A method to blend and mix specific wavelength light emitting diode illumination.
A wide variety of light emitting devices are known in the art including, for example, incandescent light bulbs, fluorescent lights, and semiconductor light emitting devices such as light emitting diodes (“LEDs”).
White light may be produced by utilizing one or more luminescent materials such as phosphors to convert some of the light emitted by one or more LEDs to light of one or more other colors. The combination of the light emitted by the LEDs that is not converted by the luminescent material(s) and the light of other colors that are emitted by the luminescent material(s) may produce a white or near-white light. White lighting from the aggregate emissions from multiple LED light sources, such as combinations of red, green, and blue LEDs, typically provide poor color rendering for general illumination applications due to the gaps in the spectral power distribution in regions remote from the peak wavelengths of the LEDs. Significant challenges remain in providing LED lamps that can provide white light across a range of CCT values while simultaneously achieving high efficiencies, high luminous flux, good color rendering, and acceptable color stability.
The luminescent materials such as phosphors, to be effective at absorbing light, must be in the path of the emitted light. Phosphors placed at the chip level will be in the path of substantially all of the emitted light, however they also are exposed to more heat than a remotely placed phosphor. Because phosphors are subject to thermal degradation, by separating the phosphor and the chip thermal degradation can be reduced. Separating the phosphor from the LED has been accomplished via the placement of the LED at one end of a reflective chamber and the placement of the phosphor at the other end. Traditional LED reflector combinations are very specific on distances and ratio of angle to LED and distance to remote phosphor or they will suffer from hot spots, thermal degradation, and uneven illumination. It is therefore a desideratum to provide an LED and reflector with remote photoluminescence materials that do not suffer from these drawbacks.
Disclosed herein are aspects of methods and systems to blend multiple light channels to produce a preselected illumination spectrum by providing a common housing with an open top, openings at the bottom to cooperate with domed lumo converting appliances (DLCAs), each DLCA placed over an LED illumination source; altering the illumination produced by a first LED illumination source by passing it through a first domed lumo converting appliance (DLCA) associated with the common housing to produce a blue channel preselected spectral output; altering the illumination produced by a second LED illumination source by passing it through a second DLCA associated with the common housing to produce a red channel preselected spectral output; altering the illumination produced by a third LED illumination source by passing it through a third DLCA associated with the common housing to produce a yellow/green channel preselected spectral output; altering the illumination produced by a fourth LED illumination source by passing it through a fourth DLCA associated with the common housing to produce a cyan channel preselected spectral output; blending the blue, red, yellow/green, and cyan spectral outputs as they exit the common housing; and, wherein the first, second, and third LED illumination sources are blue LEDs and the fourth LED illumination is cyan LEDs. One or more of the LED illumination sources can be a cluster of LEDs.
Disclosed herein are aspects of methods and systems to blend multiple light channels to produce a preselected illumination spectrum by providing a common housing placed over a series of LED illumination sources; altering the illumination produced by a first LED illumination source by passing it through a first domed lumo converting appliance (DLCA) associated with the common housing to produce a blue channel preselected spectral output; altering the illumination produced by a second LED illumination source by passing it through a second DLCA associated with the common housing to produce a red channel preselected spectral output; altering the illumination produced by a third LED illumination source by passing it through a third DLCA associated with the common housing to produce a yellow/green channel preselected spectral output; altering the illumination produced by a fourth LED illumination source by passing it through a fourth DLCA associated with the common housing to produce a cyan channel preselected spectral output; blending the blue, red, yellow/green, and cyan spectral outputs as they exit the common housing; and, wherein the first, second, and third LED illumination sources are blue LEDs which have an output in the range of substantially 440-475 nms and the fourth LED illumination is a cyan LED which has an output in the range of substantially 490-515 nms. One or more of the LED illumination sources can be a cluster of LEDs.
In the above methods and systems each DLCA provides at least one of Phosphors A-F wherein phosphor blend “A” is Cerium doped lutetium aluminum garnet (Lu3Al5O12) with an emission peak range of 530-540 nms; phosphor blend “B” is Cerium doped yttrium aluminum garnet (Y3Al5O12) with an emission peak range of 545-555 nms; phosphor blend “C” is Cerium doped yttrium aluminum garnet (Y3Al5O12) with an emission peak range of 645-655 nms; phosphor blend “D” is GBAM: BaMgAl10O17:Eu with an emission peak range of 520-530 nms; phosphor blend “E” is any semiconductor quantum dot material of appropriate size for an emission wavelength with a 620 nm peak and an emission peak of 625-635 nms; and, phosphor blend “F” is any semiconductor quantum dot material of appropriate size for an emission wavelength with a 610 nm peak and an emission peak of 605-615 nms.
