The present disclosure generally relates to vehicle lighting systems, and more particularly, to vehicle lighting systems employing one or more photoluminescent structures.
Illumination arising from the use of photoluminescent structures offers a unique and attractive viewing experience. It is therefore desired to implement such structures in automotive vehicles for various lighting applications.
According to one aspect of the present invention, a badge for a vehicle is disclosed. The badge includes a substrate and a housing attached thereto that defines a cavity therebetween. A light source is configured to emit an excitation light. A first photoluminescent structure and a second photoluminescent structure are each configured to convert the excitation light emitted from the light source into a converted light of a different wavelength. A light scattering layer is disposed between the first and second photoluminescent structures.
According to another aspect of the present invention, a badge is disclosed. The badge includes a housing and a substrate. A light source is configured to emit an excitation light toward a viewable portion. A first photoluminescent structure is disposed rearwardly of the viewable portion and is configured to emit a converted light at a different wavelength in response to receiving the excitation light. A light scattering layer is disposed between the first photoluminescent structure and the viewable portion.
According to another aspect of the present invention, a method of illuminating a badge is disclosed. The method includes activating a light source thereby emitting an excitation light at a first wavelength. Next, the method includes converting and diffusing excitation light emitted from the light source to converted light of a second wavelength as the light passes through a first photoluminescent structure. The excitation light and converted light are then diffused through a light scattering layer. The light at the first or second wavelength is then converted to a third wavelength as the light passes through a second photoluminescent structure to a third wavelength. Lastly, the light at the third wavelength is directed outwardly through a viewable portion of the badge.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
The following disclosure describes an illuminating badge for a vehicle. The badge may advantageously employ one or more light sources configured to illuminate at pre-defined frequencies. The badge may further include one or more photoluminescent structures configured to convert excitation light received from an associated light source to a converted light at a different wavelength typically found in the visible spectrum.
Referring to
At the most basic level, a given photoluminescent structure 10 includes an energy conversion layer 16 that may include one or more sub layers, which are exemplarily shown in broken lines in
Light emitted by a light source 42 is referred to herein as excitation light 24 and is illustrated herein as solid arrows. In contrast, light emitted from the photoluminescent structure 10 is referred to herein as converted light 26 and is illustrated herein as broken arrows. The mixture of excitation light 24 and converted light 26 that may be emitted simultaneously is referred to herein as outputted light.
In some embodiments, the converted light 26 that has been down converted or up converted may be used to excite other photoluminescent material(s) 18 found in the energy conversion layer 16. The process of using the converted light 26 outputted from one photoluminescent material 18 to excite another, and so on, is generally known as an energy cascade and may serve as an alternative for achieving various color expressions. With respect to either conversion principle, the difference in wavelength between the excitation light 24 and the converted light 26 is known as the Stokes shift and serves as the principle driving mechanism for an energy conversion process corresponding to a change in wavelength of light. In the various embodiments discussed herein, each of the photoluminescent structures 10 may operate under either conversion principle.
The energy conversion layer 16 may be prepared by dispersing the photoluminescent material 18 in a polymer matrix to form a homogenous mixture using a variety of methods. Such methods may include preparing the energy conversion layer 16 from a formulation in a liquid carrier medium 14 and coating the energy conversion layer 16 to a desired substrate 12. The energy conversion layer 16 may be applied to a substrate 12 by painting, screen printing, spraying, slot coating, dip coating, roller coating, and bar coating. Alternatively, the energy conversion layer 16 may be prepared by methods that do not use a liquid carrier medium 14. For example, the energy conversion layer 16 may be rendered by dispersing the photoluminescent material 18 into a solid state solution (homogenous mixture in a dry state) that may be incorporated in a polymer matrix, which may be formed by extrusion, injection molding, compression molding, calendaring, thermoforming, etc. The energy conversion layer 16 may then be integrated into a substrate 12 using any methods known to those skilled in the art. When the energy conversion layer 16 includes sub layers, each sub layer may be sequentially coated to form the energy conversion layer 16. Alternatively, the sub layers can be separately prepared and later laminated or embossed together to form the energy conversion layer 16. Alternatively still, the energy conversion layer 16 may be formed by coextruding the sub layers.
