1. Field of the Invention
The present invention relates to an illuminating lens for widening a range of transmission directions for light from a light source such as a light emitting diode, and to a lighting device using this illuminating lens. The present invention further relates to a surface light source including a plurality of lighting devices, and to a liquid-crystal display apparatus in which this surface light source is disposed behind a liquid-crystal panel to serve as a backlight.
2. Description of Related Art
In a conventional backlight of a large-sized liquid-crystal display apparatus, a number of cold cathode tubes are disposed immediately below a liquid-crystal panel, and these cold cathode tubes are used with other members such as a diffusing plate and a reflecting plate. In recent years, light emitting diodes have been used as light sources for backlights. Light emitting diodes have increased their efficiency recently, and are expected to serve as low-power light sources to replace fluorescent lamps. In the case where light emitting diodes are used as a light source in a liquid-crystal display apparatus, the power consumption of the apparatus can be reduced by controlling the light and dark states of the light emitting diodes according to an image to be displayed.
In a backlight of a liquid-crystal display apparatus using light emitting diodes as a light source, a large number of light emitting diodes are disposed therein instead of cold cathode tubes. The use of a large number of light emitting diodes allows the entire surface of the backlight to have uniform brightness, but the need for such a large number of light emitting diodes is an obstacle to cost reduction. In view of this, attempts to increase the output power of each light emitting diode to reduce the required number of light emitting diodes have been made. For example, Japanese Patent No. 3875247 has proposed a lens that is designed to provide a uniform surface light source with a reduced number of light emitting diodes.
In order to obtain a uniform surface light source with a reduced number of light emitting diodes, the area to be irradiated with the light emitted from each light emitting diode needs to be increased. That is, light emitted from each light emitting diode needs to be spread to obtain a wider range of transmission directions for light from the diode. For this purpose, in Japanese Patent No. 3875247, a lens having a circular shape in a plan view is disposed on a light emitting diode as a chip to control the directivity of the chip. The light exit surface of this lens, through which light exits the lens, has a shape such that a portion in the vicinity of the optical axis is a concave and a portion surrounding the concave is a convex extending continuously from the concave.
A light emitting diode as a chip emits light mostly in the front direction of the light emitting diode chip. In the lens disclosed in Japanese Patent No. 3875247, light that has been emitted in the front direction of the chip is refracted at the concave surface in the vicinity of the optical axis and diffused. As a result, the surface to be irradiated is illuminated to have a wide illuminance distribution with a reduced illuminance in the vicinity of the optical axis.
In the lens disclosed in Japanese Patent No. 3875247, however, the light emitted from the light source needs to be refracted, and therefore the difference in height between the concave and the convex must be reduced to a certain level.
It is an object of the present invention to provide an illuminating lens capable of further widening the range of transmission directions for light from a light source, and to provide a lighting device, a surface light source, and a liquid-crystal display apparatus each including this illuminating lens.
In order to achieve the above object, the present inventors have considered it important, in obtaining a wider range of transmission directions for light from a light source, to distribute radially the intense light that has been emitted in the front direction of the light emitting diode chip, and come up with an idea of distributing radially the light emitted in the front direction of the light emitting diode chip by utilizing intentionally the total reflection of the light. The present invention has been made in view of the above circumstances.
The present invention provides an illuminating lens for spreading light emitted from a light source so that a surface to be irradiated is irradiated with the spread light. The lens includes: a light entrance surface through which the light emitted from the light source enters the lens; and a light exit surface through which the light that has entered the lens exits the lens. In this illuminating lens, the light exit surface has a first light exit surface and a second light exit surface. The first light exit surface is recessed toward a point on an optical axis of the illuminating lens, and the second light exit surface extends outwardly from a periphery of the first light exit surface to form a convex. The first light exit surface has a transmissive region located in the center of the first light exit surface and a total reflection region located around the transmissive region. The transmissive region transmits light that has been emitted from a starting point at a relatively small angle with respect to the optical axis and then reached the first light exit surface, when a position of the light source on the optical axis is defined as the starting point. The total reflection region totally reflects light that has been emitted from the starting point at a relatively large angle with respect to the optical axis and then reached the first light exit surface. The second light exit surface has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point and then reached the second light exit surface.
