed with the light emission face 11 of the light-guide lens 10. Therefore, a front end face of the translucent body 30 substantially emits ring-shaped light.
When the illuminated push button unit U1 is compared to the conventional illuminated push button unit U shown in
With the illuminated push button unit U1, the push-down control 20 is disposed on the light-guide lens 10, and is not provided contiguously with the lens holder 50. Accordingly, no ribs have to be provided to the light emission window 53 of the lens holder 50 to integrate the push-down control 20 with the lens holder 50. As a result, the light emission window 53 is not partitioned into small windows by any ribs. Therefore, the light emitted through the light emission window 53 is formed in a completely continuous ring shape. Accordingly, when the illuminated push button unit U1 is applied to the electrical device, a completely continuous ring of light emission is obtained around the push-down control 20 at the places where push button switches 110 of the electrical device are installed. Therefore, the light shines attractively around the push button switches 110.
Furthermore, after the light-guide lens 10 and the push-down control 20 are individually formed from resins of different properties, the push-down control 20 is attached to the light-guide lens 10. Therefore, the coloring, design and so forth of the push-down control 20 can be freely selected without affecting the material or design of the light-guide lens 10. For instance, it is possible to impart light blocking properties to the push-down control 20, or to freely color the push-down control 20.
The attachment shaft 15 and the hole 21 are fixed together by press fitting the attachment shaft 15 in the hole 21. This allows the push-down control 20 to be integrally affixed to the light-guide lens 10 without employing any special linking means such as an adhesive agent.
The proximal end portion 22 of the push-down control 20 is fitted into the annular groove 16. As a result, the light emission face 11 is divided into a middle portion and the annular portion around the periphery of the middle portion.
Furthermore, the light-guide lens 10 is attached to the lens holder 50 with the attachment tabs 13 and 14. This allows the light-guide lens 10 to be attached to the lens holder 50 without employing any special linking means. Furthermore, since the light-guide component 12 is formed cylindrically, the light guided by the light-guide lens 10 is more readily focused on the light emission face 11.
Referring now to
A push-down control 20″ of the second embodiment of the present invention is made of an opaque resin. The push-down control 20″ is made of a softer resin than a resin forming a light-guide lens 10″. The push-down control 20″ is equipped with an attachment shaft 25 and a latching head 26. The attachment shaft 25 is press fitted and fixed into a hole 17 formed in the light-guide lens 10″. The hole 17 is formed in an outwardly-widening tapered shape. The hole 17 is opening in a middle of the front end face of the light-guide lens 10″. The latching head 26 is provided to an end of the attachment shaft 25. The latching head 26 is formed in a sagittate shape. The latching head 26 is engaged with a large-diameter bulge 19 provided at the bottom of the hole 17. Therefore, the push-down control 20″ is prevented from coming loose. Also, a proximal end of the push-down control 20″ is fitted into a circular recess 18 formed in the front end face of the light-guide lens 10″. As a result, the light emission face 11 formed by the front end face of the light-guide lens 10″ is formed in a circular shape that is completely continuous around the push-down control 20″.
When the push-down control 20″ is coupled to the light-guide lens 10″, the engagement between the latching head 26 of the attachment shaft 25 and the bulge 19 of the hole 17 prevents the push-down control 20″ from coming loose from the light-guide lens 10″. Furthermore, the light guided by the light-guide lens 10″ is more readily focused on the light emission face 11. As a result, the brightness of the light emission face 11 is increased.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components and groups, but do not exclude the presence of other unstated features, elements, components and groups. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. As used herein to describe the present invention, the following directional terms “forward, rearward, above, downward, vertical, horizontal, below and transverse” as well as any other similar directional terms refer to those directions of an image formation device equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to an image formation device equipped with the present invention as used in the normal operating position. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. For example, these terms can be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from the disclosures that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the selected embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-249634 | Sep 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3644855 | Cherry et al. | Feb 1972 | A |
4017700 | West | Apr 1977 | A |
5367133 | Schmidt et al. | Nov 1994 | A |
6855899 | Sotome | Feb 2005 | B2 |
7193170 | Katayama et al. | Mar 2007 | B2 |
Number | Date | Country |
---|---|---|
09-069322 | Mar 1997 | JP |
09-282972 | Oct 1997 | JP |
2004-214101 | Jul 2004 | JP |
2005-243322 | Sep 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080068844 A1 | Mar 2008 | US |