Referring back to
Additional information regarding the construction of photoluminescent structures 10 is disclosed in U.S. Pat. No. 8,232,533 to Kingsley et al., entitled “PHOTOLYTICALLY AND ENVIRONMENTALLY STABLE MULTILAYER STRUCTURE FOR HIGH EFFICIENCY ELECTROMAGNETIC ENERGY CONVERSION AND SUSTAINED SECONDARY EMISSION,” filed Nov. 8, 2011, the entire disclosure of which is incorporated herein by reference. For additional information regarding fabrication and utilization of photoluminescent materials to achieve various light emissions, refer to U.S. Pat. No. 8,207,511 to Bortz et al., entitled “PHOTOLUMINESCENT FIBERS, COMPOSITIONS AND FABRICS MADE THEREFROM”; U.S. Pat. No. 8,247,761 to Agrawal et al., entitled “PHOTOLUMINESCENT MARKINGS WITH FUNCTIONAL OVERLAYERS”; U.S. Pat. No. 8,519,359 B2 to Kingsley et al., entitled “PHOTOLYTICALLY AND ENVIRONMENTALLY STABLE MULTILAYER STRUCTURE FOR HIGH EFFICIENCY ELECTROMAGNETIC ENERGY CONVERSION AND SUSTAINED SECONDARY EMISSION”; U.S. Pat. No. 8,664,624 B2 to Kingsley et al., entitled “ILLUMINATION DELIVERY SYSTEM FOR GENERATING SUSTAINED SECONDARY EMISSION”; U.S.
Patent Publication No. 2012/0183677 to Agrawal et al., entitled “PHOTOLUMINESCENT COMPOSITIONS, METHODS OF MANUFACTURE AND NOVEL USES”; U.S. Pat. No. 9,057,021 to Kingsley et al., entitled “PHOTOLUMINESCENT OBJECTS”; and U.S. Patent Publication No. 2014/0103258 A1 to Agrawal et al., entitled “CHROMIC LUMINESCENT COMPOSITIONS AND TEXTILES,” all of which are incorporated herein by reference in their entirety.
The photoluminescent material 18, according to one embodiment, disposed within the photoluminescent structure 10 may include a long persistent phosphorescent material that emits the converted light 26, once charged by the excitation light 24. The excitation light 24 may be emitted from any excitation source (e.g., any natural and/or artificial light source). The long persistent phosphorescent material may be defined as being able to store an excitation light 24 and release the converted light 26 gradually, for a period of several minutes or hours, once the excitation light 24 is no longer present. The decay time may be defined as the time between the end of excitation from the excitation light 24 and the moment when the light intensity of the converted light 26 emitted from the photoluminescent structure 10 drops below a minimum visibility of 0.32 mcd/m2. A visibility of 0.32 mcd/m2 is roughly 100 times the sensitivity of the dark-adapted human eye, which corresponds to a base level of illumination commonly used by persons of ordinary skill in the art.
The long persistent phosphorescent material, according to one embodiment, may be operable to emit light at or above an intensity of 0.32 mcd/m2 after a period of 10 minutes. Additionally, the long persistent phosphorescent material may be operable to emit light above or at an intensity of 0.32 mcd/m2 after a period of 30 minutes and, in some embodiments, for a period substantially longer than 60 minutes (e.g., the period may extend 24 hours or longer, and in some instances, the period may extend 48 hours). Accordingly, the long persistent phosphorescent material may continually illuminate in response to excitation from a plurality of light sources that emit an excitation light 24, including, but not limited to, natural light sources (e.g., the sun) and/or any artificial light source 42. The periodic absorption of the excitation light 24 from any excitation source may provide for a substantially sustained charge of the long persistent phosphorescent material to provide for consistent passive illumination. In some embodiments, a light sensor may monitor the illumination intensity of the photoluminescent structure 10 and actuate an excitation source when the illumination intensity falls below 0.32 mcd/m2, or any other predefined intensity level.
The long persistent phosphorescent material may correspond to alkaline earth aluminates and silicates, for example doped di-silicates, or any other compound that is capable of emitting light for a period of time once an excitation light 24 is no longer present. The long persistent photoluminescent material 18 may be doped with one or more ions, which may correspond to rare earth elements, for example, Eu2+, Tb3+, and/or Dy3. According to one non-limiting exemplary embodiment, the photoluminescent structure 10 includes a phosphorescent material in the range of about 30% to about 55%, a liquid carrier medium in the range of about 25% to about 55%, a polymeric resin in the range of about 15% to about 35%, a stabilizing additive in the range of about 0.25% to about 20%, and performance-enhancing additives in the range of about 0% to about 5%, each based on the weight of the formulation.
