The present invention contains subject matter related to Japanese Patent Application No. 2007-169076 filed in the Japanese Patent Office on Jun. 27, 2007, the entire contents of which being incorporated herein by reference.
1. Technical Field
The preset invention relates to an illuminated switch including an illumination mechanism that illuminates a surface (operation surface) of an operation knob from inside.
2. Related Art
A switch device has been disclosed in Japanese Unexamined Patent Application Publication No. 2006-59561. The switch device includes a translucent indicator side guide and a light emitting material side guide, which are disposed to be separated from each other. The translucent indicator side guide is provided in an operation knob, and light beams enter the light emitting material side guide from a luminous body. In the switch device, light beams emitted from the luminous body reach the translucent indicator side guide from the light emitting material side guide, so that a translucent indicator is illuminated.
Further, the invention relating to a switch of electrical equipment for an automobile has been disclosed in FIG. 6 of Japanese Unexamined Patent Application Publication No. 2000-100275. The switch propagates light beams emitted from a light source in a desired direction by disposing a triangular prism at a light emitting end of an optical path member.
However, in the switch device disclosed in Japanese Unexamined Patent Application Publication No. 2006-59561, the directions of the light beams passing though the translucent indicator side guide are different from one another. For this reason, when being emitted from the translucent indicator side guide, light beams are apt to be dispersed in several directions. Therefore, there has been a problem in that the brightness deteriorates when an operator see the translucent indicator.
Meanwhile, Japanese Unexamined Patent Application Publication No. 2000-100275 discloses a technology that solves the above-mentioned problem and propagates light beams emitted from the luminous body in a desired direction. However, there have been problems in that the amount of light is reduced at the peripheral portion of the light exit surface of the light guide member and the unevenness of brightness occurs.
According to an aspect of the disclosure, an illuminated switch includes an operation knob that includes an operation surface, a light source that emits light beams having an optical axis in a predetermined direction, and a first light guide member that is provided in the operation knob and guides the light beams emitted from the light source to the operation surface. The first light guide member includes a light incident surface formed of inclined surface that refracts light beams entering along the optical axis in a first direction, a reflection surface that reflects light beams refracted at the light incident surface in a second direction different from the first direction, and a light exit surface that transmits light beams reflected by the reflection surface. The light beams emitted from the light source are reflected by the reflection surface, and then exit from the light exit surface. Therefore, it is possible to provide a sufficient amount of light to the peripheral portion of the light exit surface and to prevent the unevenness of brightness of the light exit surface.
Hereinafter, an optical axis, which passes through a light source 5 and is parallel to a Y axis, will be described as an optical axis L1.
An illuminated switch 10 shown in
The operation knob 11 includes an operation surface 11A that faces toward the front face of the electronic device body 9. An opening 11a is formed at a portion of the operation surface 11A. A communication passage 11B continued from the opening 11a is formed in the operation knob 11 so as to extend in a Y2 direction. A bottom of the communication passage 11B is parallel to a Y axis. However, the bottom of a front end of the communication passage 11B in the Y1 direction of the drawing is formed of an inclined surface 11b that is inclined in a Z1 direction of the drawing toward the front end. A first light guide member 20 is provided in the communication passage 11B of the operation knob 11. A notch 24 to be described below faces the inclined surface 11b.
A mounting hole 9A passing through the electronic device body 9 in the Y direction of the drawing is formed at a position facing the communication passage 11B. A second light guide member 30 is provided in the mounting hole 9A.
As shown in
The light incident surface 21 and the light exit surface 22 are formed of inclined surfaces that are inclined in directions opposite to each other, respectively. That is, as shown in
Meanwhile, the light incident surface 21 may be formed of a cylindrical surface, and, for example, may be formed of cylindrical surfaces 21a and 21b that are formed in two stages along an inclined surface as shown in
As shown in cross-sectional view of
The reflection surface 23, which is a bottom of the first light guide member 20, is parallel to a horizontal plane (X-Y plane) except for a part thereof. The part of the reflection surface is a notch 24 that is formed by undercutting the front end of the reflection surface 23 of the first light guide member 20 corresponding to the Y1 side of the drawing. Assuming that a light exit surface is formed at a portion corresponding to the notch 24, it is difficult for light beams to reach the front end. Therefore, it is possible to prevent or suppress the unevenness of brightness by cutting the front end. Meanwhile, an area of the reflection surface 23 is larger than that of the light exit surface 22.
