An illuminated sign is disclosed that features a housing and/or a frame, a plate and at least one three-dimensional body, of a light-transmitting material, in the form of figure, a sign, a decoration or the like, and a light source, which is mounted on the housing and/or the frame.
Illuminated signs are known and include a housing, for example in the form of a logo. The housing is provided with a light-transmitting plate, which comprises an opaque coating on the front side, in which openings are present, for example in the form of letters and/or a border. A strip having a convex upper side, which consists of a light-transmitting paste, is applied in said openings. Fluorescent or thin light (hereinafter “TL”) tubes are mounted across the width of the plate, at least under the openings. The TL tubes cause the convex strips to light up when they are turned on, making said strips resemble neon tubes.
Existing illuminated signs are relatively complex and heavy, because a large number of TL tubes are required in order to provide sufficient lighting of the strips. In addition, the tubes must frequently be arranged in such a manner that that they conform to the shape of, for example, a border as well as possible.
As a result, there is a need for an improved illuminated sign as an alternative to those discussed above.
To this end, an illuminated sign is disclosed which is characterized in that said illuminated sign comprises one or more light guides for coupling light from the light source into the three-dimensional body or bodies.
The light guide(s) make(s) it possible to capture light from, for example, one centrally disposed TL tube and couple said light into at least one three-dimensional body, so that an effective lighting of said body is obtained. If a suitable material is selected, such as a strip of a light-transmitting polymer, the disclosed sign moreover provides much greater freedom as regards the design of a logo.
One disclosed light guide preferably comprises a surface for coupling light into the three-dimensional body, which surface is optically coupled to the three-dimensional body and which conforms to the shape thereof, preferably along the entire length thereof along the main part of the length of said body.
Furthermore, the width of said surface is preferably smaller than the width of the body, preferably it amounts to 70% or less, or even 50% or less, of the width of the body. Thus a very effective coupling of light from the light guide into the three-dimensional body is obtained, and the resemblance to neon lighting in particular colours, especially red, in which the tube lights up more brightly in the centre, can be further enhanced.
As a result, is possible to obtain an aureole by selecting a width for said surface which is greater rather than smaller than that of said body.
Within this framework, the term “light-transmitting” is understood to mean both transparent and translucent (e.g., milky).
The disclosed signs will now be explained in more detail by means of three preferred embodiments as shown in the following figures, wherein:
The TL tube 10, which is positioned directly below the central strip 8′, is flanked on either side by light guides 11, 12, in this case strips of rectangular section having end surfaces 13, 14 which are relatively narrow in comparison with the width of the strips 8. The light guides 11, 12 are positioned directly below the left-hand and right-hand strips 8, 8″, and they are bent so that the upper end surfaces 13, 14 conform to the shape of said strips 8, 8″. The light guides 11, 12 in this example are made of a translucent acrylate, to which a fluorescent substance has been added. The width of said end surfaces 13, 14 of the light conductors 11 and 12 is less than 50%, for example, of the width of the strips 8 to which they are optically coupled.
When the TL tube 10 is turned on, light (illustrated in dotted lines) from said tube 10 will directly couple into the middle strip 8′ and illuminate the lateral surfaces of the guides 11 and 12. Via said lateral surfaces the light from the TL tube 10 will couple into the guides 11 and 12, be retained therein, be guided upwards and downwards and be coupled out at the end surfaces. In order to reduce or even eliminate losses at the bottom side of the guides 11, 12, the lower end surfaces may be provided with a reflective layer or be formed or ground so that light will inherently be reflected. As a result of the relatively small width of the end surfaces 13, 14, the resemblance to neon lighting, in particular red lighting, in which the tube lights up more brightly in the center, is enhanced.
Also the second plate 215 is made of a clear polymer. As best shown in
With the embodiments according to
This disclosure is not restricted to the specific embodiments described above, which, of course, which can be varied in many ways but still fall within the scope of this disclosure. For example, the housing may be internally coated with a reflective layer. Furthermore, different shapes of the guides are possible, for example guides in the form of a bar of triangular section, one surface being directed to the light source and one surface being directed to a three-dimensional body, with the third surface mainly functioning as a reflector. The light-transmitting plates may also be curved or convex instead of flat.
Number | Date | Country | Kind |
---|---|---|---|
02080018 | Nov 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3751319 | Green et al. | Aug 1973 | A |
3968584 | Kingston | Jul 1976 | A |
4276705 | Barth et al. | Jul 1981 | A |
4573766 | Bournay et al. | Mar 1986 | A |
4814948 | Hasegawa | Mar 1989 | A |
4924612 | Kopelman | May 1990 | A |
5151679 | Dimmick | Sep 1992 | A |
5398170 | Lee | Mar 1995 | A |
5536558 | Shelton | Jul 1996 | A |
6026602 | Grondal et al. | Feb 2000 | A |
6092318 | Arie et al. | Jul 2000 | A |
6234656 | Hosseini et al. | May 2001 | B1 |
6305109 | Lee | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
19818887 | Nov 1999 | DE |
0 187 410 | Jul 1986 | EP |
2000-347605 | Dec 2000 | JP |
2002-286941 | Oct 2002 | JP |
2002-286941 | Oct 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20040172869 A1 | Sep 2004 | US |