The present disclosure relates to an illumination apparatus comprising a plurality of addressable light-emitting elements aligned to a plurality of catadioptric optical elements. Such an apparatus may be used as a high definition directional backlight for a liquid crystal display (LCD). The apparatus may further be used to provide directional lighting from a spatially uniform area.
Thin substrate and polymer substrate LCD panels can provide mechanical characteristics such as flexibility that is similar to organic LED (OLED) displays. Such thin substrate LCDs desirably use backlights with similar mechanical characteristics.
High dynamic range LCDs (HDR-LCD) can achieve dynamic ranges that are superior to that which can be provided by an LCD optical mode alone. An array of light sources such as LEDs (light emitting diodes) that is addressed with lower resolution image data is provided in a local dimming LCD backlight, such that dark areas of an image are illuminated by the backlight with low luminance, and bright areas are illuminated with high luminance.
One type of LCD backlight comprises a light guide plate, and array of input light sources such as LEDs at one end of the light guide plate. Light that propagates by total internal reflection within the waveguide is output by means of surface features that adjust the propagation angle of light within the waveguide and allow extraction at angles close to grazing the outside of the waveguide. Such light is directed in a normal direction to the LCD by means of a turning film and/or rear reflectors. Such optical stacks may have high efficiency, but have multiple optical components with total backlight thickness typically 1 mm or greater. Such an edge illuminated light guide plate is not typically appropriate for two-dimensional local dimming for HDR-LCD illumination, or free-form shaped LCD.
Other known backlights incorporate an array of light emitting diodes (LEDs) in a matrix behind the LCD such as described in US patent application number US20170261179 comprises a plurality of spatially separated packaged LEDs and a multiple “batwing” optical elements, each batwing optical element arranged to direct light from the packaged LED in a lateral direction. Such light is strongly diffused to provide output illumination. Such backlights require expensive pick-and-place LED and individual optics alignment and have a high thickness and reduced efficiency in comparison to edge illuminated backlights.
Illumination systems for environmental lighting such as automobile headlights, architectural, commercial or domestic lighting may provide a narrow directional light output distribution, for example by means of focussing optics to provide spotlighting effects, or can achieve a wide directional light output distribution for example by means of diffusing optics.
In this specification LED refers to an unpackaged LED die chip extracted directly from a monolithic wafer, i.e. a semiconductor element. This is different from packaged LEDs which have been attached to a lead frame in order to provide electrodes and may be assembled into a plastic package to facilitate subsequent assembly. Packaged LEDs are typically of dimension greater than 1 mm, and more typically of dimension greater than 3 mm and are assembled by conventional Printed Circuit Board assembly techniques including pick and place methods. The accuracy of components placed by such assembly machines may typically be about plus or minus 30 micrometres. Such sizes and tolerances prevent application to very high resolution displays.
Micro-LEDs may be formed by array extraction methods in which multiple LEDs are removed from a monolithic wafer in parallel and may be arranged with positional tolerances that are less than 5 micrometres.
White LED lighting sources can be comprised of separate spectral bands such as red, green, blue and yellow, each created by a separate LED element. Such sources enable users to resolve the separate colours, and as a result of the separation of the sources in the lamp, can create coloured illumination patches. It would be desirable if the sources were homogenized so that their separation was less than the visual resolution limit.
Catadioptric elements combine refractive surfaces (dioptrics) and reflective surfaces (catoptrics), which may provide total internal reflection or reflection from metallised surfaces. Backlights employing catadioptric optical elements with small output luminous intensity solid angles are described in WO2010038025 incorporated by reference herein in its entirety.
According to a first aspect of the present disclosure there is provided an illumination apparatus comprising: a plurality of LEDs arranged in an LED array, wherein the plurality of LEDs are micro-LEDs or mini-LEDs, each of the plurality of LEDs being arranged to output light having a respective light output distribution; and a plurality of catadioptric optical elements arranged in a catadioptric optical array, each catadioptric optical element comprising a reflective surface and a transmissive surface facing the reflective surface, wherein: for each catadioptric optical element, the reflective surface is arranged to receive light output from one or more of the LEDs through the transmissive surface and to reflect the received light back through the transmissive surface, thereby to provide re-directed light having a respective light output distribution, wherein the light output distribution of the re-directed light provided by each catadioptric optical element has a luminous intensity half maximum solid angle that is smaller than the luminous intensity half maximum solid angle of the light output distribution of the light output by each of the plurality of LEDs.
Advantageously a thin directional illumination apparatus may be provided which has a pitch that is significantly greater than the thickness. A uniform output illumination profile may be achieved, such that the illumination apparatus may be provided as a backlight for a transmissive spatial light modulator with high uniformity. For a given power consumption the head-on output luminance may be increased in comparison with Lambertian illumination. For a given head-on luminance the power consumption may be increased.
At least some of the light from the plurality of LEDs may be guided, at least in part via total internal reflection, within the catadioptric optical array.
Each of the plurality of LEDs may be arranged on a first surface of at least one transmissive LED support substrate; and a transmissive output surface is provided by a second surface of the transmissive LED support substrate; wherein the second surface of the transmissive LED support substrate faces the first surface of the transmissive LED support substrate. Advantageously the number of components in the illumination apparatus may be reduced, reducing cost and complexity as well as reducing thickness.
The reflective surface of each catadioptric optical element may be arranged on a first surface of an input substrate, and a second surface of the input substrate facing the reflective surface comprises a transmissive input surface; wherein the first surface of the transmissive LED support substrate faces the transmissive input surface. Advantageously device thickness may be reduced for a given optical pathlength.
The light from the plurality of LEDs that may be guided within the catadioptric optical array is guided, at least in part via total internal reflection, between the reflective surface and the transmissive input surface. Advantageously light from the micro-LEDs may be distributed over large areas. The area illuminated by each micro-LED may be increased so that fewer micro-LEDs are needed, reducing cost.
Each catadioptric optical element may comprise an optical axis.
Each optical axis may be aligned in correspondence with a respective one or more of the LEDs, and each of the LEDs may be aligned in correspondence with the optical axis of only one of the catadioptric optical elements.
The illumination apparatus may further comprise a further plurality of LEDs arranged in an LED array, wherein the further plurality of LEDs are micro-LEDs or mini-LEDs. Each optical axis may be offset from one or more of the LEDs of the further plurality of LEDs. Each of the LEDs of the further plurality of LEDs may be offset from the optical axis of at least one of the catadioptric optical elements.
For each catadioptric optical element, the reflective surface may be arranged to receive light output from one or more of the further plurality of LEDs through the transmissive surface and to reflect the received light back through the transmissive surface, thereby to provide re-directed light having a respective light output distribution.
The light output distribution of the re-directed light provided by each catadioptric optical element using light output from the further plurality of LEDs may have a luminous intensity half maximum solid angle that is greater than the luminous intensity half maximum solid angle of the re-directed light provided by each catadioptric optical element using light output from the plurality of LEDs.
The light output distribution may be switched between a narrow output solid angle and a wide solid angle output. Advantageously a display may be provided that in one mode of operation provides a low stray light output for example to provide privacy, high efficiency for head-on viewing, or night operation and a second mode of operation with a wide range of viewing freedom and increased uniformity.
For each catadioptric optical element of the catadioptric optical array, the transmissive surface may comprise at least one refractive light output structure arranged on the transmissive surface and aligned in correspondence with the optical axis of the catadioptric optical element. Advantageously light output may be achieved with controllable angular distribution in areas of the output surface that would otherwise be shielded by the micro-LED, providing increased uniformity for a wide range of output angles, and minimising dark spot appearance in the region of the micro-LED. Uniformity is increased.
The input substrate may be formed as an integrated body that extends between the optical axes of the plurality of catadioptric optical elements. Advantageously a common alignment step may be provided for multiple catadioptric optical elements to the plurality of micro-LEDs, reducing cost and complexity and increasing robustness.
The LED support substrate may be formed as an integrated body that extends between the optical axes of the plurality of catadioptric optical elements. Advantageously many micro-LEDs may be arranged on the substrate in parallel, providing a known separation. Uniformity of alignment to the catadioptric optical array may be provided, increasing uniformity, reducing alignment cost and increasing robustness.
A transparent material may be provided between the first surface of the transmissive LED support substrate and the transmissive surface of the catadioptric element. The light from the plurality of LEDs that is guided within the catadioptric optical array may be guided between the reflective surface and the second surface of the transmissive LED support substrate. A transparent material with a lower refractive index than a material from which the input substrate is made may be arranged between the plurality of LEDs and the transmissive surfaces of the catadioptric optical elements. The transparent material may be air. Advantageously robustness may be increased and sensitivity to thermal variations reduced. Further the spatial uniformity of light output may be increased.