Herein, “approximately the entire amount” means at least 90% of the entire amount. It may be the entire amount, and may be an amount slightly smaller than the entire amount.
The present invention also provides a lighting device including: a light emitting diode for emitting light; and an illuminating lens for spreading light emitted from the light emitting diode so that a surface to be irradiated is irradiated with the spread light. This illuminating lens is the above-mentioned illuminating lens.
The present invention further provides a surface light source including: a plurality of lighting devices arranged in a plane; and a diffusing plate disposed to cover the plurality of lighting devices, and configured to receive on one surface thereof light emitted from the plurality of lighting devices and to emit the light from the other surface thereof in a diffused manner. Each of the plurality of lighting devices is the above-mentioned lighting device.
The present invention still further provides a liquid-crystal display apparatus including: a liquid-crystal panel; and the above-mentioned surface light source disposed behind the liquid-crystal panel.
In the illuminating lens configured as described above, the most part of the light that has been emitted from the light source and reached the transmissive region located in the center of the first light exit surface is refracted at the transmissive region, and thus the area surrounding the optical axis of the lens on the surface to be irradiated is irradiated with the refracted light. On the other hand, the most part of the light that has been emitted from the light source and reached the total reflection region located on the outer peripheral side of the first light exit surface is totally reflected at the total reflection region. For example, in the case where a reflecting plate is disposed on the light entrance surface side of the illuminating lens, the area of the surface to be irradiated located away from the optical axis of the lens is irradiated with the totally reflected light at the end. Furthermore, the most part of the light that has been emitted from the light source and reached the second light exit surface is refracted at the second light exit surface, and thus the area of the surface to be irradiated located away from the optical axis of the lens is irradiated with the refracted light. Accordingly, the present invention makes it possible to obtain a wider range of transmission directions for light from the light source. Therefore, the outer diameter of the lens of the present invention may be smaller than that of a conventional lens having a concave for only refracting light.
An illuminating lens according to the first embodiment of the present invention will be described with reference to the accompanying drawings.
Specifically, the illuminating lens 1 has a light entrance surface 11 through which the light emitted from the light source enters the lens and a light exit surface 12 through which the light that has entered the lens exits the lens. The illuminating lens 1 has a bottom surface 13 surrounding the light entrance surface 11 and facing oppositely to the light exit surface 12. The illuminating lens 1 further has an outer peripheral surface 14 located outwardly of the light exit surface 12 to connect the periphery of the light exit surface 12 and the outer edge of the bottom surface 13.
The light entrance surface 11 need not be rotationally symmetric with respect to the optical axis A. In the present embodiment, the light entrance surface 11 is located closer to the light exit surface 12 than the annular bottom surface 13 surrounding the light entrance surface 11, and the light source is fitted in the recess formed by the level difference between the surfaces 11 and 13. The light entrance surface 11 and the bottom surface 13 may be located on the same level. In this case, the light entrance surface 11 is the area that is connected optically to the light source. The light entrance surface 11 need not necessarily be joined directly to the light source. For example, the light entrance surface 11 may be recessed in a hemispherical shape so that an air space is formed between the light entrance surface 11 and the light source.
In the present embodiment, the light exit surface 12 is rotationally symmetric with respect to the optical axis A. The light exit surface 12 is the area (area located inwardly of a point B shown in
The outer peripheral surface 14 forms a curved surface extending continuously from the light exit surface 12 in the present embodiment, but may be a tapered surface having a linear cross section. Alternatively, the illuminating lens 1 may be provided with a ring portion projecting from the entire periphery of the light exit surface 12 so that the end surface of the ring portion serves as the outer peripheral surface 14, although not illustrated here. The outer peripheral surface 14 need not be rotationally symmetric with respect to the optical axis A. For example, as shown in
The light emitted from the light source enters the illuminating lens 1 through the light entrance surface 11, exits the lens 1 through the light exit surface 12, and then reaches the surface to be irradiated 3. The light emitted from the light source is spread by the action of the light exit surface 12, and reaches a large area of the surface to be irradiated 3.
