Illuminating running board

Information

  • Patent Grant
  • 9487128
  • Patent Number
    9,487,128
  • Date Filed
    Wednesday, September 23, 2015
    9 years ago
  • Date Issued
    Tuesday, November 8, 2016
    8 years ago
Abstract
A running board of a vehicle is provided herein. The running board includes a housing and a light-producing assembly disposed inside the housing. The light-producing assembly includes a plurality of light sources and a photoluminescent structure configured to luminesce in response to excitation by light emitted from the plurality of light sources, wherein luminescent light escapes the housing via a first light permeable portion and a second light permeable portion.
Description
FIELD OF THE INVENTION

The present invention generally relates to vehicle lighting systems and more particularly relates to vehicle lighting systems employing photoluminescent structures.


BACKGROUND OF THE INVENTION

Illumination arising from the use of photoluminescent structures offers a unique and attractive viewing experience. It is therefore desired to implement such structures in automotive vehicles for various lighting applications.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a running board of a vehicle is provided. The running board includes a housing and a light-producing assembly disposed inside the housing. The light-producing assembly includes a plurality of light sources and a photoluminescent structure configured to luminesce in response to excitation by light emitted from the plurality of light sources, wherein luminescent light escapes the housing via a first light permeable portion and a second light permeable portion.


According to another aspect of the present invention, a running board of a vehicle is provided. The running board includes a housing defining an edge of the running board. A light-producing assembly is disposed inside the housing and includes a plurality of light sources and a photoluminescent structure configured to luminesce in response to excitation by light emitted from the plurality of light sources. Luminescent light escapes the housing via a light permeable side portion and a light permeable bottom portion.


According to yet another aspect of the present invention, a running board of a vehicle is provided. The running board includes a housing and a light-producing assembly disposed inside the housing. The light-producing assembly includes a plurality of light sources and a photoluminescent structure configured to luminesce in response to excitation by light emitted from the plurality of light sources. Luminescent light escapes the housing via a light permeable side portion and a light permeable bottom portion that are separated by a light blocking portion.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 illustrates a vehicle equipped with an illuminating running board, according to one embodiment;



FIG. 2 is a bottom view of a running board, according to one embodiment;



FIG. 3 is a cross-sectional view of a running board taken along line in FIG. 1, according to one embodiment; and



FIG. 4 is an enlarged view of the light-producing assembly shown in FIG. 3, according to one embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.


The following disclosure is related to a running board of a vehicle. Typically, running boards, also known as footboards, are found on higher vehicles such as trucks and sport utility vehicles and are used to assist passengers in entering and exiting the vehicle. The running board disclosed herein is operable as an ambient light and a puddle lamp. According to one embodiment described herein, the running board may illuminate by luminescence and benefits from a cost effective design when compared to more traditional approaches using components such as expensive light emitting diodes (LEDs), light pipes, and fiber optics.


Referring to FIG. 1, a vehicle 10 is generally shown having a running board 12 that extends along the side of the vehicle 10. The running board 12 is secured to the vehicle 10 via a pair of mounting brackets 14 and may be fixed or is otherwise movable between a use position and a stowed position. As shown, the running board 12 includes a side portion 16 that may extend the length of the running board 12. Side portion 16 may be configured as a strip and illuminates to provide ambient light, thereby imparting a luxurious appearance to the vehicle 10.


Referring to FIG. 2, an underside 18 of the running board 12 is shown according to one embodiment. As shown, the running board 12 includes a bottom portion 20, which may be configured as a strip extending the length of the running board 12. The bottom portion 20 may function as a puddle lamp to illuminate a ground area near vehicle 10.