The reflective surface of the catadioptric optical array may comprise a reflective layer formed on the reflective surface. The reflective layer may comprise a metal material. The reflective layer may extend to cover the reflective surface of the catadioptric optical array. Advantageously light that is incident below the critical angle at the reflective surface may be reflected for output in directions that are near to the normal direction or in directions that guide within the catadioptric optical array. The overall efficiency of reflection from the reflected surface may be increased, increasing output efficiency.
The reflective surface of each catadioptric optical element may comprise a plurality of light reflecting facets.
For each catadioptric optical element the transmissive surface of the input substrate may further comprise a refractive light input structure aligned in correspondence with a respective optical axis of the catadioptric optical element. Each refractive light input structure may be arranged between the transmissive input surface and the reflective surface of the input substrate. The luminous intensity of light that is directed for output at locations near to the optical axis may be increased. Advantageously the appearance of dark spots near to the micro-LED may be reduced and uniformity increased.
In at least one catadioptric cross-sectional plane through its optical axis the refractive light input structure may comprise a plurality of pairs of oppositely inclined refractive input facets.
In at least one catadioptric cross-sectional plane the plurality of pairs of inclined input facets may be inclined at equal and opposite inclination angles. In the plane of the catadioptric optical array the plurality of pairs of inclined refractive input facets may be circularly or elliptically symmetric. Advantageously the thickness of the output microstructure may be reduced, reducing total thickness.
The transmissive surface of the input substrate may comprise planar regions between the refractive light input structures. The reflective surface may comprise reflective planar regions between at least some of the light reflecting facets of the reflective surface. Advantageously light may be guided to outer regions, increasing device area, reducing thickness and reducing total cost of micro-LEDs.
The reflective surface of each catadioptric optical element may comprise a reflective light input structure that is arranged between the reflective surface and the transmissive input surface of the input substrate. In at least one catadioptric cross-sectional plane through its optical axis the reflective light input structure may comprises a first inner surface and a second inner surface facing the first inner surface. For each catadioptric optical element of the catadioptric optical array, the refractive light input structure and reflective light input structure may be arranged to direct at least some light from the respective aligned at least one LED to be the light that is guided within the catadioptric optical array. In at least one catadioptric cross-sectional plane through its optical axis the first and second inner surfaces may comprise curved reflective surfaces. In at least one catadioptric cross-sectional plane through its optical axis the light reflecting facets of the reflective surface may be provided by pairs of inclined facets that are inclined with opposing inclination angles. Advantageously light may be guided to outer regions, increasing device area, reducing thickness and reducing total cost of micro-LEDs.
Some of the light reflecting facets of the reflective surface may be arranged to direct at least some light through the transmissive output surface of the catadioptric optical element in a direction substantially normal to the transmissive output surface. Advantageously additional light deflection films are not used, achieving reduced thickness and complexity of operation.
In the plane of the catadioptric array the light reflecting facets may be circularly or elliptically symmetric about the optical axis of each catadioptric optical element. The plurality of light reflecting facets of each catadioptric optical element may be concentric with the optical axis of said catadioptric optical element. Advantageously the light output may be provided across the area of the catadioptric optical element with high uniformity.
In at least one catadioptric cross-sectional plane through its optical axis the light reflecting facets of a catadioptric optical element may be arranged with a separation that decreases with distance from the optical axis of the catadioptric element. For each catadioptric optical element the length of the light reflecting facets may increase with distance from the optical axis of the respective catadioptric optical element. For each catadioptric optical element the total area of the light reflecting facets may increase with the distance from the optical axis of the respective catadioptric optical element. For each catadioptric optical element, the total area of the at least one light reflecting facet at a distance, r from the optical axis may be proportional to the distance, r. Advantageously the luminance provided from each region of the catadioptric optical element may be substantially the same, independent of distance from the micro-LED. Mura and Moiré effects may be minimised in a backlight apparatus.
Some of the light reflecting facets arranged on the reflective surface of the catadioptric optical element may be arranged to direct light that has not guided within the catadioptric optical array. Advantageously some of the light near to the optical axis may be output to provide luminance that is substantially as the regions in which light that has been guided is output.
The illumination apparatus may comprise a plurality of opaque mask regions wherein the first surface of the transmissive LED support substrate for each catadioptric optical element comprises an opaque mask region that is aligned with an optical axis of the catadioptric optical element. A respective one or more of the LEDs of the plurality of LEDs may be arranged between the mask region and the reflective surface. The opaque mask region may be provided between the refractive light output structure and the respective one or more of the LEDs of the plurality of LEDs. Advantageously the output angular directional distribution near to the optical axis may be substantially the same as the output angular directional distribution for regions not near to the optical axis.
The plurality of opaque mask regions may be provided by LED addressing electrodes. Advantageously the complexity of fabrication of the LED support substrate may be reduced, reducing cost.
Some light reflecting facets of the reflective surface of the respective catadioptric optical element may be arranged to direct light to the refractive light output structure. In at least one catadioptric cross-sectional plane through its optical axis the refractive light output structure may comprise a concave refractive surface arranged to provide negative optical power. In at least one catadioptric cross-sectional plane the refractive light output structure may comprise a plurality of pairs of oppositely inclined transmissive light deflecting facets. For each catadioptric optical element the plurality of pairs of oppositely inclined transmissive light deflecting facets may be circularly or elliptically symmetric in the plane of the transmissive output surface about the optical axis of the catadioptric optical element. Advantageously the angular directional distribution of light close to the optical axis may be substantially the same as the angular directional distribution from other regions of the catadioptric optical element.
The illumination apparatus may further comprise diffuser structures arranged on at least one surface of the transmissive LED support substrate. Advantageously additional diffuser layers may be reduced or eliminated, reducing thickness.
The angular light output distribution of light from the refractive light output structure may be substantially the same as the angular light output distribution of light from the plurality of reflective light reflecting facets that is transmitted through regions of the transmissive output substrate that do not comprise a refractive light output structure. Advantageously output uniformity across the catadioptric optical element may be substantially the same for a wide range of viewing directions.
The illumination apparatus may further comprise a reflective polariser arranged to provide polarisation recirculation of light reflected from the reflective surface of the catadioptric optical element. Advantageously the efficiency of polarised output may be increased. Further the recirculated light may be efficiently recycled by the reflective surface without additional reflective layers, reducing cost and complexity. Flexible, curved and bendable illumination structures may be conveniently provided by a thin illumination apparatus with reduced number of layers.
The ratio of luminous intensity half maximum solid angle of the output light cone to the luminous intensity half maximum solid angle of a Lambertian light source may be less than 1, preferably less than 50%, more preferably less than 25% and most preferably less than 10%. Advantageously display luminance may be increased for a given power consumption, or display power consumption may be reduced for a given display luminance. Further, a backlight for a privacy display may be provided that has low luminance at high viewing angles.
The illumination apparatus may further comprise a wavelength conversion layer. Advantageously white light output may be provided.
The wavelength conversion layer may be arranged between the LEDs of the plurality of LEDs and the reflective surface of each catadioptric optical element. Advantageously the angular directional distribution of output may be reduced.
The wavelength conversion layer may be arranged to receive light from the catadioptric optical array. Advantageously the wavelength diffusion layer may provide a further diffuser function and provide increased uniformity of output.
The electrodes of each of the LEDs of the plurality LEDs may be respectively connected to one column addressing electrode and one row addressing electrode. Advantageously the plurality of micro-LEDs may provide local area dimming for high dynamic range operation in cooperation with an LCD. Display contrast may be increased in comparison to area illumination.
The illumination apparatus may further comprise an integrated circuit controlling one or more LEDs and located within the LED array. The integrated circuit may comprise a storage or memory or latching function. Advantageously the width of the edges of the illumination apparatus may be reduced for small bezel width and flexibility.
The LEDs of the plurality of LEDs may be from a monolithic wafer arranged in an array with their original monolithic wafer positions and orientations relative to each other preserved. In at least one direction, for at least one pair of the plurality of LEDs in the at least one direction, for each respective pair there may have been at least one respective LED in the monolithic wafer that was positioned in the monolithic wafer between the pair of LEDs in the at least one direction and that is not positioned between them in the array of LEDs. Advantageously the pitch of the micro-LEDs may be determined at the time of transfer from the monolithic wafer to the substrate. The catadioptric optical element may have substantially the same pitch such that large numbers of micro-LEDs may be precisely aligned to large numbers of catadioptric optical elements. Advantageously cost and complexity of alignment of the illumination apparatus is reduced.