As the light source, for example, a light emitting diode can be used. Light emitting diodes usually are chips with a rectangular plate shape. Therefore, it is preferable that the light entrance surface 11 of the illuminating lens 1 have a shape conforming to the shape of a light emitting diode to fit in close contact with the light emitting diode. The light emitting diode is in contact with the light entrance surface 11 of the illuminating lens 1 via a bonding agent, and connected optically to the light entrance surface 11. The light emitting diode usually is covered with a sealing resin to avoid contact with air, but the light emitting diode need not be covered with a sealing resin because the illuminating lens 1 serves as a sealing resin. As a conventional sealing resin for a light emitting diode, an epoxy resin, silicone rubber, or the like is used.
The illuminating lens 1 is made of a transparent material having a specified refractive index. The refractive index of the transparent material is, for example, about 1.4 to 1.5. Examples of such a transparent material include resins such as epoxy resin, silicone resin, acrylic resin, and polycarbonate, and rubbers such as silicone rubber. Particularly, it is preferable to use epoxy resin, silicone rubber, or the like that has been used as a sealing resin for a light emitting diode.
The light exit surface 12 includes a first light exit surface 121 that is recessed toward a point on the optical axis A, and a second light exit surface 122 extending radially outwardly from the periphery of the first light exit surface 121 to form a convex. Light enters the illuminating lens 1 through the light entrance surface 11 at a wide range of angles. Light that has entered the lens at a small angle with respect to the optical axis A reaches the first light exit surface 121, and light that has entered the lens at a larger angle with respect to the optical axis A reaches the second light exit surface 122.
Next, the shapes of the first light exit surface 121 and the second light exit surface 122 will be described. For that purpose, a starting point Q is defined first, and then light emitted from the starting point Q is assumed. As stated herein, the starting point Q is the position of the light source on the optical axis A. In the case where a light emitting diode is used as a light source, the starting point Q is the point of intersection of the optical axis A and the light emitting surface that is the front surface of the light emitting diode. That is, the starting point Q is spaced from the light entrance surface 11 by the thickness of the above-mentioned bonding agent. When an angle between the optical axis A and a line connecting the starting point Q and the boundary between the first light exit surface 121 and the second light exit surface 122 is θb, light that has been emitted from the starting point Q at an angle reaches the first light exit surface 121 or the second light exit surface 122 based on the angle θb as a threshold angle.
As shown in
On the other hand, the second light exit surface 122 has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point Q and reached the second light exit surface 122. The angle between the optical axis A and the light emitted from the starting point Q increases toward the outer edge of the second light exit surface 122. The angle of the light emitted from the starting point Q with respect to a normal line at the point on the second light exit surface 122 reached by the emitted light is the incident angle of the light with respect to the second light exit surface 122. An excessively large incident angle causes total reflection. The incident angle needs to be kept small in order to prevent total reflection. Accordingly, the second light exit surface 122 has a shape such that the angle between the normal line and the optical axis A increases with increasing distance from the optical axis A. That is, the shape of the second light exit surface 122 is a convex.
The entire second light exit surface 122 need not transmit the light emitted from the starting point Q (i.e., the second light exit surface 122 need not necessarily transmit the entire amount of the light). The second light exit surface 122 may have a shape capable of totally reflecting a part of the light emitted from the starting point Q and transmitting the remaining part of the light.
In the illuminating lens 1 configured as described above, the most part of the light that has been emitted from the light source and reached the transmissive region 123 located in the center of the first light exit surface 121 is refracted at the transmissive region 123, and thus the area surrounding the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the refracted light. On the other hand, the most part of the light that has been emitted from the light source and reached the total reflection region 124 located on the peripheral side of the first light exit surface 121 is totally reflected at the total reflection region 124. For example, in the case where a reflecting plate is disposed on the light entrance surface 11 side of the illuminating lens 1, the area away from the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the totally reflected light at the end. Furthermore, the most part of the light that has been emitted from the light source and reached the second light exit surface 122 is refracted at the second light exit surface 122, and thus the area away from the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the refracted light. Accordingly, the illuminating lens 1 of the present embodiment allows the range of transmission directions for light from the light source to be widened further. Therefore, the outer diameter of the lens of the present embodiment may be smaller than that of a conventional lens having a concave for only refracting light.
The basic configuration of the illuminating lens 1 of the present embodiment has been described so far. A preferable configuration of the illuminating lens 1 of the present embodiment will be described below.
