The present disclosure generally relates to an illuminating display window and a merchandiser display unit comprising the illuminating display window.
Illuminating display windows are often used in retail to draw attention to merchandise. For example, an Illuminating display window can be included in the door of a merchandiser refrigerator unit to advertise the merchandise held inside the unit while also permitting a customer to see the merchandise through the window. Typically, an illuminating display window comprises parallel, opposing transparent or semi-transparent window panes, and an acrylic sheet with an engraved or etched graphic between the window panes. One or more light sources are mounted at a perimeter of the window to direct light toward the edge of the acrylic sheet. The light transmitted in the acrylic sheet is reflected internally by the engraved or etched graphic formed in the sheet, thereby illuminating the graphic. This arrangement is known as an “edge-lit” window.
In one aspect, an illuminating display window generally comprises a window pane having a perimeter edge margin, a front surface, a rear surface opposite the first surface, and a thickness extending from the front surface to the rear surface. A graphic element comprises a fluorescent material. The graphic element is supported on the window at a location inboard of the perimeter edge margin of the window pane. The graphic element has a major surface facing forward and a perimeter surface extending transverse to the major surface and defining a perimeter of the graphic element. An electromagnetic radiation source is configured to emit electromagnetic radiation having a wavelength in a non-visible spectrum. The electromagnetic radiation source is supported on the window at a location adjacent the perimeter edge margin of the window pane. The electromagnetic radiation source is configured to emit the electromagnetic radiation to the perimeter surface of the graphic element whereby the graphic element fluoresces to transmit visible light that is visible to an observer in front of the window pane.
In another aspect, a method of forming an graphic element for an illuminating display structure generally comprises at least one of depositing fluorescent ink on a plate in a predefined pattern; and shaping a fluorescent panel to have a predefined shape.
Other aspects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
As illustrated in
Referring still to
Referring to
As shown in
The internal surfaces 32A, 34A of the window panes 32, 34 are spaced apart from one another along the axis TA to define a gap 35 therebetween. One or more spacers 38 extend between and engage the internal surfaces 32A, 34A along the perimeter edge margins of the panes 32, 34 to hold the panes in spaced apart relation with one another. In the illustrated embodiment, the spacer 38 has a substantially rectangular cross-sectional shape in the form of a bar and extends along the top, bottom, and first and second side edge margins of the panes 32, 34. The spacer 38 may be constructed from metal, plastic, other materials, or combinations thereof. The spacer 38 may be a “warm-edge” spacer. A suitable “warm-edge” spacer 38 may be constructed from polymer EPDM (ethylene-propylene-diene-monomer) foam, such as the SUPER SPACER® sold by Quanex Building Products. Other types of spacers, including spacers made from aluminum or other metal, may be used. The spacer 38 forms a seal that sealingly engages the internal surfaces 32A, 34A of the window panes 32, 34, whereby the window panes and the spacer 38 define a sealed chamber 36. For example, in one or more embodiments, the spacer 38 may be joined to the internal surfaces 32A, 34A of the window panes 32, 34 by an epoxy to form a seal. In other embodiments, the sealed chamber 36 may be sealed in other ways. As is known in the art, the sealed chamber 36 can be filled with an inert gas such as argon, nitrogen, etc.
Referring to
Referring to
In the illustrated embodiment, the graphic element 40 is preferably mounted on the window 15 inside the sealed chamber 36 between the window panes 32, 34. Thus, the graphic element 40 is offset along the axis TA from the internal surface 32A, 34A of each window pane 32, 34 away from the respective external surface 32B, 34B. In other embodiments, the graphic element 40 could be mounted outside the sealed chamber 36, such as behind the rear window pane 34 or in front of the front window pane 32. In the illustrated embodiment, the rear surface 40C of the graphic element 40 is joined to the internal surface 34A of the rear window pane 34. For example, the mounting surface 40C can be adhered to the inner surface 34A by an epoxy or other adhesive. In the illustrated embodiment, the major surface 40A opposes and is spaced apart from the internal surface 34A of the front window pane 32, although the major surface 40A by abut the internal surface. In another embodiment, the major surface 40A of the graphic element 40 is joined (e.g., adhered) to the inner surface 32A of the front pane 32. The graphic element 40 may be mounted on the window in still other ways in other embodiments.