The LEDs of the plurality of LEDs may be micro-LEDs of width or diameter less than 300 micrometres, preferably less than 200 micrometres and more preferably less than 100 micrometres. In the at least one catadioptric cross-sectional plane the distance between the transmissive output surface and reflective surface may be less than 750 micrometres, preferably less than 500 micrometres and more preferably less than 250 micrometres. Advantageously, a thin and bright directional illumination apparatus may be provided. High resolution local area dimming may be further provided.
According to a second aspect of the present disclosure there is provided a display apparatus comprising an illumination apparatus according to the first aspect and a transmissive spatial light modulator arranged to receive light that has transmitted through the transmissive LED support substrate. Advantageously a thin display may be provided with local area dimming, high contrast, high resolution, high uniformity, free-form shapes, very low bezel width and flexibility. Further such a display may provide power savings, very high luminance in brightly lit environments, low stray light in low illuminance environments and privacy operation such that the display is only visible from a restricted viewing angle.
According to a third aspect of the present disclosure there is provided a backlight apparatus for a liquid crystal display comprising an illumination apparatus according to the first aspect.
According to a fourth aspect of the present disclosure there is provided an illumination apparatus comprising: a plurality of LEDs, the plurality of LEDs being arranged in an LED array, wherein the LEDs of the plurality of LEDs are micro-LEDs; and a catadioptric optical array to provide a light output distribution, the light output distribution being of light output from the LEDs of the plurality of LEDs; wherein: the catadioptric optical array comprises a plurality of catadioptric optical elements, the plurality of catadioptric optical elements being arranged in an array, each of the catadioptric optical elements of the plurality of catadioptric optical elements comprising an optical axis; the optical axis of each of the catadioptric optical elements is aligned in correspondence with a respective one or more of the LEDs of the plurality of LEDs, each of the LEDs of the plurality of LEDs being aligned with the optical axis of only one of the respective catadioptric optical elements of the catadioptric optical array; each catadioptric optical element of the catadioptric optical array comprises: a reflective surface comprising a plurality of light reflecting facets arranged on the reflective surface and aligned in correspondence with the optical axis; and a transmissive output surface wherein the transmissive output surface faces the reflective surface; the plurality of LEDs is arranged between the reflective surface and the transmissive output surface and the plurality of LEDs is arranged to illuminate the reflective surface; at least some of the light from the plurality of LEDs is guided within the catadioptric optical array; and the plurality of light reflecting facets is arranged to direct light through the transmissive output surface of the catadioptric optical array; wherein the light output distribution has a luminous intensity half maximum solid angle that is smaller than the luminous intensity half maximum solid angle of the light output distribution from each of the plurality of LEDs.
Advantageously a thin directional illumination apparatus may be provided which has a pitch that is significantly greater than the thickness. A uniform output illumination profile may be achieved, such that the illumination apparatus may be provided as a backlight for a transmissive spatial light modulator with high uniformity. For a given power consumption the head-on output luminance may be increased in comparison with Lambertian illumination. For a given head-on luminance the power consumption may be increased.
The plurality of LEDs may be arranged on the first surface of a transmissive LED support substrate; and the transmissive output surface may be provided by the second surface of the transmissive LED support substrate; wherein the second surface of the transmissive LED support substrate faces the first surface of the transmissive LED support substrate. Advantageously the number of components in the illumination apparatus may be reduced, reducing cost and complexity as well as reducing thickness.
The reflective surface of each catadioptric optical element may be arranged on the first surface of an input substrate, and the second surface of the input substrate facing the reflective surface may comprise a transmissive input surface; wherein the first surface of the transmissive LED support substrate faces the transmissive input surface. Advantageously device thickness may be reduced for a given optical pathlength.
The light from the plurality of LEDs that is guided within the catadioptric optical array may be guided between the reflective surface and the transmissive input surface. Advantageously light from the micro-LEDs may be distributed over large areas. The area illuminated by each micro-LED may be increased so that fewer micro-LEDs are needed, reducing cost.
For each catadioptric optical element of the catadioptric optical array the transmissive output surface may comprise at least one refractive light output structure arranged on the transmissive output surface and aligned in correspondence with the optical axis of the catadioptric optical element. Advantageously light output may be achieved with controllable angular distribution in areas of the output surface that would otherwise be shielded by the micro-LED, providing increased uniformity for a wide range of output angles, and minimising dark spot appearance in the region of the micro-LED. Uniformity is increased.
The input substrate may be formed as an integrated body that extends between the optical axes of the plurality of catadioptric optical elements. Advantageously a common alignment step may be provided for multiple catadioptric optical elements to the plurality of micro-LEDs, reducing cost and complexity and increasing robustness.
The LED support substrate may be formed as an integrated body that extends between the optical axes of the plurality of catadioptric optical elements. Advantageously many micro-LEDs may be arranged on the substrate in parallel, providing a known separation. Uniformity of alignment to the catadioptric optical array may be provided, increasing uniformity, reducing alignment cost and increasing robustness.
A transparent material may be provided between the first surface of the transmissive LED support substrate and the transmissive input surface; and the light from the plurality of LEDs that is guided within the catadioptric optical array may be guided between the reflective surface and the second surface of the transmissive LED support substrate. Advantageously robustness may be increased and sensitivity to thermal variations reduced.
The reflective surface of the catadioptric optical array may comprise a reflective layer formed on the reflective surface. The reflective layer may extend to cover the reflective surface of the catadioptric optical array. Advantageously light that is incident below the critical angle at the reflective surface may be reflected for output in directions that are near to the normal direction or in directions that guide within the catadioptric optical array. The overall efficiency of reflection from the reflected surface may be increased, increasing output efficiency.
For each catadioptric optical element the transmissive surface of the input substrate may further comprises a refractive light input structure aligned to the respective optical axis; wherein each light input structure is arranged between the transmissive input surface and the reflective surface of the input substrate. The luminous intensity of light that is directed for output at locations near to the optical axis may be increased. Advantageously the appearance of dark spots near to the micro-LED may be reduced and uniformity increased.
In at least one catadioptric cross-sectional plane through its optical axis the refractive light input structure may comprise a plurality of pairs of oppositely inclined refractive input facets.
In at least one catadioptric cross-sectional plane the plurality of pairs of inclined input facets may be inclined at equal and opposite inclination angles; and in the plane of the catadioptric optical array the plurality of pairs of inclined refractive input facets may be circularly or elliptically symmetric. Advantageously the thickness of the output microstructure may be reduced, reducing total thickness.
The transmissive surface of the input substrate may comprise planar regions between the refractive light input structures. The reflective surface may comprise reflective planar regions between at least some of the light reflecting facets of the reflective surface. Advantageously light may be guided to outer regions, increasing device area, reducing thickness and reducing total cost of micro-LEDs.
The reflective surface of each catadioptric optical element may comprise a reflective light input structure that may be arranged between the reflective surface and the transmissive input surface of the input substrate; wherein in at least one catadioptric cross-sectional plane through its optical axis the reflective light input structure may comprise a first inner surface and a second inner surface facing the first inner surface wherein for each catadioptric optical element of the catadioptric optical array, the refractive light input structure and reflective light input structure may be arranged to direct at least some light from the respective aligned at least one LED to be the light that is guided within the catadioptric optical array. In at least one catadioptric cross-sectional plane through its optical axis the first and second inner surfaces may comprise curved reflective surfaces. In at least one catadioptric cross-sectional plane through its optical axis the light reflecting facets of the reflective surface may be provided by pairs of inclined facets that are inclined with opposing inclination angles. Advantageously light may be guided to outer regions, increasing device area, reducing thickness and reducing total cost of micro-LEDs.
Some of the light reflecting facets of the reflective surface may be arranged to direct at least some light through the transmissive output surface of the catadioptric optical element in a direction substantially normal to the transmissive output surface. Advantageously additional light deflection films are not used, achieving reduced thickness and complexity of operation.
In the plane of the catadioptric array the light reflecting facets may be circularly or elliptically symmetric about the optical axis of each catadioptric optical element. The plurality of light reflecting facets of each of the catadioptric optical elements may be concentric with the optical axis of said catadioptric optical element. Advantageously the light output may be provided across the area of the catadioptric optical element with high uniformity.