Referring to FIG. 3, a cross-sectional view of the running board 12 is shown according to one embodiment. As shown, side portion 16 and bottom portion 20 are part of a housing 22 that defines a distal end of the running board 12 when in the use position depicted previously in FIG. 1. The housing 22 may be co-extruded from plastic such as polycarbonate, which generally imparts good impact resistance and optical clarity. Side portion 16 and bottom portion 20 are each light permeable to allow light from a light-producing assembly 24 to escape the housing 22 and are separated by a light blocking portion 26 disposed therebetween. The light-producing assembly 24 is disposed on a curved mounting surface 28 and may extend the length of the running board 12. Alternatively, the mounting surface 28 may be linear if desired. In some embodiments, the light blocking portion 26 may be configured to internally reflect propagating light originating from the light-producing assembly 24 and/or have a metallic appearance. For example, the outer surfaces of the light blocking portion 26 may be covered with a painted metal whereas the inner surfaces of the light blocking portion 26 may be covered by a reflective material. The remaining inner surfaces of the housing 22 may also be configured to internally reflect light to help direct light from the light-producing assembly 24 through the side and bottom portions 16, 20 and the remaining outer surfaces of the housing 22 may also be configured to have a metallic appearance.


Referring to FIG. 4, an enlarged view of the light-producing assembly 24 depicted in FIG. 3 is shown according to one embodiment. The light-producing assembly 24 includes a substrate 30 coupled to the mounting surface 28. The substrate 30 may include a polycarbonate, poly-methyl methacrylate (PMMA), or polyethylene terephthalate (PET) material on the order of 0.005 to 0.060 inches thick. A positive electrode 32 is arranged over the substrate 30 and includes a conductive epoxy such as, but not limited to, a silver-containing or copper-containing epoxy. The positive electrode is 32 electrically connected to a plurality of light sources, shown as LEDs 34, which are arranged within a semiconductor ink 36 and applied over the positive electrode 32. A negative electrode 38 is also electrically connected to the LEDs 34 and is arranged over the semiconductor ink 36. The negative electrode 38 includes a transparent or translucent conductive material such as, but not limited to, indium tin oxide. In alternative embodiments, the positive and negative electrodes 32, 38 may trade positions within the light-producing assembly 24, in which case the positive electrode 32 should include a transparent or translucent conductive material to allow light emitted from the LEDs 34 to be transmitted therethrough.


The positive and negative electrodes 32, 38 are each electrically connected to a controller 40 via a corresponding bus bar 42, 44 and a corresponding conductive lead 46, 48. The bus bars 42, 44 may be printed along opposite edges of the positive and negative electrodes 32, 38 and the points of connection between the bus bars 42, 44 and the conductive leads 46, 48 may be at opposite corners of each bus bar 42, 44 to promote uniform current distribution along the bus bars 42, 44. The controller 40 may be variously located in the vehicle 10 and the conductive leads 46, 48 may be wired through the running board 12 and the mounting brackets 14. The controller 40 is also electrically connected to a power source 50, which may correspond to a vehicular power source operating at 12 to 16 VDC.


The controller 40 may include a processor 52 and a memory 54 that stores instructions 56 that are executed by the processor 52. The instructions enable the controller 40 to selectively control the LEDs 34 based on one or more input signals 58, which may be received from vehicle equipment, user-operated switches, and the like. In one embodiment, the input signals 58 may include a vehicle-related condition such as, but not limited to, an operational state of the vehicle, a status related to a particular vehicle equipment (e.g., door open status), a key fob proximity status, a remote signal sourced from a portable electronic device, a status related to an operating environment of the vehicle (e.g., an ambient light level), or any other information or control signal that may be utilized to activate or otherwise adjust the output of the LEDs 34.


The LEDs 34 may be dispersed in a random or controlled fashion within the semiconductor ink 36. The LEDs 34 may correspond to micro-LEDs of gallium nitride elements on the order of 5 to 400 microns in size and the semiconductor ink 36 may include various binders and dielectric material including, but not limited to, one or more of gallium, indium, silicon carbide, phosphorous, and/or translucent polymeric binders. In some embodiments, the LEDs 34 and semiconductor ink 36 may be sourced from Nth Degree Technologies Worldwide Inc. The semiconductor ink 36 can be applied through various printing processes, including ink jet and silk screen processes to selected portion(s) of the positive electrode 32. More specifically, it is envisioned that the LEDs 34 are dispersed within the semiconductor ink 36, and shaped and sized such that a substantial quantity of them align with the positive electrode 32 and the negative electrode 38 during deposition of the semiconductor ink 36.