It is preferable that the above-mentioned angle θb (see
20 degrees<θb<40 degrees (1)
The inequality (1) defines the range of the first light exit surface 121. The inequality (1) defines the range of the first light exit surface 121 with an angle based on the starting point Q (polar coordinate), and indicates the range of angles at which light to be directed to the surface to be irradiated 3 can be allocated appropriately to an area surrounding the optical axis A of the lens on the surface to be irradiated 3 (hereinafter referred to as a “near-axis area”) and an area away from the optical axis A of the lens on the surface to be irradiated 3 (hereinafter referred to as an “outer peripheral area”). When θb is 40 degrees or more, the range of the first light exit surface 121 increases and the light that has been emitted from the light source toward the vicinity of the optical axis is directed excessively outwardly. As a result, the near-axis area of the surface to be irradiated 3 has a low illuminance, which causes an uneven illuminance on the surface 3. On the other hand, when the θb is 20 degrees or less, the range of the first light exit surface 121 decreases, and thus a large amount of light is directed to the near-axis area of the surface to be irradiated 3 while sufficient light cannot be directed to the outer peripheral area. As a result, not only the surface 3 has an uneven illuminance but also the range of light transmission directions is narrowed.
When the point of intersection of the first light exit surface 122 and the optical axis A is denoted as C, the distance between the point C and the starting point Q is denoted as d, and the length of the straight line connecting the point C and the above-mentioned point P is denoted as a, as shown in
1.10<a/(d×tan θp)<1.30 (2)
The inequality (2) defines the range of the transmissive region 123 of the first light exit surface 121, and indicates the amount of light directed to the near-axis area of the surface to be irradiated 3. When “a/(d tan θp)” in the inequality (2) is 1.30 or more, an excessive amount of light passes through the transmissive region 123. As a result, the near-axis area of the surface to be irradiated 3 has a high illuminance, which causes an uneven illuminance on the surface 3. On the other hand, when “a/(d tan θp)” in the inequality (2) is 1.10 or less, the amount of light that passes through the transmissive region 123 decreases excessively. As a result, the near-axis area of the surface to be irradiated 3 has a low illuminance, which causes an uneven illuminance on the surface 3.
Furthermore, it is preferable that the following inequalities (3) and (4) are satisfied. When the thickness of the illuminating lens 1 on the optical axis A (i.e., the distance from the point C to the light entrance surface 11) is denoted as d′, and the outermost radius of the illuminating lens 1 is denoted as R, the inequality (3) is expressed as follows:
d′/2R<0.25 (3)
In addition, in the case where the surface to be irradiated 3 is illuminated via the illuminating lens 1, when the distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated 3, which is obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, is denoted as δL, and in the case where the surface to be irradiated 3 is illuminated only by the light source, when the distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated 3, which is obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, is denoted as δS, the inequality (4) is expressed as follows:
2.0<δL/δS<4.0 (4)
When “d′/2R” in the inequality (3) is 0.25 or more and the inequality (3) is not satisfied, the ratio between the first light exit surface 121 and the second light exit surface 122 is out of balance in the light exit surface 12, which causes an uneven illuminance.
In the inequality (4), “δL/δS” indicates a ratio of illuminance distribution between the case with the illuminating lens and the case without the illuminating lens. When the value of δL/δS is 4.0 or more, the range of light transmission directions is widened, but the illuminated area is excessively large, which causes an insufficient illuminance. On the other hand, when the value of δL/δS″ is 2.0 or less, the lens itself is large in size. As a result, the compact property and the cost effectiveness of the lens decrease, and the range of light transmission directions is narrowed.
The illuminating lens of the present invention also is applicable to light sources (such as lasers and organic ELs) as well as light emitting diodes.
In the present embodiment, the light exit surface 12 is axisymmetric with respect to the optical axis A. The light exit surface 12, however, need not be axisymmetric with respect to the optical axis A. For example, as shown in FIG. 28A, the light exit surface 12 may have an elliptical shape when viewed from the optical axis direction. This illuminating lens 1 is suitable particularly for an elongated light source. Alternatively, as shown in
(Modification)
Next, a Modified Illuminating Lens 1′ Will be Described with Reference to
In this illuminating lens 1′, the first light exit surface 121 has a specular reflection region 125 covered with a reflective layer 126, instead of the total reflection region 124 (see
In the case where specular reflection is utilized as in the present modification, the angle of inclination of the first light exit surface 121 can be reduced compared with the case where total reflection is utilized. Therefore, the flexibility in designing the lens shape can be increased. The specular reflection region 125 may have the same shape as the total reflection region 124. That is, when the specular reflection region 125 is not covered with the reflective layer 126, it may have a shape such that the light that has been emitted from the starting point Q at a specified angle of θp or more with respect to the optical axis A and reached the first light exit surface 121 can be totally reflected.