The photoluminescent structure 10, according to one embodiment, may be a translucent white color, and in some instances reflective, when unilluminated. Once the photoluminescent structure 10 receives the excitation light 24 of a particular wavelength, the photoluminescent structure 10 may emit any color light (e.g., blue or red) therefrom at any desired brightness. According to one embodiment, a blue emitting phosphorescent material may have the structure Li2ZnGeO4 and may be prepared by a high temperature solid-state reaction method or through any other practicable method and/or process. The afterglow may last for a duration of two to eight hours and may originate from an excitation light 24 and d-d transitions of Mn2+ ions.
According to an alternate non-limiting exemplary embodiment, 100 parts of a commercial solvent-borne polyurethane, such as Mace resin 107-268, having 50% solids polyurethane in Toluene/Isopropanol, 125 parts of a blue green long long persistent phosphor, such as Performance Indicator PI-BG20, and 12.5 parts of a dye solution containing 0.1% Lumogen Yellow F083 in dioxolane may be blended to yield a low rare earth mineral photoluminescent structure 10. It will be understood that the compositions provided herein are non-limiting examples. Thus, any phosphor known in the art may be utilized within the photoluminescent structure 10 without departing from the teachings provided herein. Moreover, it is contemplated that any long persistent phosphor known in the art may also be utilized without departing from the teachings provided herein.
Additional information regarding the production of long persistent photoluminescent materials is disclosed in U.S. Pat. No. 8,163,201 to Agrawal et al., entitled “HIGH-INTENSITY, PERSISTENT PHOTOLUMINESCENT FORMULATIONS AND OBJECTS, AND METHODS FOR CREATING THE SAME,” the entire disclosure of which is incorporated herein by reference. For additional information regarding long persistent phosphorescent structures, refer to U.S. Pat. No. 6,953,536 to Yen et al., entitled “LONG PERSISTENT PHOSPHORS AND PERSISTENT ENERGY TRANSFER TECHNIQUE”; U.S. Pat. No. 6,117,362 to Yen et al., entitled “LONG-PERSISTENT BLUE PHOSPHORS”; and U.S. Pat. No. 8,952,341 to Kingsley et al., entitled “LOW RARE EARTH MINERAL PHOTOLUMINESCENT COMPOSITIONS AND STRUCTURES FOR GENERATING LONG-PERSISTENT LUMINESCENCE,” all of which are incorporated herein by reference in their entirety.
Referring to
Referring to
Additionally, any light source 42 within the badge 28 may be configured to sparkle. The locations of the light sources 42 that sparkle may be chosen to correspond to a corner or edge of the viewable portion 34. The sparkle effect at each location may be produced by light emitted from a corresponding light source 42 that is disposed inside the badge 28. Each light source 42 may be operated to pulse light onto the corresponding sparkle location. According to one embodiment, a pulse of light from a given light source 42 may last approximately 1/10 to 1/100 of a second and the light sources 42 may be pulsed randomly or in a pattern.
The light sources 42 may be configured as LEDs to emit a wavelength of light that does not excite the photoluminescent structure 10 and is instead transmitted through the photoluminescent structure 10 to directly illuminate the corresponding sparkle locations on portion 38. Alternatively, the light sources 42 may be configured to excite a second photoluminescent structure 54 such that the viewable portion 34 may illuminate in a plurality of colors.
Referring to
With respect to the illustrated embodiment, a first photoluminescent structure 10 may be disposed above the light sources 42 that may be secured inside the housing 46. The first photoluminescent structure 10 may be configured to emit the converted light 26 in response to the excitation light 24 received from the light sources 42. The light sources 42 may be provided on a flexible printed circuit board (PCB) 56. Optionally, the light sources 42 may include focusing optics to help concentrate light onto pre-defined locations. The light sources 42 may be provided on a PCB 56 that is secured to the substrate 48. The PCB 56 may include a white solder mask 58 to reflect light incident thereon.