For each catadioptric optical element the length of the light reflecting facets may increase with distance from the optical axis of the respective catadioptric optical element. For each catadioptric optical element the total area of the light reflecting facets may increase with the distance from the optical axis of the respective catadioptric optical element. For each catadioptric optical element, the total area of the at least one light reflecting facet at a distance, r from the optical axis may be proportional to the distance, r. In at least one catadioptric cross-sectional plane through its optical axis the light reflecting facets of a catadioptric optical element may be arranged with a separation that decreases with distance from the optical axis of the catadioptric element. In the plane of a catadioptric optical element the length of the light reflecting facets may increase with distance from the optical axis of the respective catadioptric optical element. In the plane of a catadioptric optical element the total area of the light reflecting facets may increase with the distance from the optical axis of the respective catadioptric optical element. In the plane of a catadioptric optical element the total area of the light reflecting facets may be proportional to the distance from the optical axis of the respective catadioptric optical element. Advantageously the luminance provided from each region of the catadioptric optical element may be substantially the same, independent of distance from the micro-LED. Mura and Moiré effects may be minimised in a backlight apparatus.
Some of the light reflecting facets arranged on the reflective surface of the catadioptric optical element may be arranged to direct light that has not guided within the catadioptric optical array. Advantageously some of the light near to the optical axis may be output to provide luminance that is substantially as the regions in which light that has been guided is output.
The illumination apparatus may comprise a plurality of opaque mask regions wherein the first surface of the transmissive LED support substrate for each catadioptric optical element may comprise an opaque mask region that is aligned with an optical axis of the catadioptric optical element; wherein a respective one or more of the LEDs of the plurality of LEDs may be arranged between the mask region and the reflective surface; and wherein the opaque mask region may be provided between the refractive light output structure and the respective one or more of the LEDs of the plurality of LEDs. Advantageously the output angular directional distribution near to the optical axis may be substantially the same as the output angular directional distribution for regions not near to the optical axis.
The plurality of opaque mask regions may be provided by LED addressing electrodes. Advantageously the complexity of fabrication of the LED support substrate may be reduced, reducing cost.
Some light reflecting facets of the reflective surface of the respective catadioptric optical element may be arranged to direct light to the refractive light output structure. In at least one catadioptric cross-sectional plane through its optical axis the refractive light output structure may comprise a concave refractive surface arranged to provide negative optical power. In at least one catadioptric cross-sectional plane the refractive light output structure may comprise a plurality of pairs of oppositely inclined transmissive light deflecting facets. For each catadioptric optical element the plurality of pairs of oppositely inclined transmissive light deflecting facets may be circularly or elliptically symmetric in the plane of the transmissive output surface about the optical axis of the catadioptric optical element.
Advantageously the angular directional distribution of light close to the optical axis may be substantially the same as the angular directional distribution from other regions of the catadioptric optical element.
The illumination apparatus may further comprise diffuser structures arranged on at least one surface of the transmissive LED support substrate. Advantageously additional diffuser layers may be reduced or eliminated, reducing thickness.
The angular light output distribution of light from the refractive light output structure may be substantially the same as the angular light output distribution of light from the plurality of reflective light reflecting facets that is transmitted through regions of the transmissive output substrate that do not comprise a refractive light output structure. Advantageously output uniformity across the catadioptric optical element may be substantially the same for a wide range of viewing directions.
The illumination apparatus may further comprise a reflective polariser arranged to provide polarisation recirculation of light reflected from the reflective surface of the catadioptric optical element. Advantageously the efficiency of polarised output may be increased. Further the recirculated light may be efficiently recycled by the reflective surface without additional reflective layers, reducing cost and complexity. Flexible, curved and bendable illumination structures may be conveniently provided by a thin illumination apparatus with reduced number of layers.
The ratio of luminous intensity half maximum solid angle of the output light cone to the luminous intensity half maximum solid angle of a Lambertian light source may be less than 1, preferably less than 50%, more preferably less than 25% and most preferably less than 10%. Advantageously display luminance may be increased for a given power consumption, or display power consumption may be reduced for a given display luminance. Further, a backlight for a privacy display may be provided that has low luminance at high viewing angles.
The illumination apparatus may further comprise a wavelength conversion layer. Advantageously white light output may be provided.
The wavelength conversion layer may be arranged between the LEDs of the plurality of LEDs and the reflective surface of each catadioptric optical element. Advantageously the angular directional distribution of output may be reduced.
The wavelength conversion layer may be arranged to receive light from catadioptric optical array. Advantageously the wavelength diffusion layer may provide a further diffuser function and provide increased uniformity of output.
The electrodes of each of the LEDs of the plurality LEDs may be respectively connected to one column addressing electrode and one row addressing electrode. Advantageously the plurality of micro-LEDs may provide local area dimming for high dynamic range operation in cooperation with an LCD. Display contrast may be increased in comparison to area illumination.
The illumination apparatus may further comprise an integrated circuit controlling one or more LEDs and located within the LED array. The integrated circuit may comprise a memory or latching function. Advantageously the width of the edges of the illumination apparatus may be reduced for small bezel width and flexibility.
The LEDs of the plurality of LEDs may be from a monolithic wafer arranged in an array with their original monolithic wafer positions and orientations relative to each other preserved; and wherein in at least one direction, for at least one pair of the plurality of LEDs in the at least one direction, for each respective pair there was at least one respective LED in the monolithic wafer that was positioned in the monolithic wafer between the pair of LEDs in the at least one direction and that is not positioned between them in the array of LEDs. Advantageously the pitch of the micro-LEDs may be determined at the time of transfer from the monolithic wafer to the substrate. The catadioptric optical element may have substantially the same pitch such that large numbers of micro-LEDs may be precisely aligned to large numbers of catadioptric optical elements. Advantageously cost and complexity of alignment of the illumination apparatus is reduced.
The LEDs of the plurality of LEDs may be micro-LEDs of width or diameter less than 300 micrometres, preferably less than 200 micrometres and more preferably less than 100 micrometres. In the at least one catadioptric cross-sectional plane the distance between the transmissive output surface and reflective surface may be less than 750 micrometres, preferably less than 500 micrometres and more preferably less than 250 micrometres. Advantageously, a thin and bright directional illumination apparatus may be provided. High resolution local area dimming may be further provided.
According to a fifth aspect of the present disclosure there is provided a display apparatus comprising the illumination apparatus of the fourth aspect and a transmissive spatial light modulator arranged to receive light that has transmitted through the transmissive LED support substrate. Advantageously a thin display may be provided with local area dimming, high contrast, high resolution, high uniformity, free-form shapes, very low bezel width and flexibility. Further such a display may provide power savings, very high luminance in brightly lit environments, low stray light in low illuminance environments and privacy operation such that the display is only visible from a restricted viewing angle.