In the above methods and systems the spectral output of the blue channel is substantially as shown in
Disclosed herein are aspects of methods and systems to blend multiple light channels to produce a preselected illumination spectrum by providing a common housing with an open top, cavities each having open tops, openings at the bottom to fit over an LED illumination source with a lumo converting device over each cavity's open top; altering the illumination produced by a first LED illumination source by passing it through a first lumo converting appliance (LCA) to produce a blue channel preselected spectral output; altering the illumination produced by a second LED illumination source by passing it through a second LCA to produce a red channel preselected spectral output; altering the illumination produced by a third LED illumination source by passing it through a third LCA to produce a yellow/green channel preselected spectral output; altering the illumination produced by a fourth LED illumination source by passing it through a fourth LCA to produce a cyan channel preselected spectral output; blending the blue, red, yellow/green and cyan spectral outputs as they exit the common housing; and, wherein the first, second, and third LED illumination sources are blue LEDs and the fourth LED illumination is cyan LEDs. In some instances at least one of the LED illumination sources is a cluster of LEDs.
Disclosed herein are aspects of methods and systems to blend multiple light channels to produce a preselected illumination spectrum by providing a common housing with an open top, cavities each having open tops, openings at the bottom to fit over an LED illumination source with a lumo converting device over each cavity's open top; altering the illumination produced by a first LED illumination source by passing it through a first lumo converting appliance (LCA) to produce a blue channel preselected spectral output; altering the illumination produced by a second LED illumination source by passing it through a second LCA to produce a red channel preselected spectral output; altering the illumination produced by a third LED illumination source by passing it through a third LCA to produce a yellow/green channel preselected spectral output; altering the illumination produced by a fourth LED illumination source by passing it through a fourth LCA to produce a cyan channel preselected spectral output; blending the blue, red, yellow/green and cyan spectral outputs as they exit the common housing; and, wherein the first, second, and third LED illumination sources are blue LEDs which have an output in the range of substantially 440-475 nms and the fourth LED illumination is a cyan LED which has an output in the range of substantially 490-515 nms. In some instances at least one of the LED illumination sources is a cluster of LEDs.
In the above methods and systems each LCA provides at least one of Phosphors A-F wherein phosphor blend “A” is Cerium doped lutetium aluminum garnet (Lu3Al5O12) with an emission peak range of 530-540 nms; phosphor blend “B” is Cerium doped yttrium aluminum garnet (Y3Al5O12) with an emission peak range of 545-555 nms; phosphor blend “C” is Cerium doped yttrium aluminum garnet (Y3Al5O12) with an emission peak range of 645-655 nms; phosphor blend “D” is GBAM: BaMgAl10O17:Eu with an emission peak range of 520-530 nms; phosphor blend “E” is any semiconductor quantum dot material of appropriate size for an emission wavelength with a 620 nm peak and an emission peak of 625-635 nms; and, phosphor blend “F” is any semiconductor quantum dot material of appropriate size for an emission wavelength with a 610 nm peak and an emission peak of 605-615 nms.
In the above methods and systems the spectral output of the blue channel is substantially as shown in
The disclosure, as well as the following further disclosure, is best understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosure, there are shown in the drawings exemplary implementations of the disclosure; however, the disclosure is not limited to the specific methods, compositions, and devices disclosed. In addition, the drawings are not necessarily drawn to scale. In the drawings:
The general disclosure and the following further disclosure are exemplary and explanatory only and are not restrictive of the disclosure, as defined in the appended claims. Other aspects of the present disclosure will be apparent to those skilled in the art in view of the details as provided herein. In the figures, like reference numerals designate corresponding parts throughout the different views. All callouts and annotations are hereby incorporated by this reference as if fully set forth herein.
