This Non-provisional application claims priority under 35 U.S.C. ยง119(a) on Patent Application No(s). 097125157 filed in Taiwan, Republic of China on Jul. 4, 2008, the entire contents of which are hereby incorporated by reference.
1. Field of Invention
The present invention relates to an illuminating device and an annular heat-dissipating structure thereof. More particularly, the present invention relates to a heat-dissipating structure composed of a plurality of heat-dissipating units, which are disposed circumambiently.
2. Related Art
In the present marketing, the light-emitting diodes (LED) have been used as the light source of various illuminating devices, such as the street lamp, wall lamp, desk lamp, light bulb and light tube. Taking the light bulb or tube for example, the LED illuminating device, which is used in office or house, is usually manufactured to fit the common socket, such as the E26, E27, MR16 or GU4 socket. Therefore, the LED illuminating device can directly replace the conventional light bulb or tube.
However, in a light bulb with the light source made of LED, the heat-dissipation design is very important. In particularly, when the power of the light bulb increases, the importance of the heat-dissipating design increases accordingly. The conventional heat-dissipating method for the LED light bulb is to utilize the heat sink with the fins made by aluminum extrusion or casting. As shown in
In view of the foregoing, the present invention is to provide an illuminating device and an annular heat-dissipating structure thereof that can decrease the material cost and increase the number of the thermal conducting plates and the heat-dissipating surface.
To achieve the above, the present invention discloses an annular heat-dissipating structure, which includes a plurality of heat-dissipating units disposed circumambiently. Each heat-dissipating unit includes a flake and at least one first assembling portion. The first assembling portion is connected with the flake so as to connect one heat-dissipating unit with the adjacent heat-dissipating unit.
The heat-dissipating unit further includes a bending portion formed by bending one end of the flake. The bending portion is a planar surface or an oblique surface, and the first assembling portion is protruded from the flake or the bending portion. The heat-dissipating unit further includes a second assembling portion correspondingly connected to the first assembling portion of the adjacent heat-dissipating unit. A heat source can be directly attached to the bending portion, a discontinuous plane composed of the lateral surfaces of a plurality of heat-dissipating units, or an annular surface or a cone-shaped surface formed by coupling the bending portions of the adjacent heat-dissipating units.
The width of one end of the bending portion is smaller than that of the other end of the bending portion. The heat-dissipating structure can be circular ring-shaped, elliptic ring-shaped, triangular ring-shaped, rectangular ring-shaped, polygonal ring-shaped, annular cone-shaped, annular pyramid or asymmetric annular pyramid.
The annular heat-dissipating structure further includes a substrate disposed between the heat source and the annular heat-dissipating structure, so that the heat source can be attached to the annular heat-dissipating structure through the substrate. Alternatively, the substrate and the heat source can be disposed at two ends of the annular heat-dissipating structure.
The annular heat-dissipating structure is suitable for a light-emitting diode (LED), a laser diode (LD), an organic electro-luminescence device (OELD) or a semiconductor light source. The heat-dissipating units are preferably connected by laser welding, gluing, adhering or locking, and the heat-dissipating units are preferably made of copper, aluminum, iron or magnesium alloy. The heat-dissipating structure further includes an airflow passage disposed at the center thereof, and the heat-dissipating units are disposed around the airflow passage.
In addition, to achieve the above, the present invention also discloses an illuminating device, which includes an annular heat-dissipating structure and a heat source. The annular heat-dissipating structure includes a plurality of heat-dissipating units disposed circumambiently. Each of the heat-dissipating units includes a flake and at least one assembling portion connected with the flake for connecting one heat-dissipating unit with the adjacent heat-dissipating unit. The heat source is disposed on the heat-dissipating structure.
The heat source is a light-emitting diode (LED), a laser diode (LD), an organic electro-luminescence device (OELD) or a semiconductor light source. The illuminating device further includes a lampshade disposed outside the heat-dissipating structure and the heat source. The lampshade has one or more openings, and the configuration of the openings can be determined according to the actual need.
The illuminating device further includes a base, and the heat-dissipating structure is fixed on the base. The base has one or more openings, and the configuration of the openings can be determined according to the actual need.
The illuminating device further includes a power connector, such as the E10/E11, E26/E27, E39/E40, MR16 or GU4 connector.
The illuminating device further includes an airflow passage disposed at the center of the annular heat-dissipating structure. The heat-dissipating units are disposed around the airflow passage. The illuminating device further includes a fan, and the fan and the heat source are disposed at two ends of the airflow passage or in the airflow passage.
The present invention will become more fully understood from the subsequent detailed description and accompanying drawings, which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
The heat source is preferably a light-emitting diode (LED), a laser diode (LD), an organic electro-luminescence device (OELD) or a semiconductor light source. The first assembling portion and the second assembling portion of adjacent heat-dissipating units are preferably connected by laser welding, gluing, adhering or locking. The heat-dissipating units are preferably made of copper, aluminum, iron, magnesium alloy or a high thermoconductive material. The annular heat-dissipating structure can be circular ring-shaped, elliptic ring-shaped, triangular ring-shaped, rectangular ring-shaped, polygonal ring-shaped, annular cone-shaped, annular pyramid or asymmetric annular pyramid.
As shown in
In summary, the illuminating device and annular heat-dissipating structure of the present invention include the metal fins, which are connected by assembling. Thus, the thickness of the fin is not limited, so that the number of the fins within the same volume of the heat-dissipating structure can be greater than that made by the aluminum extrusion or casting. Accordingly, the invention can relatively increase the heat-dissipating area. The material of the heat-dissipating structure is not limited and can be copper or other high thermoconductive materials. For example, the heat conducting coefficient of the copper is three times greater than that of aluminum, so that the heat-dissipating effect can be greatly enhanced. In addition, the heat-dissipating structure, heat source and substrate of the invention can be connected by welding, so the conventional thermal conducting plate is unnecessary, thereby reducing the material cost and simplifying the manufacturing steps.
Although the present invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
097125157 | Jul 2008 | TW | national |