The graphic element 40 includes fluorescent material. Various techniques can be used to include fluorescent material in the graphic element 40. In the illustrated embodiment, the graphic element 40 includes a substrate layer 42 and a graphic layer 44 that defines at least a portion of the major surface 40A. In one or more embodiments, the substrate layer 42 is suitable for mounting the graphic element 40 on one of the window panes 32, 34. In certain embodiments, the substrate layer 42 comprises a fluorescent material combined with (e.g., embedded in) a transparent or semitransparent material (e.g., plastic material). For example, in one embodiment, the substrate layer 42 comprises a fluorescent acrylic, such as a transparent or semitransparent fluorescent acrylic. The graphic layer 44 can, in one or more embodiments, include a pattern of one or more colors depicting the desired graphic design. For example, in certain embodiments, the graphic layer 44 comprises ink, such as fluorescent ink, supported on the substrate layer to depict the desired graphic design. In the illustrated embodiment, the graphic layer 44 comprises a metal plate that is joined to the substrate layer 42 and includes fluorescent ink applied to an outer surface thereof by sublimation, for example. In other embodiments, fluorescent ink could be sublimated directly onto the substrate layer 42 or applied to one of the metal plate and the substrate layer using another ink depositing technique. In other embodiments, the graphic element 40 may include the substrate layer 42, but not the graphic layer 44. In yet other embodiments, the graphic element 40 may include the graphic layer 44, but not the substrate layer 42. The graphic element could have still other configurations in other embodiments.
Referring to
In general, the UV light strip 52 is supported on the window 15 at a location adjacent the perimeter edge margin of the window panes 32, 34. The diodes 50 are arranged to emit UV radiation in an inboard direction toward the perimeter surface 40B of the graphic element 40 within the sealed chamber 36. In the illustrated embodiment, the UV diodes 50 are disposed in the sealed chamber 36, although the UV diodes may be disposed outside the sealed chamber in other embodiments. In the illustrated embodiment, the diodes 50 and the graphic element 40 are each generally aligned in the same plane P (
Unlike an edge-lit window, the graphic element 40 is configured to emit visible light without directing visible light or other radiation into an etched or engraved graphic acrylic sheet. It has been found that imperfections and debris in and on the etched or engraved acrylic sheet is visible to the observer, and even enhanced, when the graphic is illuminated by visible light being internally reflected. The use of non-visible electromagnetic radiation (e.g., UV) to fluoresce the graphic element 40 minimizes the appearance of debris and/or imperfections in and on the graphic element.
In the illustrated embodiment, the first and second arm sections 30A, 30B of the frame 30 form a shield of the window 15 that is opaque to UV radiation (broadly, emitted electromagnetic radiation) to block radiation emitted from the diodes 50 in a forward direction toward an observer looking into the window 15 and/or in a rearward direction toward merchandise in the refrigerated interior 24. Suitably, the frame 30 is shaped and arranged to extend along the entire perimeter edge margin of the window 15 so that the shield covers each of the diodes 50 in the light strip 52 in the direction of the axis TA. The first arm section 30A forms a front segment of the shield that is in front of the UV light strip 52 to block radiation emitted from the diodes 50 in a forward direction along the axis TA. The first arm section 30A extends along the front surface 32B of the window 15 (e.g., the external surface 32B of the front window pane 32) from an outboard end spaced apart outboard of the diodes 50 to an inboard end spaced apart inboard of the diodes and inboard of the perimeter edge margins of the front window pane. The second arm section 30B forms an inner segment of the shield that is rearward of the UV light strip 52 to block radiation emitted from the diodes 50 in a rearward direction along the axis TA. The second arm section 30B extends along the inner surface 34B of the window 15 (e.g., the external surface 34B of the inner window pane 34) from an outboard end spaced apart outboard of the diodes 50 to an inboard end spaced apart inboard of the diodes and inboard of the perimeter edge margin of the inner window pane. Although the illustrated embodiment uses a C-shaped door frame 30 to form a radiation shield, other embodiments can use other structures as opaque shields to block radiation from being emitted rearward and/or forward from an illuminating display window.
Having described an exemplary illuminating display window 15 in detail, a method of making the display window will now be described before discussing use of the display window and the merchandiser display unit 10 in greater detail. In one embodiment, to form the illustrated graphic element 40, a plate (e.g., a metal plate) and a fluorescent sheet (e.g., a semitransparent, fluorescent acrylic panel) are formed with desired shapes to correspond to a desired graphic, such as a logo, mark, or other symbol. The desired shapes may be formed by, for example, machining stock, additive manufacturing, etc. Fluorescent ink is deposited on the plate in a predefined pattern. In one or more embodiments, the fluorescent ink is deposited on the plate using sublimation. The fluorescent ink can also be deposited on the plate in other ways in certain embodiments. The shaped metal plate is attached to the shaped fluorescent sheet, whereby the metal plate forms the graphic layer 40B and the fluorescent sheet forms the substrate layer 40A of the graphic element 40.