Light emitting diode (LED) illumination has a plethora of advantages over incandescent to fluorescent illumination. Advantages include longevity, low energy consumption, and small size. White light is produced from a combination of LEDs utilizing phosphors to convert the wavelengths of light produced by the LED into a preselected wavelength or range of wavelengths. The light emitted by each light channel, i.e., the light emitted from the LED sources and associated lumo converting appliances (LCAs) or domed lumo converting appliances (DLCAs) together, can have a spectral power distribution (“SPD”) having spectral power with ratios of power across the visible wavelength spectrum from about 380 nm to about 780 nm. While not wishing to be bound by any particular theory, it is speculated that the use of such LEDs in combination with recipient converting appliances to create unsaturated light within the suitable color channels provides for improved color rendering performance for white light across a predetermined range of CCTs from a single device. While not wishing to be bound by any particular theory, it is speculated that because the spectral power distributions for generated light within the blue, cyan, red, and yellow/green channels contain higher spectral intensity across visible wavelengths as compared to lighting apparatuses and methods that utilize more saturated colors, this allows for improved color rendering.
Lighting units disclosed herein have shared internal tops, a common interior annular wall, and a plurality of reflective cavities. The multiple cavities form a unified body and provide for close packing of the cavities to provide a small reflective unit to mate with a work piece having multiple LED sources or channels which provide wavelength specific light directed through one of lumo converting appliances (LCAs) and domed lumo converting appliances (DLCAs) and then blending the output as it exists the lighting units.
Affixed to the surface 1002 of the work piece 1000 are light emitting diodes (LEDs). The first LED 30 emits a wavelength of light substantially “A”, the second LED 32 emits a wavelength of light substantially “B”, the third LED 34 emits a wavelength of light substantially “C” and the fourth LED 36 emits a wavelength of light substantially “D”. In some instances wavelength “A” is substantially 440-475 nms, wavelength “B” is substantially 440-475 nms, wavelength “C” is substantially 440-475 nms, and wavelength “D” is substantially 490-515 nms.
When the reflective unit is placed over the LEDs on the work piece, DLCAs are aligned with each LED. An LED may also be a cluster of LEDs in close proximity to one another whereby they are located in the same open bottom. Aligned with the first LED is a first DLCA 20A; aligned with the second LED is a second DLCA 20B; aligned with the third LED is a third DLCA 20C; and, aligned with the fourth LED is a fourth DLCA 20D.
The DLCA is preferably mounted to the open bottom 15 of the cavity at an interface 11 wherein the open boundary rim 22 of the DLCA (20A-20D) is attached via adhesive, snap fit, friction fit, sonic weld or the like to the open bottoms 15. In some instances the DLCAs are detachable. The DLCA is a roughly hemispherical device with an open bottom, curved closed top, and thin walls. The DLCA locates photoluminescence material associated with the DLCA remote from the LED illumination sources.
The interior wall 14 may be constructed of a highly reflective material such as plastic and metals which may include coatings of highly reflective materials such as TiO2 (Titanium dioxide), Al2O3 (Aluminum oxide) or BaSO4 (Barium Sulfide) on Aluminum or other suitable material. Spectralan™, Teflon™, and PTFE (polytetrafluoethylene).
The emitted wavelengths of light from each of the LEDs or LED clusters are altered when they pass through the photoluminescence material which is associated with the DLCA. The photoluminescence material may be a coating on the DLCA or integrated within the material forming the DLCA.
The photoluminescence materials associated with LCAs 100 are used to select the wavelength of the light exiting the LCA. Photoluminescence materials include an inorganic or organic phosphor; silicate-based phosphors; aluminate-based phosphors; aluminate-silicate phosphors; nitride phosphors; sulfate phosphor; oxy-nitrides and oxy-sulfate phosphors; or garnet materials including luminescent materials such as those disclosed in co-pending application PCT/US2016/015318 filed Jan. 28, 2016, entitled “Compositions for LED Light Conversions,” the entirety of which is hereby incorporated by this reference as if fully set forth herein. The phosphor materials are not limited to any specific examples and can include any phosphor material known in the art. Quantum dots are also known in the art. The color of light produced is from the quantum confinement effect associated with the nano-crystal structure of the quantum dots. The energy level of each quantum dot relates directly to the size of the quantum dot.