According to a sixth aspect of the present disclosure there is provided an illumination apparatus comprising: a plurality of LEDs, the plurality of LEDs being arranged in an LED array, wherein the LEDs of the plurality of LEDs are mini-LEDs; a transmissive LED support substrate comprising a first surface and a second surface facing the first surface wherein the plurality of LEDs is arranged on the first surface of the transmissive LED support substrate; and a catadioptric optical array to provide a light output distribution, the light output distribution being of light output from the LEDs of the plurality of LEDs; wherein: the catadioptric optical array comprises a plurality of catadioptric optical elements, the plurality of catadioptric optical elements being arranged in an array, each of the catadioptric optical elements of the plurality of catadioptric optical elements comprising an optical axis; the optical axis of each of the catadioptric optical elements is aligned in correspondence with a respective one or more of the LEDs of the plurality of LEDs, each of the LEDs of the plurality of LEDs being aligned with the optical axis of only one of the respective catadioptric optical elements of the catadioptric optical array; the catadioptric optical array comprises a reflective surface and a transmissive surface facing the reflective surface; the first surface of the transmissive LED support substrate faces the transmissive surface of the catadioptric optical array; at least some of the light from the plurality of LEDs is guided within the catadioptric optical array between the reflective surface and the transmissive surface; and each catadioptric optical element of the catadioptric optical array comprises a plurality of light reflecting facets arranged on the reflective surface; wherein at least some of the plurality of light reflecting facets are arranged to direct light that is guided between the reflective surface and the transmissive surface of the catadioptric optical array through the transmissive surface of the catadioptric optical array and through the transmissive LED support substrate. The catadioptric optical array may be formed as an integrated body and the reflective surface and the transmissive surface of the catadioptric optical array extend between the plurality of LEDs. The reflective surface of the catadioptric optical array may comprise a reflective coating that extends to cover the reflective surface of the catadioptric optical array. The transmissive surface of each catadioptric optical element may comprise a refractive light input structure that is arranged between the transmissive surface and the reflective surface; wherein each refractive light input structure may be aligned with the optical axis of the catadioptric optical element; wherein in at least one catadioptric cross-sectional plane through its optical axis the refractive light input structure may comprise a plurality of pairs of oppositely inclined refractive facets that are inclined at equal and opposite inclination angles; and in the plane of the catadioptric array the plurality of pairs of inclined refractive facets may be circularly or elliptically symmetric. The reflective surface of each catadioptric optical element may comprise a reflective light input structure that is arranged between the reflective surface and the transmissive input surface of the input substrate to the light guiding surface; wherein in at least one catadioptric cross-sectional plane through its optical axis the reflective input structure comprises a first inner surface and a second inner surface facing the first inner surface; and the refractive light input structure and reflective light input structure may be arranged to direct light from the respective aligned at least one LED to be guided within the catadioptric optical array between the reflective surface and the transmissive surface of the catadioptric optical array. The light reflecting facets of the reflective surface may be provided by pairs of inclined facets that are inclined with opposing inclination angles; and wherein in the plane of the catadioptric array the light reflecting facets may be circularly or elliptically symmetric and are concentric with the optical axis of said catadioptric optical element. The light reflecting facets of the reflective surface may be arranged to direct at least some light through the transmissive surface of the catadioptric optical array and the transmissive LED substrate in a direction normal to the surface of the transmissive LED substrate. In at least one catadioptric cross-sectional plane through its optical axis the light reflecting facets of a catadioptric optical element may be arranged with a separation that decreases with distance from the optical axis of the catadioptric element. In the plane of the catadioptric array the length of the light reflecting facets may increase with distance from the optical axis of the respective catadioptric optical element; wherein the total area of the light reflecting facets increases with the distance from the optical axis of the respective catadioptric optical element. The illumination apparatus may further comprise light reflecting facets arranged on the reflective surface of the catadioptric optical element and arranged to direct light from an aligned LED through the transmissive LED substrate that has not guided between the reflective and transmissive surfaces of the catadioptric optical element. The first surface of the transmissive LED support substrate may comprise a plurality of opaque mask regions that are aligned with the optical axis of the catadioptric optical element wherein a respective one or more of the LEDs of the plurality of LEDs is arranged on each of the opaque mask regions; wherein the plurality of opaque mask regions may be provided by LED addressing electrodes. Some light reflecting facets of the reflective surface of the respective catadioptric optical element may be arranged to direct light through the first surface of the LED support substrate to the output refractive structures arranged at the second surface of the transmissive LED support substrate and aligned with the optical axis of the catadioptric optical element; wherein in at least one catadioptric cross-sectional plane the output refractive structure may comprise a plurality of pairs of oppositely inclined transmissive light deflecting facets. The illumination apparatus may further comprise diffuser structures arranged on at least one surface of the transmissive LED support substrate.
According to a seventh aspect of the present disclosure there is provided a backlight apparatus for a liquid crystal display comprising the illumination apparatus of the sixth aspect.
Such an apparatus may be used for LCD backlighting or for domestic or professional lighting.
These and other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art upon reading this disclosure in its entirety.
Embodiments are illustrated by way of example in the accompanying figures, wherein like reference numbers indicate similar parts.
It would be desirable to provide a thin illumination apparatus for display, display backlighting or for domestic or professional environmental lighting. Environmental lighting may include illumination of a room, office, building, scene, street, equipment, or other illumination environment. Display backlighting means an illumination apparatus arranged to illuminate a transmissive spatial light modulator such as a liquid crystal display. The micro-LEDs of a display backlight may be provided with image information, for example in high dynamic range operation as will be described herein. However, in general pixel data is provided by the spatial light modulator.
It would further be desirable to provide a thin backlight for a spatial light modulator that can provide local area dimming for high dynamic range, a thin package, a widely spaced array of light sources and high uniformity. It would be further desirable to provide thin, flexible and free-form shapes (for example circular) backlights for thin substrate LCDs with very low bezel widths that achieve appropriate light output distributions with high uniformity, high efficiency and HDR capability.
The structure and operation of various switchable display devices will now be described. In this description, common elements have common reference numerals. It is noted that the disclosure relating to any element applies to each device in which the same or corresponding element is provided. Accordingly, for brevity such disclosure is not repeated.
In operation, micro-LEDs 3 provide light rays in a direction that is away from a spatial light modulator 48 and towards a reflective surface 64 as indicated by arrow 103. Light rays are reflected at reflective surface 64 and directed back through the catadioptric optical element 38 as indicated by arrow 105. In the present embodiments, the folded optical path illustrated by arrows 103, 105 advantageously achieves high optical efficiency, low thickness and high uniformity over areas that are much greater than the area of the individual micro-LEDs, as will be described further herein.
An illumination apparatus comprises a plurality of LEDs, the plurality of LEDs being arranged in an LED array, wherein the LEDs of the plurality of LEDs are micro-LEDs 3; and a catadioptric optical array 100 to provide a light output distribution, the light output distribution being of light output from the LEDs of the plurality of micro-LEDs 3.
The catadioptric optical array 100 comprises a plurality of catadioptric optical elements 38, the plurality of catadioptric optical elements 38 being arranged in an array, each of the catadioptric optical elements 38 of the plurality of catadioptric optical elements comprising an optical axis 11, thus in
The plurality of catadioptric optical elements 38 may typically be arranged as a two-dimensional array in the plane of the catadioptric optical array 100. Alternatively the catadioptric optical array may be one dimensional, that is elongate in a direction in the plane of the catadioptric optical array.
Each catadioptric optical element 38 of the catadioptric optical array 100 comprises a reflective surface 64 comprising a plurality of light reflecting facets 70, 72 arranged on the reflective surface 64 and aligned with the optical axis 11. Each catadioptric optical element 38 further comprises a transmissive output surface 52 comprising at least one refractive light output structure 56 arranged on the transmissive output surface 52 and aligned with respect to the optical axis 11. The transmissive output surface 52 faces the reflective surface 64.
A display apparatus comprises the backlight apparatus comprising micro-LED 3 array and catadioptric optical array 100, and a transmissive spatial light modulator 200 arranged to receive light that has transmitted through the transmissive LED support substrate 50. Typically the transmissive spatial light modulator 200 comprises a liquid crystal display with input polariser 204, substrate 206, liquid crystal layer 208, substrate 210 and output polariser 212. Further layers comprising reflective polariser 202 and diffuser 203 may be provided.
Advantageously addressable illumination can be provided in a thin optical stack. Substrates 206, 210 may comprise thin substrates, such as 150 micrometres thickness or less that may be flexible. Thin substrates may be micro-sheet glass, glass that has been thinned by chemical-mechanical polishing, or polymer substrates such as polyimide or colourless polyimide. Advantageously an LCD that may be curved or used for flexible display may be provided as will be described further hereinbelow.
Further the total thickness of the spatial light modulator 200 may be less than 1 mm, preferably less than 500 micrometres, and most preferably less than 250 micrometres for applications such as mobile display. Control electronics may be provided within the active area of the spatial light modulator to provide substantially zero bezel, for example bezel widths of less than 500 micrometres. Further free-form shapes for the spatial light modulator, such as circular display may be achieved as will be described further hereinbelow.
It would be desirable to provide a backlight optical system that has the same or less thickness than the spatial light modulator 48, is flexible and can provide illumination of very low bezel width wherein the x-axis and y-axis dimensions of the display are similar, and free-form displays. Further it would be desirable to provide an addressable array of light sources to illuminate the spatial light modulator 200 to achieve high dynamic range, advantageously increasing image contrast.
For the purposes of the present disclosure, the plurality of LEDs are micro-LEDs 3 of width or diameter less than 300 micrometres, preferably less than 200 micrometres and more preferably less than 100 micrometres. LEDs that have minimum width or diameter between 100 and 500 micrometres may also be referred to as mini-LEDs.
Such micro-LEDs 3 have a minimum width or diameter that may be substantially larger than the width of red, green and blue image pixels 220, 222, 224 provided on the spatial light modulator 200
In an illustrative example, the pixels 220, 222, 224 may have a pitch of 25×75 micrometres for example. Micro-LED 3 may have a width or diameter that is 100 micrometres, and catadioptric optical element 38 may have a pitch in at least one catadioptric cross section that is 1 mm. Thus micro-LED 3 may be arranged to illuminate more than 500 image pixels 220, 222, 224.
The plurality of micro-LEDs 3 is arranged on the first surface 54 of a transmissive LED support substrate 50 and the transmissive output surface 52 of the catadioptric optical element 38 is provided by the second surface of the transmissive LED support substrate 50. The second surface 52 of the transmissive LED support substrate 50 faces the first surface 54 of the transmissive LED support substrate 50. The LED support substrate 50 is formed as an integrated body that extends between the optical axes 11 of the plurality of catadioptric optical elements 38.