Referring still to FIG. 4, a photoluminescent structure 60 is arranged over the negative electrode 38. The photoluminescent structure 60 may be arranged as a coating, layer, film or other suitable deposition. With respect to the presently illustrated embodiment, the photoluminescent structure 60 may be arranged as a multi-layered structure including an energy conversion layer 62, an optional stability layer 64, and an optional protection layer 66. The energy conversion layer 62 includes at least one photoluminescent material 68 having energy converting elements with phosphorescent or fluorescent properties. For example, the photoluminescent material 68 may include organic or inorganic fluorescent dyes including rylenes, xanthenes, porphyrins, phthalocyanines. Additionally or alternatively, the photoluminescent material 68 may include phosphors from the group of Ce-doped garnets such as YAG:Ce. The energy conversion layer 62 may be prepared by dispersing the photoluminescent material 68 in a polymer matrix to form a homogenous mixture using a variety of methods. Such methods may include preparing the energy conversion layer 62 from a formulation in a liquid carrier medium and coating the energy conversion layer 62 to the negative electrode 38. The energy conversion layer 62 may be applied to the negative electrode 38 by painting, screen printing, flexography, spraying, slot coating, dip coating, roller coating, and bar coating. Alternatively, the energy conversion layer 62 may be prepared by methods that do not use a liquid carrier medium. For example, the energy conversion layer 62 may be rendered by dispersing the photoluminescent material 68 into a solid state solution (homogenous mixture in a dry state) that may be incorporated in a polymer matrix formed by extrusion, injection, compression, calendaring, thermoforming, etc.


To protect the photoluminescent material 68 contained within the energy conversion layer 62 from photolytic and thermal degradation, the photoluminescent structure 60 may optionally include a stability layer 64, which may be configured as a separate layer optically coupled and adhered to the energy conversion layer 62 or otherwise integrated therewith. Each photoluminescent structure 60 may also optionally include a protection layer 66 optically coupled and adhered to the stability layer 64 or other layer to protect the photoluminescent structure 60 from physical and chemical damage arising from environmental exposure. The stability layer 64 and/or the protection layer 66 may be combined with the corresponding energy conversion layer 62 through sequential coating or printing of each layer, sequential lamination or embossing, or any other suitable means.


Additional information regarding photoluminescent structures is disclosed in U.S. Pat. No. 8,232,533 to Kingsley et al., entitled “PHOTOLYTICALLY AND ENVIRONMENTALLY STABLE MULTILAYER STRUCTURE FOR HIGH EFFICIENCY ELECTROMAGNETIC ENERGY CONVERSION AND SUSTAINED SECONDARY EMISSION,” filed Nov. 8, 2011, the entire disclosure of which is incorporated herein by reference. Also, additional information regarding printed LED arrangements is disclosed in U.S. Patent Publication No. 2014-0264396 A1 to Lowenthal et al., entitled “ULTRA-THIN PRINTED LED LAYER REMOVED FROM SUBSTRATE,” filed Mar. 12, 2014, the entire disclosure of which is incorporated herein by reference.


In operation, the photoluminescent structure 60 is configured to luminesce in response to excitation by light emitted by the LEDs 34. More specifically, light emitted from the LEDs 34 undergoes an energy conversion process and is converted by the photoluminescent material 68 and re-emitted therefrom at a different wavelength. Light emitted by the LEDs 34 is referred to herein as inputted light and is demonstrated in FIG. 4 by solid arrows, whereas light re-emitted from the photoluminescent material 68 is referred to herein as converted light or luminescent light and is demonstrated in FIG. 4 by broken arrows. According to one embodiment, the photoluminescent material 68 may be formulated to convert inputted light into a longer wavelength light, otherwise known as down conversion. Alternatively, the photoluminescent material 68 may be formulated to convert inputted light into a shorter wavelength light, otherwise known as up conversion. Under either approach, light converted by the photoluminescent material 68 may be subsequently outputted from the corresponding photoluminescent structure 60 or otherwise used in an energy cascade, wherein the converted light serves as inputted light to excite another formulation of photoluminescent material located within the energy conversion layer 62, whereby the subsequent converted light may then be outputted from the photoluminescent structure 60 or used as inputted light, and so on. With respect to the energy conversion processes described herein, the difference in wavelength between the inputted light and the converted light is known as the Stokes shift and serves as the principle driving mechanism for an energy conversion process corresponding to a change in wavelength of light.