In some implementations of the present disclosure, the LCAs and DLCAs can be provided with combinations of two types of photoluminescence materials. The first type of luminescent material emits light at a peak emission between about 515 nm and about 590 nm in response to the associated LED string emission. The second type of photoluminescence material emits at a peak emission between about 590 nm and about 700 nm in response to the associated LED string emission. In some instances, the LCAs and DLCAs disclosed herein can be formed from a combination of at least one photoluminescence material of the first and second types described in this paragraph. In implementations, the photoluminescence materials of the first type can emit light at a peak emission at about 515 nm, 525 nm, 530 nm, 535 nm, 540 nm, 545 nm, 550 nm, 555 nm, 560 nm, 565 nm, 570 nm, 575 nm, 580 nm, 585 nm, or 590 nm in response to the associated LED string emission. In preferred implementations, the photoluminescence materials of the first type can emit light at a peak emission between about 520 nm to about 555 nm. In some implementations, the photoluminescence materials of the second type can emit light at a peak emission at about 590 nm, about 595 nm, 600 nm, 605 nm, 610 nm, 615 nm, 620 nm, 625 nm, 630 nm, 635 nm, 640 nm, 645 nm, 650 nm, 655 nm, 670 nm, 675 nm, 680 nm, 685 nm, 690 nm, 695 nm, or 700 nm in response to the associated LED string emission. In preferred implementations, the photoluminescence materials of the second type can emit light at a peak emission between about 600 nm to about 670 nm. Some exemplary photoluminescence materials of the first and second type are disclosed elsewhere herein and in some implementations can include Phosphors “A”-“F”.
Table 1 shows aspects of some exemplar phosphor blends and properties.
The altered light “W” from the first DLCA (the “Blue Channel”) 40A has a specific spectral pattern illustrated in
The altered light “X” from the second DLCA (the “Red Channel”) 40B has a specific spectral pattern illustrated in
The altered light “Y” from the third DLCA (the “Yellow/Green Channel”) 40C has a specific spectral pattern illustrated in
The altered light “Z” from the fourth DLCA (the “Cyan Channel”) 40D has a specific spectral pattern illustrated in
The photoluminescence material may be a coating on the DLCA or integrated within the material forming the DLCA.
Light mixes in unit, may reflect off internal wall 14 and exits top 17 which may include diffuser 18. The diffuser may be glass or plastic and may also be coated or embedded with Phosphors. The diffuser functions to diffuse at least a portion of the illumination exiting the unit to improve uniformity of the illumination from the unit.
The altered light wavelengths “X”-“Z” are preselected to blend to produce substantially white light 500.
In some instances wavelengths “W” have the spectral power distribution shown in
The process and method of producing white light 500 includes mixing or blending altered light wavelengths “W”-“Z” within the shared body 10. The mixing takes place as the illumination from each DLCA is reflected off the interior wall 14 of the shared body 10. Additional blending and smoothing takes place as the light passes through the optional diffuser 18.
Affixed to the surface of a work piece are light emitting diodes (LEDs). The first LED 30 emits a wavelength of light substantially “A”, the second LED 32 emits a wavelength of light substantially “B”, the third LED 34 emits a wavelength of light substantially “C” and the fourth LED 36 emits a wavelength of light substantially “D”. In some instances wavelength “A” is substantially 440-475 nms, wavelength “B” is 440-475 nms, wavelength “C” is 440-475 nms, and wavelength “D” is 490-515 nms.
When the reflective unit 100 is placed over the LEDs on the work piece, DLCAs in each cavity are aligned with each LED. An LED may also be a cluster of LEDs in close proximity to one another whereby they are located in the same open bottom. Aligned with the first LED is a first DLCA 40A; aligned with the second LED is a second DLCA 40B; aligned with the third LED is a third DLCA 40C; and, aligned with the fourth LED is a fourth DLCA 40D.
The emitted wavelengths of light from each of the LEDs or LED clusters are altered when they pass through the photoluminescence material which is associated with the DLCA. The photoluminescence material may be a coating on the DLCA or integrated within the material forming the DLCA.
The photoluminescence materials associated with DLCAs are used to select the wavelength of the light exiting the DLCA. Photoluminescence materials include an inorganic or organic phosphor; silicate-based phosphors; aluminate-based phosphors; aluminate-silicate phosphors; nitride phosphors; sulfate phosphor; oxy-nitrides and oxy-sulfate phosphors; or garnet materials. The phosphor materials are not limited to any specific examples and can include any phosphor material known in the art. Quantum dots are also known in the art. The color of light produced is from the quantum confinement effect associated with the nano-crystal structure of the quantum dots. The energy level of each quantum dot relates directly to the size of the quantum dot.