The light emitting diode 2 is in contact with the light entrance surface 11 of the illuminating lens 1 via a bonding agent, and connected optically to the light entrance surface 11. The light that has exited the illuminating lens 1 through the light exit surface 12 reaches the surface to be irradiated 3, and thus the surface to be irradiated 3 is illuminated with that light.
Light generation in the light emitting diode 2 has no directivity in itself, and a light emitting region has a refractive index of at least 2.0. When light from the light emitting region enters a low refractive region, the refraction of the light at the interface causes the light to have the maximum intensity in the normal direction of the interface and to have a lower intensity as the angle of the light with respect to the normal line increases. As described above, since the light emitting diode 2 has high directivity, it is necessary to widen the range of transmission directions for light therefrom using the illuminating lens 1 to illuminate a larger area.
Hereinafter, Examples 1 to 3 are given as specific numerical examples of the present invention.
Table 1 below shows specific numerical values in Example 1.
θi-θn is an angle of a light ray emitted at an angle of θi, with respect to a normal line at a point on the light exit surface 12 reached by the light ray, that is, an incident angle of the light ray on the light exit surface 12. As a condition of the total reflection region 124 of the first light exit surface 121, since the refractive index of the transparent material constituting the lens in Example 1 is 1.41, θi-θn is 45.172 degrees or more. Accordingly,
In Example 1, d, θp, and a shown in
Furthermore, in Example 1, d′ and R shown in
Furthermore, the distribution width δL of illuminances of 0.2 or more on the illuminance distribution curve in
Table 2 below shows specific numerical values in Example 2.
In Example 2, the lens is made of a material having a refractive index of 1.41, as in the case of Example 1 described above. Accordingly, as a condition of the total reflection region 124 of the first light exit surface 121, θi-θn is 45.172 degrees or more, as in the case of Example 1. Accordingly,
In Example 2, d, θp, and a shown in
Furthermore, in Example 2, d′ and R shown in
Furthermore, the distribution width δL of illuminances of 0.2 or more on the illuminance distribution curve in
Table 3 below shows specific numerical values in Example 3.
In Example 3, the lens is made of a material having a refractive index of 1.41, as in the case of Example 1 described above. Accordingly, as a condition of the total reflection region 124 of the first light exit surface 121, θi-θn is 45,172 degrees or more, as in the case of Example 1. Accordingly,
In Example 3, d, θp, and a shown in
Furthermore, in Example 3, d′ and R shown in
Furthermore, the distribution width δL of illuminances of 0.2 or more on the illuminance distribution curve in
The surface light source 8 includes a substrate 65 facing the diffusing plate 4 with the lighting devices 7 being disposed therebetween. As shown in
In the present embodiment, the light entrance surface 11 of the illuminating lens 1 and the bottom surface 13 surrounding the light entrance surface 11 are on the same level.
The lighting device 7 emits light to one surface 4a of the diffusing plate 4. That is, the one surface 4a of the diffusing plate 4 is the surface to be irradiated 3 that has been described in the first and second embodiments. The diffusing plate 4 emits the light received on its one surface 4a from the other surface 4b in a diffused manner. The lighting devices 7 emit light individually toward a large area of the one surface 4a of the diffusing plate 4 so that the one surface 4a has a uniform illuminance, and upon receiving this light, the diffusing plate 4 emits the light diffusely. As a result, the surface light source capable of emitting light having less uneven brightness in the plane is obtained.
The light emitted from the lighting device 7 is diffused by the diffusing plate 4 so that the diffuse light returns to the lighting device side or passes through the diffusing plate 4. The light that has returned to the lighting device side and struck the reflecting plate 6 is reflected at the reflecting plate 6 and again enters the diffusing plate 4.