Advantageously during manufacture and assembly the plurality of micro-LEDs 3 may be conveniently assembled on surface 54 of the transmissive LED support substrate 50, that may comprise electrodes 7,8 and other electronic components as will be described further hereinbelow.
Electrodes 8 are arranged to provide electrical connection to the micro-LED 3 and are provided with signals from backlight controller 130. Display controller 230 is arranged to provide image pixels 220, 222, 224 with image data and may further provide backlight controller 130 with image data such that the LEDs 3 of the LED array are provided with image data. High dynamic range operation may be provided to advantageously achieve increased image contrast.
The reflective surface 64 of each catadioptric optical element 38 is arranged on the first surface 62 of an input substrate 60, and a transmissive input surface 62 faces the reflective surface 64. The first surface 54 of the transmissive LED support substrate 50 faces the transmissive input surface 62.
The input substrate 60 is formed as an integrated body that extends between the optical axes 11 of the plurality of catadioptric optical elements 38. Advantageously during manufacture and assembly optical structures may be arranged on the substrate 60 such that a large area backlight may be conveniently provided. Further, alignment with the transmissive LED support substrate 50 may be conveniently provided over a large area.
The reflective surface 64 of the catadioptric optical array 100 comprises a reflective layer 65 formed on the reflective surface 64. The reflective layer 65 extends to cover the reflective surface 64 of the catadioptric optical array 100. The reflective layer may be provided for example by a metal layer that may be formed on the surface 64 by means of evaporation, sputtering, spray or dip coating. Suitable metals include silver or aluminium that may be provided with protective layers to minimise corrosion and provide barrier layers to water and oxygen ingress.
The metal reflective layer 65 achieves efficient reflection of light for angles of incidence below the critical angle at a surface if the surface were uncoated. In conventional edge illuminated waveguides for LCD backlights, metals undesirably provide substantial losses because of large number of surface reflections that take place during guiding along the waveguide. In the present embodiments, the number of reflections from the metal layer is small in comparison to conventional waveguides and thus losses from metal layers 65 are substantially reduced. Advantageously a thin catadioptric optical element 38 can be provided with high efficiency with micro-LEDs that are arranged within the active area of the spatial light modulator 48 and do not provide hot-spots of illumination around said micro-LEDs 3.
The metal layer 65 may alternatively be patterned, for example to cover the region of reflective light input structure 68. Advantageously losses due to reflections at metal layers 65 may be reduced.
Adhesive regions 80 may be further provided between the input substrate 60 and transmissive LED support substrate 50. Adhesive regions 80 may provide attachment of the two layers to advantageously achieve robust alignment and reduced sensitivity to thermal changes.
In other words, an illumination apparatus may comprise a plurality of LEDs, the plurality of LEDs being arranged in an LED array, wherein the LEDs of the plurality of LEDs are micro-LEDs 3. The mini-LEDs 3 may be arranged on a transmissive LED support substrate 50 comprising a first surface 54 and a second surface 52 facing the first surface 54 wherein the plurality of mini-LEDs 3 is arranged on the first surface 54 of the transmissive LED support substrate 50. Further a catadioptric optical array 100 may be provided to provide a light output distribution, the light output distribution being of light output from the mini-LEDs 3 of the plurality of mini-LEDs 3. The catadioptric optical array 100 comprises a plurality of catadioptric optical elements 38, the plurality of catadioptric optical elements 38 being arranged in an array, each of the catadioptric optical elements 38 of the plurality of catadioptric optical elements 38 comprising an optical axis 11. The optical axis 11 of each of the catadioptric optical elements 38 is aligned in correspondence with a respective one or more of the mini-LEDs 3 of the plurality of mini-LEDs 3, each of the mini-LEDs 3 of the plurality of mini-LEDs 3 being aligned with the optical axis 11 of only one of the respective catadioptric optical elements 38 of the catadioptric optical array 100. The catadioptric optical array 100 comprises a reflective surface 64 and a transmissive surface facing the reflective surface 64. The first surface of the transmissive LED support substrate 50 faces the transmissive surface of the catadioptric optical array 100. At least some of the light from the plurality of mini-LEDs 3 is guided within the catadioptric optical array 100 between the reflective surface 64 and the transmissive surface. Each catadioptric optical element 38 of the catadioptric optical array 100 comprises a plurality of light reflecting facets 70 arranged on the reflective surface 64; wherein at least some of the plurality of light reflecting facets 70 are arranged to direct light that is guided between the reflective surface 64 and the transmissive surface of the catadioptric optical array 100 through the transmissive surface of the catadioptric optical array 100 and through the transmissive LED support substrate 50.
The arrangement of optical structures in the plane of catadioptric optical array 100 will now be described.
Reflective surface 64 comprises a plurality of tessellated polygons, in this illustration hexagonal regions 90 are centred on optical axes 11a, 11b and 11c. Hexagonal regions are arranged over the width of the backlight and represent the location of each catadioptric optical element 38 in the plane of the reflective surface 64. Each catadioptric optical element 38 comprises reflective light input structure 68 and reflective facets 70, 72, 74 as will be described further hereinbelow.
Transmissive input surface 62 comprises hexagonal regions 91 centred on the same respective optical axes 11a, 11b and 11c as for the reflective surface 64. Refractive light input structures 66 are arranged in alignment with optical axes 11a, 11b and 11c.
The plurality of micro-LEDs 3 is centred on hexagonal regions 92 and on the same respective optical axes 11a, 11b and 11c as for the reflective surface 64.
The first surface 54 of the transmissive LED support substrate 50 comprises hexagonal regions 93 centred on the same respective optical axes 11a, 11b and 11c as for the reflective surface 64, as well as opaque regions 7 that may be electrodes, as well as addressing electrodes 8 to provide electrical connectivity to each of the micro-LEDs 3, each arranged in alignment with optical axes 11a, 11b and 11c.
The transmissive output surface 52 comprises hexagonal regions 94 centred on the same respective optical axes 11a, 11b and 11c as for the reflective surface 64, as well as refractive light output structure 56.
Light output through the transmissive output surface 52 may be incident on a diffuser 203, reflective polariser and spatial light modulator 200 comprising input polariser 204, liquid crystal pixel layer 208 and output polariser 212. For illustrative purposes the location of the hexagonal structures in alignment with the spatial light modulator 200 is shown, illustrating that many pixels may be illuminated by each catadioptric optical element 38. The arrangement of catadioptric optical elements 38 in the catadioptric optical array may be provided to minimise appearance of mura in the final output image. Further the arrangement may be adjusted to optimise the appearance of high dynamic range addressing of the plurality of micro-LEDs 3.
It would be desirable for the light from the plurality of micro-LEDs 3 to be distributed such that the output luminance is substantially spatially uniform over the area of each catadioptric optical element 38, and the luminous intensity directional distribution is substantially the same for each region over the area. Further it would be desirable to provide such spatially and directionally uniform distribution of light output across adjacent catadioptric optical elements 38 of the catadioptric optical array 100 to achieve desirable uniform illumination of the spatial light modulator 200.
Features of the arrangement of
The operation of the catadioptric optical array 100 that achieves spatially uniform distribution of light output will now be further described with reference to certain raypaths of light from the micro-LED 3.
The plurality of micro-LEDs 3 is arranged between the reflective surface 64 and the transmissive output surface 52. The first surface 54 of the transmissive LED support substrate 50 for each catadioptric optical element 38 comprises an opaque mask region 7 wherein a respective one or more of the micro-LEDs 3 of the plurality of micro-LEDs 3 is arranged between the mask region 7 and the reflective surface 64.
The opaque mask region 7 is further provided between the refractive light output structure 56 and the respective one or more of the micro-LEDs 3 of the plurality of micro-LEDs 3. Opaque mask region 7 is aligned with an optical axis 11 of the catadioptric optical element 38 and may be provided by an addressing electrode of the micro-LED 3 as illustrated in
The plurality of micro-LEDs 3 is arranged to illuminate the reflective surface 64 with light rays 300, 302, 304, 306, 308. Light rays 300, 302, 304, 306, 308 from micro-LED 3 are incident on wavelength conversion layer 5 aligned to the micro-LED 3. The micro-LED may comprise a blue emitting gallium nitride LED chip and the wavelength conversion layer 5 may for example comprise phosphor or quantum dot materials that may be arranged to convert some of the blue light into yellow light or red and green light. Alternatively, the micro-LED 3 may comprise an ultra-violet emitting LED and the wavelength conversion material is arranged to provide white light output.