The illustration of four cavities is not a limitation; those of ordinary skill in the art will recognize that a two, three, four, five or more reflective cavity device is within the scope of this disclosure. Moreover, those of ordinary skill in the art will recognize that the specific size and shape of the reflective cavities in the unitary body may be predetermined to be different volumes and shapes; uniformity of reflective cavities for a unitary unit is not a limitation of this disclosure.
The altered light “W” from the first DLCA (the “Blue Channel”) 40A has a specific spectral pattern illustrated in
The altered light “X” from the second DLCA (the “Red Channel”) 40B has a specific spectral pattern illustrated in
The altered light “Y” from the third DLCA (the “Yellow/Green Channel”) 40C has a specific spectral pattern illustrated in
The altered light “Z” from the fourth DLCA (the “Cyan Channel”) 40D has a specific spectral pattern illustrated in
The photoluminescence material may be a coating on the DLCA or integrated within the material forming the DLCA.
Light mixes in unit, may reflect off internal wall 14 and exits top 17 which may include diffuser 18. The altered light wavelengths “X”-“Z” are preselected to blend to produce substantially white light.
In some instances wavelengths “W” have the spectral power distribution shown in
The process and method of producing white light 500 includes mixing or blending altered light wavelengths “W”-“Z” within the shared body 10. The mixing takes place as the illumination from each DLCA is reflected off the interior wall 14 of the shared body 10. A common reflective top surface 44, which sits above the open tops 43 of each cavity, may be added to provide additional reflection and direction for the wavelengths. Additional blending and smoothing takes place as the light passes through the optional diffuser 18.
Affixed to the surface 1002 of a work piece 1000 are light emitting diodes (LEDs). The first LED 30 emits a wavelength of light substantially “A”, the second LED 32 emits a wavelength of light substantially “B”, the third LED 34 emits a wavelength of light substantially “C” and the fourth LED 36 emits a wavelength of light substantially “D”. In some instances wavelength “A” is substantially 440-475 nms, wavelength “B” is 440-475 nms, wavelength “C” is 440-475 nms, and wavelength “D” is 490-515 nms.
When the reflective unit 150 is placed over the LEDs each cavity is aligned with an LED. An LED may also be a cluster of LEDs in close proximity to one another whereby they are located in the same open bottom.
Each reflective cavity has an open top 45. The reflective cavities direct the light from each LED towards the open top 45. Affixed to the open top of each cavity is a lumo converting device (LCA) 60A-60D. These are the first through fourth LCAs.
The emitted wavelengths of light from each of the LEDs or LED clusters are altered when they pass through the photoluminescence material which is associated with the LCA. The photoluminescence material may be a coating on the LCA or integrated within the material forming the LCA.
The photoluminescence materials associated with LCAs are used to select the wavelength of the light exiting the LCA. Photoluminescence materials include an inorganic or organic phosphor; silicate-based phosphors; aluminate-based phosphors; aluminate-silicate phosphors; nitride phosphors; sulfate phosphor; oxy-nitrides and oxy-sulfate phosphors; or garnet materials. The phosphor materials are not limited to any specific examples and can include any phosphor material known in the art. Quantum dots are also known in the art. The color of light produced is from the quantum confinement effect associated with the nano-crystal structure of the quantum dots. The energy level of each quantum dot relates directly to the size of the quantum dot.
The altered light “W” from the first LCA (the “Blue Channel”) 60A has a specific spectral pattern illustrated in
The altered light “X” from the second LCA (the “Red Channel”) 60B has a specific spectral pattern illustrated in
The altered light “Y” from the third LCA (the “Yellow/Green Channel”) 60C has a specific spectral pattern illustrated in
The altered light “Z” from the fourth LCA (the “Cyan Channel”) 60D has a specific spectral pattern illustrated in
Photoluminescence material may also be a coating on the reflective cavity internal wall “IW”. A reflective surface 155 is provided on the interior surface of the exterior wall 153 as shown in the top cut-away view in
Light mixes in unit, may reflect off internal wall 14 and exits top 17 which may include diffuser 18. The altered light wavelengths “X”-“Z” are preselected to blend to produce substantially white light.
In some instances wavelengths “W” have the spectral power distribution shown in
The process and method of producing white light 500 includes mixing or blending altered light wavelengths “W”-“Z” as the light leaves the reflective unit 150. The mixing takes place as the illumination from each cavity passes through each LCA and then blends as the wavelengths move forward.