According to one embodiment, the excitation light 24 emitted from the light source(s) 42 is converted by the photoluminescent structure 10 into light of a longer wavelength and outputted therefrom. The converted light 26 corresponds to a visible light, which includes the portion of the electromagnetic spectrum that can be detected by the human eye (˜390-700 nanometers in wavelength) and may be expressed in a variety of colors defined by a single wavelength (e.g., red, green, blue) or a mixture of multiple wavelengths (e.g., white). Thus, it should be understood that the photoluminescent structure 10 may be configured such that the converted light 26 outputted therefrom is capable of being expressed as unicolored or multicolored light. According to one embodiment, the light sources 42 are configured to emit blue light and the photoluminescent structure 10 is configured to convert the blue light into a neutral white light having a color temperature of approximately 4000K to 5000K. The converted light 26 escapes from the badge 28 via the viewable portion 34. To obtain a uniform illumination of portion 38, light sources 42 may be configured to emit non-focused light and are spaced accordingly inside the badge 28 to provide a substantially even distribution of light for exciting the photoluminescent structure 10.
A light scattering layer 52 may be disposed above the first photoluminescent structure 10 and is molded, or alternatively mounted, within the badge 28. The light scattering layer 52 may include clear, translucent, and/or opaque portions and may be colored and desired color. The light scattering layer 52 generally functions to diffuse the excitation light 24 emitted from the light sources 42 and/or converted light 26 emitted from the first photoluminescent structure 10 so that hot spots and shadows are eliminated. According to one embodiment, the light scattering layer 52 may include glass particles that provide additional light scattering effects to further enhance the attractiveness of the badge 28.
The light scattering layer 52 may be coated with a curable, liquid-based coating that results in a translucent layer for added durability. The diffusive layer may be fabricated according to various methods as known in the art. For example, the light scattering layer 52 may be made using injection molding tools, equipment, and processing conditions. Further, the light scattering layer 52 is attached to the housing 46 and/or the substrate 48 via various mechanical, chemical, and/or thermal techniques that provide a durable seal therebetween. These attachment techniques include, but not limited to, sonic welding, vibration welding, hot plate welding, rotational welding, and adhesive joining.
The second photoluminescent structure 54 may be disposed above the light scattering layer 52. The second photoluminescent structure 54 may contain a long persistent material, as described above. The second photoluminescent structure 54 may substantially protect the light scattering layer 52 from UV degradation such that the light scattering layer 52 may not need a UV stabilizer in some embodiments. Moreover, in some embodiments, the second photoluminescent structure 54 may be molded or otherwise integrated into the viewable portion 34 of the housing 46.
According to one embodiment, the first and second photoluminescent structures 10, 54 are substantially Lambertian, that is, the apparent brightness of the first and second photoluminescent structures 10, 54 is substantially constant regardless of an observer's angle of view. As a consequence, the converted light 26 may be emitted outwardly from the first and second photoluminescent structures 10, 54 in numerous directions. With respect to the embodiment shown in
Referring still to
The excitation light 24 emitted from the light sources 42 and the converted light 26 emitted from the first photoluminescent structure 10 is directed through the light scattering layer 52. The converted light 26 and the excitation light 24 are then directed through the second photoluminescent structure 54, the metallic layer 50, and finally through the viewable portion 34 of the housing 46. Thus, according to the embodiment of
Referring to
As illustrated in
Accordingly, the light emitted from the light sources 42 may be directed through the first photoluminescent structure 10 to act as a first diffuser. The micro-faceted surface may further diffuse the light. Next, the light scattering layer 52 may further diffuse the light thereby creating a third diffuser. The second photoluminescent structure 54 may then function as a fourth diffuser prior to the outputted light exiting the viewable portion 34 of the badge 28.
Referring to
Additionally, the elongated member 62 can also be curved, such as the outwardly curving or concave shape shown in
As illustrated in
Further, the light guide 66 may be a flexible light guide 66, wherein a suitable flexible material is used to create the light guide 66. Such flexible materials include urethanes, silicone, thermoplastic polyurethane (TPU), or other like optical grade flexible materials. Whether the light guide 66 is flexible or rigid, the light guide 66, when formed, is substantially optically transparent and/or translucent and capable of transmitting light. The light guide 66 may be referred to as a light pipe, a light plate, a light bar or any other light carrying or transmitting substrate made from a clear or substantially translucent plastic. Known methods of attaching the light guide 66 to the member 48 include the bonding of a preformed light guide 66 within the badge 28 by adhesion, such as by using a double-sided tape, or by mechanical connections such as brackets that are formed into the substrate 48.
Alternatively, the substrate 48 and light guide 66 may be integrally formed through a multi-shot molding process. Due to fabrication and assembly steps being performed inside the molds, molded multi-material objects allow significant reduction in assembly operations and production cycle times. Furthermore, the product quality can be improved, and the possibility of manufacturing defects, and total manufacturing costs can be reduced. In multi-material injection molding, multiple different materials are injected into a multi-stage mold. The sections of the mold that are not to be filled during a molding stage are temporally blocked. After the first injected material sets, then one or more blocked portions of the mold are opened and the next material is injected. This process continues until the required multi-material part is created.