According to one embodiment, the photoluminescent material 68 is formulated to have a Stokes shift resulting in the converted light having an emission spectrum expressed in a desired color. In one embodiment, the energy conversion process may be undertaken by way of down conversion, whereby the inputted light includes light on the lower end of the visibility spectrum such as blue, violet, or ultraviolet (UV) light. Doing so enables blue, violet, or UV LEDs to be used as the LEDs 34, which may offer a relative cost advantage over other colors of LEDs or simply using LEDs of the desired color and omitting the photoluminescent structure 60 altogether.


In alternative embodiments, the energy conversion layer 62 may include more than one distinct photoluminescent material, each of which is configured to convert inputted light into a longer or shorter wavelength light. In one embodiment, the distinct photoluminescent materials may be interspersed within the energy conversion layer 62. Alternatively, the distinct photoluminescent materials may be isolated from each other if desired. For example, the distinct photoluminescent materials may be arranged to alternate in a tessellation or other pattern. In either embodiment, each distinct photoluminescent material may be uniquely excited by a corresponding portion of the LEDs 34, which may be variously arranged. In some embodiments, each distinct photoluminescent material may be formulated to have a Stokes shift resulting in the associated converted light having an emission spectrum expressed in a unique color such that the resultant luminescence corresponds to a light mixture of the converted light from each distinct photoluminescent material. By mixing the converted light outputted from two or more distinct photoluminescent materials, a greater diversity of colors may be expressed that might otherwise be unachievable through the excitation of a single photoluminescent material. Contemplated colors include light mixtures containing any combination of red, green, and blue light, all of which may be achieved by selecting the appropriate combinations of photoluminescent materials and LEDs. Additional information on the arrangements of distinct photoluminescent materials and corresponding LEDs is disclosed in U.S. patent application Ser. No. 14/697,035 to Salter et al., entitled “LIGHT-PRODUCING ASSEMBLY FOR A VEHICLE,” filed Apr. 27, 2015, the entire disclosure of which is incorporated herein by reference.


In operation, the controller 40 may selectively control the intensity of the LEDs 34 to ultimately affect the brightness of the luminescent light outputted from the side and bottom portions 16, 20 of the running board 12. For example, increasing the intensity of the LEDs 34 generally results in the side and bottom portions 16, 20 exhibiting a brighter luminescence. The controller 40 may control the intensity of the LEDs 34 through pulse-width modulation or direct current control. Additionally or alternatively, the controller 40 may control the light emission duration of the LEDs 34 to affect the duration in which the side and bottom portions 16, 20 luminesce. For example, the controller 40 may activate the LEDs 34 for an extended duration such that the side and bottom portions 16, 20 exhibit sustained luminescence. Alternatively, the controller 40 may flash the LEDs 34 at varying time intervals such that the side and bottom portions 16, 20 exhibit a blinking effect.


Accordingly, a running board 12 of a vehicle 10 has been advantageously provided herein. The running board 12 is configured to illuminate by luminescence and operable to function as an ambient light and a puddle lamp.