A collimating part 31 is formed at an end face of the second light guide member 30, which corresponds to the Y1 side of the drawing and is an incident side, and a light emitting surface 32 is formed at an end face of the second light guide member corresponds to the Y2 side of the drawing.
The collimating part 31 includes a convex lens portion 31a, a light receiving surface 31b that becomes broad from the edge of the convex lens portion 31a toward the outside in the shape of a megaphone, and conical surfaces 31c. Meanwhile, the center of the collimating part 31 is disposed on the optical axis L1-L1 that passes through the center of the light source 5 and is parallel to the Y axis, and the light emitting surface 32 is a surface that is perpendicular to the optical axis L1-L1.
As shown in
Each of the first and second light guide members 20 and 30 is integrally made of, for example, a transparent resin material such as an acrylic resin.
As shown in
A substrate 4 is fixed to the end of the electronic device body 9 corresponding to the Y2 side. The light source 5 is fixed to a surface of the substrate 4 corresponding to the Y1 side. Accordingly, when the substrate 4 is fixed to the end of the electronic device body 9 corresponding to the Y2 side, the light source 5 is disposed at the end of the mounting hole 9A. Meanwhile, the light source 5 is composed of, for example, an LED or the like.
As shown in
When the operation surface 11A is operated by a finger F, the operation knob 11 swings and a switch mechanism (not shown) is thus switched to ON/OFF. For example, the light source 5 is set to be turned on when the switch mechanism is switched to ON, and to be turned off when the switch mechanism is switched to OFF. Accordingly, the light exit surface 22 seen on the operation surface 11A is turned on and off.
The illuminating operation of the illuminated switch having the above-mentioned structure will be described.
As shown in
Meanwhile, among the light beams R0 emitted from the light source 5, a part of light beams spreading in the width (X1 and X2) direction of
The parallel light beams R1 are propagated through the second light guide member 30, and are emitted to the first light guide member 20 through the light emitting surface 32 that is perpendicular to the optical axis L1-L1.
The parallel light beams R1 emitted from the second light guide member 30 enter the first light guide member 20 from the light incident surface 21 of the first light guide member 20. In this case, the parallel light beams R1 are refracted in the first direction D1 at the light incident surface 21. Further, an angle of refraction in this case is determined by the relationship between a ratio between a refractive index of air and a refractive index of a material of the second light guide member, and an incident angle when the parallel light beams R1 enter the light incident surface 21.
As shown in
In this case, as shown in
As shown in cross-sectional view of
As shown in
As described above, in the illuminated switch according to the embodiment of the invention, it is possible to direct the light beams, which are emitted from the light source 5, in the second direction D2 in a vertical direction, and to prevent the unevenness of brightness of the light exit surface 22. In addition, since the light exit surface 22 of the first light guide member 20 from which light beams are emitted is provided to face an operator in the vertical direction, the light exit surface 22 can be sufficiently bright and easily seen from of an operator's side.
In the above-mentioned embodiment, the light beams emitted from the light source 5 have been converted into parallel light beams by the collimating part 31 of the second light guide member 30, and have then entered the light incident surface 21 of the first light guide member 20. However, the invention is not necessarily limited thereto. That is, if the light source 5 is a laser light source capable of emitting parallel light beams, the second light guide member 30 may be not used and the light beams emitted from the light source 5 may directly enter the light incident surface 21 of the first light guide member 20.
Further, in the above-mentioned embodiment, the operation knob 11 has been swingably supported by the electronic device body 9. However, the invention is not limited thereto, and the operation knob may be swingably mounted on a member forming a switch mechanism such as a switch case or may be mounted on the electronic device body 9 as a switch mechanism.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims of the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2007-169076 | Jun 2007 | JP | national |