Light rays 300, 302, 304, 306, 308 are directed towards the reflective surface 64 and prevented from illuminating the transmissive output substrate 52 directly by opaque mask regions 7 that shield the transmissive output surface 52 from light from the micro-LED 3. By way of comparison with the present embodiments, if opaque mask regions 7 were not present, light rays from the micro-LED 3 would be transmitted directly to the transmissive output surface 52 and be output from the surface 52 with a Lambertian luminous intensity directional distribution that would undesirably provide a hot spot at the LED location for certain viewing angles. Advantageously the opaque mask regions 7 achieve reduced appearance of hot spots.
The opaque mask regions 7 may further be reflective such that light rays propagating with the catadioptric optical array that are reflected from the reflective surface 64 towards the micro-LED 3 are reflected and recirculated. Advantageously backlight efficiency may be increased.
Light rays 300 illustrate a raypath from the micro-LED 3 that passes through refractive light input structure 66. Light input structure 66 provides a redistribution of luminous intensity angular distribution from the micro-LED and will be described further below. Light ray 300 is incident onto reflective surface 64 at reflective light input structure 68 that extends from the reflective surface 64 to the transmissive output surface 52. In at least one catadioptric cross-sectional plane through its optical axis 11 the reflective light input structure 68 comprises a first inner surface 69a and a second inner surface 69b facing the first inner surface. The first and second inner surfaces 69a, 69b may comprise curved reflective surfaces 69a, 69b. Advantageously light may be efficiently reflected within the input substrate 60.
For each catadioptric optical element 38 of the catadioptric optical array 100, the refractive light input structure 66 and reflective light input structure 68 are arranged to direct at least some light from the respective aligned at least one micro-LED 3 to be the light ray 300 that is guided within the catadioptric optical array 100. Light rays 300 are reflected by the surface 69a within the input substrate 60 and are further incident on transmissive input substrate 62 that comprises planar regions 63 that extend between the input structures 66. Ray 300 has an angle of incidence greater than the critical angle at the interface of the input substrate 60 to the gap 99 that may comprise air and is guided within the catadioptric optical element 38 between the reflective surface 64 and transmissive input surface 62 such that it is directed back towards reflective surface 64 where it is incident onto inclined facet 70a.
Advantageously light ray 300 may be directed to regions of the catadioptric optical element 38 that are remote from the micro-LED 3. Further the guiding of light ray 300 within the input substrate 60 achieves a reduction in the total thickness 75 of the catadioptric optical array 100.
The plurality of light reflecting facets 70 is arranged to direct light through the transmissive output surface 52 of the catadioptric optical array 100. Some of the light reflecting facets 70 of the reflective surface 64 are arranged to direct at least some light through the transmissive output surface 52 of the catadioptric optical element 38 in a direction substantially normal to the transmissive output surface 52. In other words, facet 70a may be inclined to deflect guided light ray 300 in a direction that is substantially parallel to the optical axis 11. Other light rays (not shown) that guide within the input substrate 60 may be provided at other output angles that are close to the direction of the optical axis 11, as will be described further below.
The light reflecting facets 70 are illuminated by light cones from the light input structure 68 that has a limited cone angle of illumination. The angular output from the facets 70 when output into air thus has a non-Lambertian output. The facets 70 may further be arranged as elements of a curved surface to achieve increased collimation across the width of the element 38. The cone angle of illumination from the catadioptric optical element may be non-Lambertian as will be described below. Advantageously display efficiency may be increased for head on viewing in comparison to Lambertian backlights. Further for displays in which angular output similar to Lambertian displays is desirable, such as for highly curved displays, uniform illumination of a Lambertian diffuser can be achieved. Further a backlight for a privacy display may be provided with reduced off-axis luminance such that the display is not clearly visible for off-axis viewing locations.
Light ray 302 illustrates a raypath that after reflection from curved inner surface 69b is incident on reflective planar regions 71 between at least some of the light reflecting facets 70 of the reflective surface 64. Light ray 300 is guided within the input substrate 60 such that it is directed into a neighbouring catadioptric optical element 38 of the catadioptric optical array 100.
Such a ray from a neighbouring catadioptric optical element 38 is further illustrated by ray 306. The light reflecting facets 70 of the reflective surface 64 are provided by pairs of inclined facets 70a, 70b that are inclined with opposing inclination angles. Light rays 306 are incident on inclined reflective facet 70b to be directed to the output surface 52 in a direction that is substantially normal to the plane of the substrates 60, 50.
Advantageously light rays 302, 306 may provide some mixing between neighbouring catadioptric optical elements 38. Such mixing may provide a spatial uniformity at the nominal interface between the two elements 38. Further, the luminous intensity directional distributions are substantially the same at the nominal interface, achieving improved uniformity for a wide range of viewing angles. Advantageously display uniformity is improved.
It would be desirable to achieve uniform output luminous intensity distribution near to the optical axis 11, illustrated by light ray 304 for light that has not guided within the input substrate 60. Some of the light reflecting facets 72 arranged on the reflective surface 64 of the catadioptric optical element 38 are arranged to direct light ray 304 that has not guided within the catadioptric optical array 100. Advantageously spatial uniformity may be increased while achieving luminous intensity angular directional distribution that is the same across different regions of the catadioptric optical element 38.
Light rays 308 may be provided from the region of the transmissive output surface 52 between the opaque mask 7 and the spatial light modulator 200. Light ray 308 illustrates a raypath that achieves illumination in an otherwise shadowed region of surface 52. Light reflecting facets 74 of the reflective surface 64 of the respective catadioptric optical element 38 are arranged to direct light to the refractive light output structure 56. In at least one catadioptric cross-sectional plane the refractive light output structure 56 comprises a plurality of pairs of oppositely inclined transmissive light deflecting facets 57a, 57b. As illustrated in
To continue the illustrative embodiment, the facets 57a, 57b may be planar facets with a surface normal direction that has an inclination of 60 degrees to the optical axis 11 in at least one catadioptric cross sectional profile.
Adhesive regions 80 may further comprise a transparent material so that some of the light rays 316 that guide in the input substrate 60 are directed to guide within the transparent LED support substrate 50. Such guiding light may provide reduction of non-uniformities and may be extracted by means of diffusion on or in the substrate 50 or by refractive light output structure 56.
The operation of the light input structure 66 will now be described further.
As illustrated in
The refractive light input structure 66 comprises a plurality of pairs of oppositely inclined refractive input facets 67a. 67b that may be inclined at equal and opposite inclination angles to the normal direction in the at least one catadioptric cross-sectional plane. As illustrated in
It would be desirable to recycle unwanted polarised light from a spatial light modulator 200 comprising an LCD. Reflective polariser 202 is arranged to provide polarisation recirculation of light reflected from the reflective surface 64 of the catadioptric optical element 38. Incident light rays 308, 310 are typically unpolarised and a single polarisation state 311 is transmitted, while an orthogonal polarisation state is reflected. Optional retarder 201 that may be a quarter waveplate may be arranged to modify the reflected polarisation state to the planar regions 71 of the reflective surface 64. Reflected light has a polarisation state that is transformed into an orthogonal polarisation state and transmitted through the reflective polariser 202. Advantageously efficiency may be improved. Further, diffuser layers arranged on the reflective polariser and/or retarder may be arranged to further increase spatial uniformity and reduce mura visibility. In comparison to conventional light recirculating backlights, thickness and cost is reduced because no separate rear reflector layer (that may typically have a thickness of 0.1 mm or more) is used.
Features of the arrangement of
Diffuser 203 may be provided by a surface and/or bulk diffusing structure. It may be desirable to provide diffusion for light that is output from the output refractive microstructure 56.
Transmissive light deflecting facets 57a, 57b may be provided with curved surfaces, such that light cone solid angle 342 for light rays 308 from the surfaces 57a, 57b is substantially the same as the cone 340 from diffuser surface 352 that may be arranged on the surface 52.
Thus, the angular light output distribution of light from the refractive light output structure 56 is substantially the same as the angular light output distribution of light from the plurality of reflective light reflecting facets 70 that is transmitted through regions of the transmissive output substrate that do not comprise a refractive light output structure 56.
Features of the arrangement of
The output of the micro-LED 3 and refractive light input structure 66 will now be further described. In
Profile 504 has a dip 505 in directions that are on-axis and thus reduced luminous intensity is directed towards the axial location of the cusp 69c of the refractive light input structure 68 of
Advantageously increased luminous intensity is provided in the region of the refractive light output structure 56 and the uniformity of output across the transmissive output surface 52 may be increased. Further the thickness of the LED support substrate 50 and the total thickness 75 may be reduced. Light may be provided with a spatial and angular luminous intensity distribution that matches other regions of the output surface 52. The uniformity of the display from a wide range of viewing angles may be maintained, minimising image mura.