For the purposes of describing and defining the present teachings, it is noted that the terms “substantially” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A running board of a vehicle, comprising: a housing;a light-producing assembly disposed inside the housing and comprising: a light source; anda photoluminescent structure configured to luminesce in response to excitation by light emitted from the light source, wherein luminescent light escapes the housing via a first light permeable portion and a second light permeable portion, wherein the first light permeable portion comprises a bottom portion of the housing and the second light permeable portion comprises a side portion of the housing, wherein light escaping the housing via the bottom portion illuminates a ground area near the vehicle, and wherein light escaping the housing via the side portion provides ambient light.
  • 2. The running board of claim 1, wherein the housing defines an edge of the running board.
  • 3. The running board of claim 1, wherein the light-producing assembly is arranged over one of a curved surface and a linear surface.
  • 4. The running board of claim 1, wherein the light source comprise a printed LED arrangement.
  • 5. The running board of claim 1, wherein the housing further comprises a light blocking portion disposed between the first and second light permeable portions.
  • 6. The running board of claim 5, wherein the light blocking portion is configured to internally reflect light inside the housing.
  • 7. The running board of claim 6, wherein the first light permeable portion, the second light permeable portion, and the light blocking portion each extend the length of the running board.
  • 8. A running board of a vehicle, comprising: a housing defining an edge of the running board;a light-producing assembly disposed inside the housing and comprising: a light source; anda photoluminescent structure configured to luminesce in response to excitation by light emitted from the light source, wherein luminescent light escapes the housing via a light permeable side portion and a separately disposed light permeable bottom portion to illuminate a ground area near the vehicle.
  • 9. The running board of claim 8, wherein the light-producing assembly is arranged over one of a curved surface and a linear surface.
  • 10. The running board of claim 8, wherein the light source comprises a printed LED arrangement.
  • 11. The running board of claim 8, wherein the housing further comprises a light blocking portion disposed between the side portion and the bottom portion.
  • 12. The running board of claim 8, wherein luminescent light also escapes the housing via the light permeable side portion to provide ambient light.
  • 13. The running board of claim 8, wherein portions of the housing are configured to at least one of internally reflect light and have an outward metallic appearance.
  • 14. A running board of a vehicle, comprising: a housing;a light-producing assembly disposed inside the housing and comprising: a light source; anda photoluminescent structure configured to luminesce in response to excitation by light emitted from the light source, wherein luminescent light escapes the housing via a light permeable side portion to provide ambient light and via a light permeable bottom portion to illuminate a ground area near the vehicle, wherein the light permeable side portion and the light permeable bottom portion are separated by a light blocking portion.
  • 15. The running board of claim 14, wherein the housing defines an edge of the running board.
  • 16. The running board of claim 14, wherein the light-producing assembly is arranged over one of a curved surface and a linear surface.
  • 17. The running board of claim 14, wherein the light source comprises a printed LED arrangement.
  • 18. The running board of claim 14, wherein portions of the housing are configured to internally reflect light propagating inside the housing.
  • 19. The running board of claim 14, wherein portions of the housing are configured to have a metallic appearance.
CROSS-REFERENCE TO THE RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 14/603,636, filed Jan. 23, 2015, entitled “DOOR ILLUMINATION AND WARNING SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 14/086,442, filed Nov. 21, 2013, entitled “VEHICLE LIGHTING SYSTEM WITH PHOTOLUMINESCENT STRUCTURE.” The aforementioned related applications are hereby incorporated by reference in their entirety.