A comparison between
A plurality of lighting devices 7 each including the light emitting diode 2 and the illuminating lens 1 are arranged in a plane, and the diffusing plate 4 is illuminated by these lighting devices 7. The underside (one surface) of the diffusing plate 4 is irradiated with the light emitted from the lighting devices 7 to have a uniform illuminance, and then the light is diffused by the diffusing plate 4. Thus, the liquid-crystal panel 5 is illuminated by the diffused light.
It is preferable that an optical sheet such as a diffusing sheet or a prism sheet is disposed between the liquid-crystal panel 5 and the surface light source 8. In this case, the light that has passed through the diffusing plate 4 further is diffused by the optical sheet and illuminates the liquid-crystal panel 5.
The invention may be embodied in other forms without departing from the spirit or essential characteristics thereof. The embodiments disclosed in this specification are to be considered in all respects as illustrative and not limiting. The scope of the invention is indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2009-029350 | Feb 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7153002 | Kim et al. | Dec 2006 | B2 |
7348723 | Yamaguchi et al. | Mar 2008 | B2 |
7474475 | Paek et al. | Jan 2009 | B2 |
7602559 | Jang et al. | Oct 2009 | B2 |
8075157 | Zhang et al. | Dec 2011 | B2 |
20040246606 | Benitez et al. | Dec 2004 | A1 |
20040257826 | Tatsukawa | Dec 2004 | A1 |
20050243577 | Moon | Nov 2005 | A1 |
20060109669 | Tanaka et al. | May 2006 | A1 |
20060119250 | Suehiro et al. | Jun 2006 | A1 |
20060126343 | Hsieh et al. | Jun 2006 | A1 |
20060152932 | Wu | Jul 2006 | A1 |
20060239020 | Albou | Oct 2006 | A1 |
20070029563 | Amano et al. | Feb 2007 | A1 |
20070047232 | Kim et al. | Mar 2007 | A1 |
20070070530 | Seo et al. | Mar 2007 | A1 |
20070263390 | Timinger et al. | Nov 2007 | A1 |
20080007673 | Shiraishi et al. | Jan 2008 | A1 |
20080100773 | Hwang et al. | May 2008 | A1 |
20080174996 | Lu et al. | Jul 2008 | A1 |
20080278655 | Moon et al. | Nov 2008 | A1 |
20080303757 | Ohkawa et al. | Dec 2008 | A1 |
20090052193 | Zweig et al. | Feb 2009 | A1 |
20090109687 | Householder et al. | Apr 2009 | A1 |
20090268469 | Huang et al. | Oct 2009 | A1 |
20090273727 | Kubota et al. | Nov 2009 | A1 |
20100020264 | Ohkawa | Jan 2010 | A1 |
20100053973 | Shastry et al. | Mar 2010 | A1 |
20100195335 | Allen et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2004-087411 | Mar 2004 | JP |
2005-011704 | Jan 2005 | JP |
2005-317977 | Nov 2005 | JP |
2006-005791 | Jan 2006 | JP |
2006-113556 | Apr 2006 | JP |
2006-147448 | Jun 2006 | JP |
2006-252841 | Sep 2006 | JP |
2006-309242 | Nov 2006 | JP |
3875247 | Nov 2006 | JP |
2007-026702 | Feb 2007 | JP |
2007-034307 | Feb 2007 | JP |
2007-048775 | Feb 2007 | JP |
2007-096318 | Apr 2007 | JP |
2007-102139 | Apr 2007 | JP |
2007-287479 | Nov 2007 | JP |
2008-015288 | Jan 2008 | JP |
2008-305923 | Dec 2008 | JP |
10-2006-0040502 | May 2006 | KR |
2007021149 | Feb 2007 | WO |
Entry |
---|
Co-pending U.S. Appl. No. 12/704,813, filed Feb. 12, 2010. |
Co-pending U.S. Appl. No. 12/704,926, filed Feb. 12, 2010. |
Co-pending U.S. Appl. No. 12/705,016, filed Feb. 12, 2010. |
Co-pending U.S. Appl. No. 12/705,076, filed Feb. 12, 2010. |
Number | Date | Country | |
---|---|---|---|
20100201911 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/003947 | Aug 2009 | US |
Child | 12720249 | US |