According to one embodiment, a multi-shot molding process is used to create portions of the light guide 66, which may be integrally formed with the light source 42. Additional optics may also be molded into the light guide 66 during the multi-material injection molding process. Initially, the substrate 48 may be formed through a first injection molding step, or through successive steps, if necessary. A light guide 66 is then molded and coupled to the substrate 48 in a second injection molding step. Integrally forming portions of the light guide 66 while encapsulating the light source 42 may protect the light guide 66 and/or additional components from physical and chemical damage arising from environmental exposure.
In alternative embodiments, additional components may be added during one of the injection steps, or successively added in additional injections to adhere more components to the substrate 48. In some embodiments, the light guide 66 may have a photoluminescent material 18 applied thereto or therein.
In operation, the light source(s) 42 may emit excitation light 24 at a first and/or the second wavelength, thereby exciting the first and/or the second photoluminescent structures 10, 54. The converted light 26 emitted from the first and/or the second photoluminescent structures 10, 54 may blend thereby emitting an outputted light in a wide range of colors. For example, a substantially white light may be outputted from the badge 28. In an alternative embodiment, the first and second photoluminescent structures 10, 54 may blend in any color necessary to remove any natural color hue of the badge 28 based on the material used to create the badge 28. For example, plastics such as polycarbonate may naturally have a yellowish hue. However, this hue may be masked through the use of the first and/or the second photoluminescent structures 10, 54 thereby making the badge 28 illuminate and appear in any desired color. Alternatively, any type of light source, multicolored or unicolored, may be utilized to make the badge 28 illuminate in any desired color without the utilization of the first and/or the second photoluminescent structures 10, 54.
Referring to
In operation, the first and/or the second photoluminescent structures 10, 54 receive the excitation light 24 and, in response, emits the converted light 26 therefrom. The first and/or the second photoluminescent structure(s) 10, 54 may contain long persistent phosphorescent material such that the photoluminescent structure 10, 54 continues to emit the converted light 26 for a period of time after the excitation light 24 is no longer present. For example, according to one embodiment, the first and/or the second photoluminescent structure 10, 54 may continue to emit light for eight hours after the removal of the excitation light 24.
In an alternate embodiment, the light source 42 may pulse light at predefined times, such as every five minutes, to re-excite the phosphorescent material disposed within the first and/or the second photoluminescent structures 10, 54 to continuously emit the converted light 26 above a pre-defined intensity therefrom. The controller 68 may pulse light from any light source 42 at any frequency without departing from the teachings provided herein.
The photoluminescent structure(s) 10, 54 may exhibit periodic unicolor or multicolor illumination. For example, the controller 68 may prompt the light source 42 to periodically emit only the first wavelength of excitation light 24 to cause the first photoluminescent structure 10 to periodically illuminate in the first color. Alternatively, the controller 68 may prompt the light source 42 to periodically emit only the second wavelength of excitation light 24 to cause the second photoluminescent structure 54 to periodically illuminate in the second color. Alternatively, the controller 68 may prompt the light source 42 to simultaneously and periodically emit the first and second wavelengths of excitation light 24 to cause the first and second photoluminescent structures 10, 54 to simultaneously illuminate in a third color defined by an additive light mixture of the first and second colors. Alternatively still, the controller 68 may prompt the light source 42 to alternate between periodically emitting the first and second wavelengths of excitation light 24 to cause the first and second photoluminescent structures 10, 54 to periodically illuminate by alternating between the first and second colors. The controller 68 may prompt the light source 42 to periodically emit the first and/or the second wavelengths of excitation light 24 at a regular time interval and/or an irregular time interval.
In another embodiment, the badge 28 may include a user interface 78. The user interface 78 may be configured such that a user may control the wavelength of excitation light 24 that is emitted by the light source 42. Such a configuration may allow a user to control the illumination patterns of the badge 28.
With respect to the above examples, the controller 68 may modify the intensity of the emitted first and second wavelengths of excitation light 24 by pulse-width modulation or current control. Also, the controller 68 may vary power to each light source 42 from 1 to 5 times steady state current to vary the color and brightness of each illumination. The controller 68 may also illuminate multiple colors within a single multicolored light source 42 concurrently, thereby producing additional color configurations.