US Referenced Citations (87)
Number Name Date Kind
1736616 Miller Nov 1929 A
1738092 Bach Dec 1929 A
4965704 Osborne, Sr. Oct 1990 A
5709453 Krent et al. Jan 1998 A
5915830 Dickson et al. Jun 1999 A
6117362 Yen et al. Sep 2000 A
6190027 Lekson Feb 2001 B1
6577073 Shimizu et al. Jun 2003 B2
6729738 Fuwausa et al. May 2004 B2
6737964 Samman et al. May 2004 B2
6773129 Anderson, Jr. et al. Aug 2004 B2
6820888 Griffin Nov 2004 B1
6851840 Ramamurthy et al. Feb 2005 B2
6859148 Miller Feb 2005 B2
6871986 Yamanaka et al. Mar 2005 B2
6953536 Yen et al. Oct 2005 B2
6990922 Ichikawa et al. Jan 2006 B2
7161472 Strumolo et al. Jan 2007 B2
7213923 Liu et al. May 2007 B2
7264366 Hulse Sep 2007 B2
7264367 Hulse Sep 2007 B2
7441914 Palmer et al. Oct 2008 B2
7745818 Sofue et al. Jun 2010 B2
7753541 Chen et al. Jul 2010 B2
7834548 Jousse et al. Nov 2010 B2
7862220 Cannon et al. Jan 2011 B2
7987030 Flores et al. Jul 2011 B2
8016465 Egerer et al. Sep 2011 B2
8022818 la Tendresse et al. Sep 2011 B2
8071988 Lee et al. Dec 2011 B2
8097843 Agrawal et al. Jan 2012 B2
8136425 Bostick Mar 2012 B2
8163201 Agrawal et al. Apr 2012 B2
8178852 Kingsley et al. May 2012 B2
8197105 Yang Jun 2012 B2
8203260 Li et al. Jun 2012 B2
8207511 Bortz et al. Jun 2012 B2
8232533 Kingsley et al. Jul 2012 B2
8247761 Agrawal et al. Aug 2012 B1
8286378 Martin et al. Oct 2012 B2
8408766 Wilson et al. Apr 2013 B2
8415642 Kingsley et al. Apr 2013 B2
8421811 Odland et al. Apr 2013 B2
8466438 Lambert et al. Jun 2013 B2
8519359 Kingsley et al. Aug 2013 B2
8519362 Labrot et al. Aug 2013 B2
8552848 Rao et al. Oct 2013 B2
8606430 Seder et al. Dec 2013 B2
8624716 Englander Jan 2014 B2
8631598 Li et al. Jan 2014 B2
8664624 Kingsley et al. Mar 2014 B2
8683722 Cowan Apr 2014 B1
8724054 Jones May 2014 B2
8773012 Ryu et al. Jul 2014 B2
8846184 Agrawal et al. Sep 2014 B2
8952341 Kingsley et al. Feb 2015 B2
9057021 Kingsley et al. Jun 2015 B2
9065447 Buttolo et al. Jun 2015 B2
9299887 Lowenthal et al. Mar 2016 B2
20020159741 Graves et al. Oct 2002 A1
20020163792 Formoso Nov 2002 A1
20030179548 Becker et al. Sep 2003 A1
20040213088 Fuwausa Oct 2004 A1
20050036327 Patel Feb 2005 A1
20060087826 Anderson, Jr. Apr 2006 A1
20070032319 Tufte Feb 2007 A1
20070285938 Palmer et al. Dec 2007 A1
20090219730 Syfert et al. Sep 2009 A1
20090251920 Kino Oct 2009 A1
20090262515 Lee et al. Oct 2009 A1
20110012062 Agrawal et al. Jan 2011 A1
20120001406 Paxton et al. Jan 2012 A1
20120092889 Held et al. Apr 2012 A1
20120104954 Huang May 2012 A1
20120183677 Agrawal et al. Jul 2012 A1
20120280528 Dellock et al. Nov 2012 A1
20130026504 Marx et al. Jan 2013 A1
20130335994 Mulder et al. Dec 2013 A1
20140065442 Kingsley et al. Mar 2014 A1
20140103258 Agrawal et al. Apr 2014 A1
20140264396 Lowenthal et al. Sep 2014 A1
20140266666 Habibi Sep 2014 A1
20140373898 Rogers et al. Dec 2014 A1
20150046027 Sura et al. Feb 2015 A1
20150138789 Singer et al. May 2015 A1
20150267881 Salter et al. Sep 2015 A1
20160016506 Collins et al. Jan 2016 A1
Foreign Referenced Citations (11)
Number Date Country
101337492 Jan 2009 CN
201169230 Feb 2009 CN
201193011 Feb 2009 CN
29708699 Jul 1997 DE
10319396 Nov 2004 DE
1793261 Jun 2007 EP
2778209 Sep 2014 EP
2000159011 Jun 2000 JP
2007238063 Sep 2007 JP
2006047306 May 2006 WO
2014068440 May 2014 WO
Related Publications (1)
Number Date Country
20160009220 A1 Jan 2016 US
Continuation in Parts (2)
Number Date Country
Parent 14603636 Jan 2015 US
Child 14862523 US
Parent 14086442 Nov 2013 US
Child 14603636 US