It will be understood that various aspects or details of the invention(s) may be changed without departing from the scope of the disclosure and invention. It is not exhaustive and does not limit the claimed inventions to the precise form disclosed. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation. Modifications and variations are possible in light of the above description or may be acquired from practicing the invention. The claims and their equivalents define the scope of the invention(s).
This patent application is a continuation of U.S. patent application Ser. No. 16/433,853 filed Jun. 6, 2019, which is a continuation of U.S. patent application Ser. No. 15/693,091 filed Aug. 31, 2017 and issued as U.S. Pat. No. 10,415,768 on Sep. 17, 2019, which is a continuation of U.S. patent application Ser. No. 15/170,806, filed Jun. 1, 2016 and issued as U.S. Pat. No. 9,772,073 on Sep. 26, 2017, which is a continuation of international patent application PCT/US2016/015473 filed Jan. 28, 2016, the disclosures of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6653765 | Levinson | Nov 2003 | B1 |
7858408 | Mueller et al. | Dec 2010 | B2 |
8058088 | Cannon et al. | Nov 2011 | B2 |
8118454 | Rains, Jr. et al. | Feb 2012 | B2 |
8256930 | Cheng et al. | Sep 2012 | B2 |
8399267 | Ling | Mar 2013 | B2 |
8449128 | Ko et al. | May 2013 | B2 |
8556469 | Pickard | Oct 2013 | B2 |
8602579 | Van de Ven et al. | Dec 2013 | B2 |
9012938 | Yuan et al. | Apr 2015 | B2 |
9772073 | Petluri | Sep 2017 | B2 |
10197226 | Petluri | Feb 2019 | B2 |
10415768 | Petluri | Sep 2019 | B2 |
10578256 | Petluri | Mar 2020 | B2 |
20040052076 | Mueller | Mar 2004 | A1 |
20040105261 | Ducharme | Jun 2004 | A1 |
20070206375 | Piepgras | Sep 2007 | A1 |
20090026913 | Mrakovich | Jan 2009 | A1 |
20100142189 | Hong et al. | Jun 2010 | A1 |
20100237766 | Baumgartner et al. | Sep 2010 | A1 |
20110216522 | Harbers | Sep 2011 | A1 |
20120286304 | Letoquin et al. | Nov 2012 | A1 |
20130021775 | Veerasamy et al. | Jan 2013 | A1 |
20130207130 | Reiherzer | Aug 2013 | A1 |
20130235555 | Tanaka | Sep 2013 | A1 |
20140063779 | Bradford | Mar 2014 | A1 |
20140268631 | Pickard | Sep 2014 | A1 |
20140367633 | Bibl et al. | Dec 2014 | A1 |
20150162505 | Jones | Jun 2015 | A1 |
20150331285 | Bibl | Nov 2015 | A1 |
20170219170 | Petluri et al. | Aug 2017 | A1 |
20170343167 | Petluri | Nov 2017 | A1 |
20190203889 | Petluri | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
103307481 | Sep 2013 | CN |
2639491 | Sep 2013 | EP |
2017131721 | Aug 2017 | WO |
WO 2017131693 | Aug 2017 | WO |
Entry |
---|
International Patent Application No. PCT/US2017/047217; Int'l Preliminary Report on Patentability; dated Feb. 27, 2020; 11 pages. |
International Search Report dated May 18, 2018 in International Patent Application No. PCT/US2017/047217, 4 pages. |
International Written Opinon dated May 18, 2018 in International Patent Application No. PCT/US2017/047217, 9 pages. |
Koka et al., “Overcome major LED lighting design challenges with molded plastics” LED's Magazine, Mar. 23, 2015. |
International Search Report and Written Opinion dated Apr. 22, 2016, issued in International patent application PCT/US2016/015473 filed Jan. 28, 2016. |
International Patent Application No. PCT/US2017/047224; Int'l Search Report and the Written Opinion; dated May 15, 2018; 15 pages. |
International Patent Application No. PCT/US2016/015473; Int'l Preliminary Report on Patentability; dated Aug. 9, 2018; 9 pages. |
International Patent Application No. PCT/US2017/047224; Int'l Preliminary Report on Patentability; dated Feb. 27, 2020; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20200200333 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16433853 | Jun 2019 | US |
Child | 16807019 | US | |
Parent | 15693091 | Aug 2017 | US |
Child | 16433853 | US | |
Parent | 15170806 | Jun 2016 | US |
Child | 15693091 | US | |
Parent | PCT/US2016/015473 | Jan 2016 | US |
Child | 15170806 | US |