In some embodiments, the controller 68 may be configured to adjust a color of the emitted light by sending control signals to adjust an intensity or energy output level of the light source 42. For example, if the light source(s) 42 are configured to emit excitation light 24 at a low level, substantially all of excitation light 24 may be converted to the converted light 26 by the first and/or the second photoluminescent structures 10, 54. In this configuration, a color of light corresponding to the converted light 26 may correspond to the color of the emitted light from the badge 28. If the light source(s) 42 are configured to emit excitation light 24 at a high level, only a portion of the excitation light 24 may be converted to the converted light 26 by the first and/or the second photoluminescent structures 10, 54. In this configuration, a color of light corresponding to mixture of the excitation light 24 and the converted light 26 may be output as the emitted light. In this way, the controller 68 may control an output color of the emitted light.
Though a low level and a high level of intensity are discussed in reference to the excitation light 24, it shall be understood that the intensity of the excitation light 24 may be varied among a variety of intensity levels to adjust a hue of the color corresponding to the emitted light from the badge 28. The variance in intensity may be manually altered, or automatically varied by the controller 68 based on pre-defined conditions. According to one embodiment, a first intensity may be output from the badge 28 when a light sensor senses daylight conditions. A second intensity may be output from the badge 28 when the light sensor determines the vehicle 32 is operating in a low light environment.
As described herein, the color of the converted light 26 may be significantly dependent on the particular photoluminescent materials 18 utilized in the first and second photoluminescent structures 10, 54. Additionally, a conversion capacity of the first and second photoluminescent structures 10, 54 may be significantly dependent on a concentration of the photoluminescent material 18 utilized in the photoluminescent structures 10, 54. By adjusting the range of intensities that may be output from the light source(s) 42, the concentration, types, and proportions of the photoluminescent materials 18 in the photoluminescent structures 10, 54 discussed herein may be operable to generate a range of color hues of the emitted light by blending the excitation light 24 with the converted light 26. Moreover, the first and second photoluminescent structures 10, 54 may include a wide range of photoluminescent materials 18 that are configured to emit the converted light 26 for varying lengths of time.
Accordingly, an illuminating badge for a vehicle has been advantageously described herein. The badge provides various benefits including an efficient and cost-effective means to produce illumination that may function as a distinct styling element that increases the refinement of a vehicle, or any other product that may have a badge disposed thereon.
It is also important to note that the construction and arrangement of the elements of the disclosure as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown in multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connectors or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system might be constructed from any of the wide variety of materials that provide sufficient strength or durability, in any of the wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