The graphic element 40 is attached to the window 15 by, for example, adhering the rear face 40C to the internal surface 34A of the rear window pane 34 using an epoxy or other adhesive. The UV light strips 52 are attached to the inboard surfaces of the spacer 38, and the spacers are sealingly attached to the internal surfaces 32A, 34A of the window panes 32, 34 along the perimeter edge margins. Attaching the UV light strips 52 to the spacer 38, attaching the spacers to the window panes 32, 34, and attaching the graphic element 40 to the inner window pane operatively aligns the diodes 50 with the graphic element for emitting UV radiation toward the perimeter surface 40B of the graphic element as described above. After being installed, the spacer 38 hold the window panes 32, 34 in position to define the sealed chamber 36 between the internal surfaces 32A, 34A. The window 15 is installed in the frame 30 so that the perimeter edge margin of the window is received in the gap between the arm sections 30A, 30B. Installing the window 15 in the frame 30 aligns the UV shield defined by the arm sections 30A, 30B with the UV light strip 52 to block UV radiation emitted from the diodes 50 in forward and rearward directions along the axis TA. If used in the refrigerator 10, after the window 15 is installed in the frame 30, the frame can be hingedly or slidably mounted on the cabinet 12 to selectively open and close the door 14.
In use, the diodes 50 emit UV radiation from multiple points along the perimeter edge margins of the panes in inboard directions. Because the UV radiation is not directed at the edges of the window panes 32, 34 and minimal radiation having a wavelength in the visible spectrum is emitted, the emitted radiation does not tend to illuminate imperfections in and on the window panes. The UV light strip 52 conveys the UV radiation to the perimeter edge surface 40B of the graphic element 40. In response to the fluorescent material absorbing the UV radiation, the graphic element 40 fluoresces to transmit visible light forward from the major surface 40A, especially adjacent the perimeter surface 40C. In the illustrated embodiment, the fluorescent graphic element 40 transmits visible light forward through the front window pane 32 to illuminate the graphic element to observers situated in front of the window 15. The merchandise/product in the refrigerated interior 24 is still visible by the observer through the window 15. The shield of the frame 30 blocks UV radiation from being conveyed directly toward the observer and toward the merchandise/product in the interior 24.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above apparatuses, systems, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/542,871, filed Aug. 9, 2017, entitled ILLUMINATING DISPLAY WINDOW AND MERCHANDISER DISPLAY UNIT COMPRISING SAME, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4449761 | Davis et al. | May 1984 | A |
4886327 | Amstutz et al. | Dec 1989 | A |
5027258 | Schoniger et al. | Jun 1991 | A |
5363611 | Richardson et al. | Nov 1994 | A |
5555654 | Hermann | Sep 1996 | A |
5613751 | Parker et al. | Mar 1997 | A |
5699676 | Trulaske, Sr. | Dec 1997 | A |
5783264 | Howes | Jul 1998 | A |
5879070 | Severloh | Mar 1999 | A |
5937666 | Trulaske, Sr. | Aug 1999 | A |
5944862 | Howes | Aug 1999 | A |
6059420 | Rogers | May 2000 | A |
6146563 | Roche et al. | Nov 2000 | A |
6210013 | Bousfield | Apr 2001 | B1 |
6406108 | Upton et al. | Jun 2002 | B1 |
6568821 | Page et al. | May 2003 | B1 |
7246932 | Burtsev et al. | Jul 2007 | B2 |
7358929 | Mueller et al. | Apr 2008 | B2 |
7364342 | Parker et al. | Apr 2008 | B2 |
7467887 | Parker | Dec 2008 | B2 |
7492346 | Manabe et al. | Feb 2009 | B2 |
7736043 | Parker | Jun 2010 | B2 |
8092068 | Parker et al. | Jan 2012 | B2 |
8123393 | Parker | Feb 2012 | B2 |
8142063 | Parker | Mar 2012 | B2 |
8215816 | Parker | Jul 2012 | B2 |
8308330 | Nath | Nov 2012 | B2 |
8322905 | Parker et al. | Dec 2012 | B2 |
8439461 | Kim | May 2013 | B2 |
8523374 | Pae | Sep 2013 | B2 |
8523375 | Kim et al. | Sep 2013 | B2 |
8556440 | Hong | Oct 2013 | B2 |
20030003278 | Narita | Jan 2003 | A1 |
20040160538 | Li | Aug 2004 | A1 |
20080024047 | Juo et al. | Jan 2008 | A1 |
20080148753 | Welker et al. | Jun 2008 | A1 |
20090244884 | Trulaske, Sr. | Oct 2009 | A1 |
20100180615 | Linder et al. | Jul 2010 | A1 |
20100242515 | Kim | Sep 2010 | A1 |
20110052842 | Choy | Mar 2011 | A1 |
20120031124 | McDaniel | Feb 2012 | A1 |
20130063326 | Riegel | Mar 2013 | A1 |
20130119847 | Seo et al. | May 2013 | A1 |
20140144083 | Artwohl et al. | May 2014 | A1 |
20140286048 | Riello | Sep 2014 | A1 |
20160095450 | Trulaske, Sr. | Apr 2016 | A1 |
20180061283 | Kim | Mar 2018 | A1 |
20180194203 | Salter | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
101349159 | Jan 2014 | KR |
2014069791 | May 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190051225 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62542871 | Aug 2017 | US |