2486859 | Meijer et al. | Nov 1949 | A |
5053930 | Benavides | Oct 1991 | A |
5434013 | Fernandez | Jul 1995 | A |
5709453 | Krent et al. | Jan 1998 | A |
5839718 | Hase et al. | Nov 1998 | A |
6031511 | DeLuca et al. | Feb 2000 | A |
6117362 | Yen et al. | Sep 2000 | A |
6294990 | Knoll et al. | Sep 2001 | B1 |
6419854 | Yocom et al. | Jul 2002 | B1 |
6494490 | Trantoul | Dec 2002 | B1 |
6577073 | Shimizu et al. | Jun 2003 | B2 |
6729738 | Fuwausa et al. | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6773129 | Anderson, Jr. et al. | Aug 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6851840 | Ramamurthy et al. | Feb 2005 | B2 |
6859148 | Miller | Feb 2005 | B2 |
6871986 | Yamanaka et al. | Mar 2005 | B2 |
6953536 | Yen et al. | Oct 2005 | B2 |
6990922 | Ichikawa et al. | Jan 2006 | B2 |
7015893 | Li et al. | Mar 2006 | B2 |
7161472 | Strumolo et al. | Jan 2007 | B2 |
7213923 | Liu et al. | May 2007 | B2 |
7216997 | Anderson, Jr. | May 2007 | B2 |
7249869 | Takahashi et al. | Jul 2007 | B2 |
7264366 | Hulse | Sep 2007 | B2 |
7264367 | Hulse | Sep 2007 | B2 |
7347576 | Wang et al. | Mar 2008 | B2 |
7441914 | Palmer et al. | Oct 2008 | B2 |
7501749 | Takeda et al. | Mar 2009 | B2 |
7575349 | Bucher et al. | Aug 2009 | B2 |
7635212 | Seidler | Dec 2009 | B2 |
7726856 | Tsutsumi | Jun 2010 | B2 |
7745818 | Sofue et al. | Jun 2010 | B2 |
7753541 | Chen et al. | Jul 2010 | B2 |
7804103 | Zhai | Sep 2010 | B1 |
7834548 | Jousse et al. | Nov 2010 | B2 |
7862220 | Cannon et al. | Jan 2011 | B2 |
7987030 | Flores et al. | Jul 2011 | B2 |
8016465 | Egerer et al. | Sep 2011 | B2 |
8022818 | la Tendresse et al. | Sep 2011 | B2 |
8044415 | Messere et al. | Oct 2011 | B2 |
8066416 | Bucher | Nov 2011 | B2 |
8071988 | Lee et al. | Dec 2011 | B2 |
8097843 | Agrawal et al. | Jan 2012 | B2 |
8118441 | Hessling | Feb 2012 | B2 |
8120236 | Auday et al. | Feb 2012 | B2 |
8136425 | Bostick | Mar 2012 | B2 |
8163201 | Agrawal et al. | Apr 2012 | B2 |
8169131 | Murazaki et al. | May 2012 | B2 |
8178852 | Kingsley et al. | May 2012 | B2 |
8197105 | Yang | Jun 2012 | B2 |
8203260 | Li et al. | Jun 2012 | B2 |
8207511 | Bortz et al. | Jun 2012 | B2 |
8232533 | Kingsley et al. | Jul 2012 | B2 |
8247761 | Agrawal et al. | Aug 2012 | B1 |
8261686 | Birman et al. | Sep 2012 | B2 |
8286378 | Martin et al. | Oct 2012 | B2 |
8317329 | Seder et al. | Nov 2012 | B2 |
8317359 | Harbers et al. | Nov 2012 | B2 |
8408766 | Wilson et al. | Apr 2013 | B2 |
8415642 | Kingsley et al. | Apr 2013 | B2 |
8421811 | Odland et al. | Apr 2013 | B2 |
8459832 | Kim | Jun 2013 | B2 |
8466438 | Lambert et al. | Jun 2013 | B2 |
8519359 | Kingsley et al. | Aug 2013 | B2 |
8519362 | Labrot et al. | Aug 2013 | B2 |
8539702 | Li et al. | Sep 2013 | B2 |
8552848 | Rao et al. | Oct 2013 | B2 |
8606430 | Seder et al. | Dec 2013 | B2 |
8624716 | Englander | Jan 2014 | B2 |
8631598 | Li et al. | Jan 2014 | B2 |
8653553 | Yamazaki et al. | Feb 2014 | B2 |
8664624 | Kingsley et al. | Mar 2014 | B2 |
8683722 | Cowan | Apr 2014 | B1 |
8724054 | Jones | May 2014 | B2 |
8752989 | Roberts et al. | Jun 2014 | B2 |
8754426 | Marx et al. | Jun 2014 | B2 |
8773012 | Ryu et al. | Jul 2014 | B2 |
8846184 | Agrawal et al. | Sep 2014 | B2 |
8851694 | Harada | Oct 2014 | B2 |
8876352 | Robbins et al. | Nov 2014 | B2 |
8905610 | Coleman et al. | Dec 2014 | B2 |
8952341 | Kingsley et al. | Feb 2015 | B2 |
8994495 | Dassanayake et al. | Mar 2015 | B2 |
9006751 | Kleo et al. | Apr 2015 | B2 |
9018833 | Lowenthal et al. | Apr 2015 | B2 |
9057021 | Kingsley et al. | Jun 2015 | B2 |
9059378 | Verger et al. | Jun 2015 | B2 |
9065447 | Buttolo et al. | Jun 2015 | B2 |
9067530 | Bayersdorfer et al. | Jun 2015 | B2 |
9187034 | Tarahomi et al. | Nov 2015 | B2 |
9299887 | Lowenthal et al. | Mar 2016 | B2 |
9315148 | Schwenke et al. | Apr 2016 | B2 |
9452709 | Aburto Crespo | Sep 2016 | B2 |
9568659 | Verger et al. | Feb 2017 | B2 |
9616812 | Sawayanagi | Apr 2017 | B2 |
20020159741 | Graves et al. | Oct 2002 | A1 |
20020163792 | Formoso | Nov 2002 | A1 |
20030167668 | Fuks et al. | Sep 2003 | A1 |
20030179548 | Becker et al. | Sep 2003 | A1 |
20040213088 | Fuwausa | Oct 2004 | A1 |
20050084229 | Babbitt et al. | Apr 2005 | A1 |
20050189795 | Roessler | Sep 2005 | A1 |
20060087826 | Anderson, Jr. | Apr 2006 | A1 |
20060097121 | Fugate | May 2006 | A1 |
20070032319 | Tufte | Feb 2007 | A1 |
20070285938 | Palmer et al. | Dec 2007 | A1 |
20070297045 | Sakai et al. | Dec 2007 | A1 |
20080205075 | Hikmet et al. | Aug 2008 | A1 |
20090217970 | Zimmerman et al. | Sep 2009 | A1 |
20090219730 | Syfert et al. | Sep 2009 | A1 |
20090251920 | Kino et al. | Oct 2009 | A1 |
20090260562 | Folstad et al. | Oct 2009 | A1 |
20090262515 | Lee et al. | Oct 2009 | A1 |
20100102736 | Hessling | Apr 2010 | A1 |
20110012062 | Agrawal et al. | Jan 2011 | A1 |
20110265360 | Podd et al. | Nov 2011 | A1 |
20110277361 | Nichol et al. | Nov 2011 | A1 |
20120001406 | Paxton et al. | Jan 2012 | A1 |
20120104954 | Huang | May 2012 | A1 |
20120183677 | Agrawal et al. | Jul 2012 | A1 |
20120280528 | Dellock et al. | Nov 2012 | A1 |
20130050979 | Van De Ven et al. | Feb 2013 | A1 |
20130092965 | Kijima et al. | Apr 2013 | A1 |
20130094179 | Dai | Apr 2013 | A1 |
20130287630 | Pugia | Oct 2013 | A1 |
20130335994 | Mulder et al. | Dec 2013 | A1 |
20140003044 | Harbers et al. | Jan 2014 | A1 |
20140009930 | Han | Jan 2014 | A1 |
20140029281 | Suckling et al. | Jan 2014 | A1 |
20140065442 | Kingsley et al. | Mar 2014 | A1 |
20140103258 | Agrawal et al. | Apr 2014 | A1 |
20140160408 | Cho | Jun 2014 | A1 |
20140198480 | Dai | Jul 2014 | A1 |
20140211498 | Cannon et al. | Jul 2014 | A1 |
20140264396 | Lowenthal et al. | Sep 2014 | A1 |
20140266666 | Habibi | Sep 2014 | A1 |
20140268840 | Smith | Sep 2014 | A1 |
20140362557 | Ulasyuk | Dec 2014 | A1 |
20140373898 | Rogers et al. | Dec 2014 | A1 |
20150046027 | Sura et al. | Feb 2015 | A1 |
20150085488 | Grote, III et al. | Mar 2015 | A1 |
20150109602 | Martin et al. | Apr 2015 | A1 |
20150138789 | Singer et al. | May 2015 | A1 |
20150175057 | Salter et al. | Jun 2015 | A1 |
20150267881 | Salter et al. | Sep 2015 | A1 |
20150307033 | Preisler et al. | Oct 2015 | A1 |
20150308635 | Li | Oct 2015 | A1 |
20160016506 | Collins et al. | Jan 2016 | A1 |
20160102819 | Misawa et al. | Apr 2016 | A1 |
20160131327 | Moon et al. | May 2016 | A1 |
20160236613 | Trier | Aug 2016 | A1 |
20160240794 | Yamada et al. | Aug 2016 | A1 |
20170158125 | Schuett et al. | Jun 2017 | A1 |
20170250327 | Hsieh | Aug 2017 | A1 |
20170253179 | Kumada | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
101337492 | Jan 2009 | CN |
201169230 | Feb 2009 | CN |
201193011 | Feb 2009 | CN |
101890822 | Nov 2010 | CN |
202944278 | May 2013 | CN |
204127823 | Jan 2015 | CN |
4120677 | Jan 1992 | DE |
29708699 | Jul 1997 | DE |
10319396 | Nov 2004 | DE |
1793261 | Jun 2007 | EP |
2778209 | Sep 2014 | EP |
2000159011 | Jun 2000 | JP |
2007238063 | Sep 2007 | JP |
20060026531 | Mar 2006 | KR |
02090824 | Nov 2002 | WO |
2006047306 | May 2006 | WO |
2014068440 | May 2014 | WO |
2014161927 | Oct 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170200403 A1 | Jul 2017 | US |