In the at least one catadioptric cross-sectional plane the distance 75 between the transmissive output surface 52 and reflective surface 64 is less than 750 micrometres, preferably less than 500 micrometres and more preferably less than 250 micrometres. Such low thickness can be achieved by (i) light guiding within the catadioptric optical array (ii) low thickness of the output microstructure 56 and (iii) use of reflective optics and (iv) the low thickness of the reflective substrate provided by refractive input microstructure 66. Advantageously a thin and flexible LCD display may be provided with high dynamic range local dimming operation.
The output directional distribution of an illustrative embodiment will now be described.
Luminous intensity is a measure of the energy density in a light cone and is the number of lumens per unit solid angle. In the present embodiments the luminous intensity half maximum solid angle describes the subtended size of the illumination output cone for which the luminous intensity is half of the peak luminous intensity in each direction.
Luminance of a display is determined by the luminous intensity per subtended unit area. A Lambertian surface has a has a luminance that is independent of viewing angle and thus luminous intensity that is proportional to the cosine of the angle of observation to the normal direction to the surface.
The luminous intensity half maximum solid angle is the solid angle defined by the cone of light in which the luminous intensity in any direction falls to 50% of the peak luminous intensity. The solid angle Ω of a symmetric cone of full width half maximum angle 2θ is given by Equation 1.
Ω=2π*(1−cos θ) Equation 1
A Lambertian light source has a cosine distribution of luminous intensity such that the FWHM 542 illustrated in
In the present embodiments, the output is directional, that is the light output distribution 540 thus has a luminous intensity half maximum solid angle that is smaller than the luminous intensity half maximum solid angle of the light output distribution from each of the plurality of micro-LEDs 3 (that have substantially Lambertian output). The present embodiments achieve half maximum solid angles that are less than π steradian and the half cone angle θ in a single cross-sectional plane is less than 60 degrees, preferably less than approximately 40 degrees, more preferably less than approximately 30 degrees and most preferably less than approximately 20 degrees. In other words, the ratio of luminous intensity half maximum solid angle of the present embodiments to the luminous intensity half maximum solid angle of a Lambertian light source is less than 1, preferably less than 50% and more preferably less than 25%. For a privacy display the ratio is most preferably less than 10%.
In the present disclosure, the angular directional distribution refers to the distribution of luminous intensity for a point on the display, in other words the angular directional distribution is the spread of ray density with angle for the point. The uniformity of a display represents the spatial distribution across the catadioptric optical array 100 for any given viewing angle.
The simulated optical output of the illustrative embodiment of
The FWHM 540 with cross sectional cone half angle θ of 25 degrees illustrated in
Advantageously for the same power consumption, increased head-on luminance may be provided in comparison to the output directly from the Micro-LEDs 3. Display brightness and efficiency is increased in comparison to Lambertian emission.
The variation of luminous intensity with distance from the optical axis 11 will now be described.
The variation in luminous intensity 500 with distance 508 from the optical axis 11 is determined by the reflective and refractive structure designs including the locations and angles of the input structures 66,68 facets 70, 72, 74 and planar regions 71 on the reflective surface 64 and refractive light output structure 56. To provide increased spatial uniformity across the array, the arrangement of at least facets 70, 7274 may be modified and further diffusers may be provided on the output of the catadioptric optical array 100.
Desirably the variation 521 increases in luminous intensity proportional to the distance from the optical axis 11 as illustrate by profile 522. Such an increase in luminous intensity provides compensation for the increase in the circumference or length of the light extracting facets 70, 72, 74 with the distance from the optical axis, and thus maintains a uniform luminous intensity per unit area, achieving uniform luminance
Advantageously uniform output luminance may be provided for a wide range of viewing directions in a rotationally symmetric catadioptric optical element 38.
It would be desirable to reduce the number of alignment steps during manufacture of the catadioptric optical element array 100.
Advantageously during fabrication of input substrate 60, an alignment step to align input microstructure 66 with reflective input structure 68 is not provided, reducing complexity and cost.
The luminous intensity profile at plane 17 for the planar input surface 62 will now be described.
The simulated optical output of the structure similar to
In the present embodiments it would be desirable to diffuse the output from the catadioptric optical array 100 to provide increased spatial and angular uniformity. Returning to the description of
Advantageously mura effects arising from visibility of facets 70, 72, 74 may be reduced. Further, light scatter may be provided for polarisation recirculation, increasing efficiency.
It would be desirable to provide light cone angular output that is substantially the same in the at least one catadioptric cross-section and in the direction orthogonal to the at least one catadioptric cross section, such that the output cone angles are uniform across the catadioptric optical array 100.
Diffuser structures 352 may comprise radially extended lens surfaces that provide diffusion in a direction that is orthogonal to the at least one catadioptric optical cross section illustrated in
The radial lenses of
It would be desirable to provide displays with high spatial and angular uniformity, very low bezel widths and with free form shapes. The arrangement of the optical structures of the present embodiments will now be considered further in front view.
In the plane of the catadioptric array 100 the light reflecting facets 70, 72, 74 are circularly symmetric. The plurality of light reflecting facets 70 of a catadioptric optical element 38 are concentric with the optical axis 11 of said catadioptric optical element 38.
The propagation of light rays 300, 304, 306, 308 as described in
In other embodiments (not illustrated), the light reflecting facets may be elliptically symmetric about the optical axis 11. Elliptical light extracting facets 70, 72, 74 may provide asymmetric light output cones in orthogonal directions, for example to provide preferential viewing comfort in one direction compared to the other. For example, a fixed landscape display may have higher viewing freedom in the lateral direction compared to the elevation direction. Advantageously increased efficiency or increased viewing freedom may be provided.
Referring to the lower edge of the display of
It would be desirable to provide further control of display luminance uniformity.
In a rotationally symmetric catadioptric optical element 38 the luminous intensity of extracted light falls with distance from the optical axis 11 as the total area of the reflecting facet 70 increases with distance, being proportional to the circumference of the facet. The length of circular reflecting facets 70 increases in proportion to the radius. It is desirable to maintain a uniform luminance across the area of the catadioptric optical array 100.
Returning to
The extracted luminance over the area of a catadioptric optical element 38 is determined by the incident luminous intensity in any notional region across the element 38 and the area of extraction facets 70 in said area. For facets 70 that are arranged with equal width and equal pitch, the total facet 70 area is determined by the facet 70 circumference and increases proportionally with distance from the micro-LED 3. For a fixed luminous intensity in each notional region, the output luminance will fall towards the edge of the element, and create a non-uniformity. It would be desirable to maintain uniform luminance across the area of the element 38 by increasing the luminous intensity of extracted light from the centre to the edges of the element 38. To continue the illustrative example, a desirable increase of luminous intensity towards the edges is illustrated in
In the present embodiments, as illustrated in
Further, in the embodiment of
Further light ray 312 is shown for light rays that are reflected from the edge reflector 61. Advantageously very low bezel widths may be achieved with free-form shapes.
Further arrangements to achieve uniform spatial uniformity of luminance will now be described.
In comparison with the arrangement of
In comparison to the arrangement of
In comparison to the arrangement of
It may be desirable to achieve at least two different luminance angular distributions, for example to achieve switching between a wide angle and privacy mode of operation.
The illumination apparatus comprises first plurality of LEDs 3A and further comprises a second plurality of LEDs 3B arranged in an LED array, wherein the second plurality of LEDs 3B are micro-LEDs or mini-LEDs. Each optical axis 11 is offset from one or more of the LEDs 3B of the second plurality of LEDs, and each of the LEDs 3B of the second plurality of LEDs is offset from the optical axis 11 of at least one of the catadioptric optical elements (e.g. at a distance 711 from the optical axis 11). Each optical axis 11 is aligned in correspondence with an LED 3A of the first plurality of LEDs, and each of the first plurality LEDs 3A is aligned in correspondence with the optical axis 11 of one of the catadioptric optical elements. In the embodiment of
Drive controller 130A is arranged to provide LEDs 3A with drive signals that may comprise image data to achieve high image contrast by means of local area dimming. Drive controller 130B is arranged to provide LEDs 3B with drive signals that may comprise image data to achieve high image contrast by means of local area dimming.
Advantageously a narrow cone angle can be achieved with relatively high spatial uniformity. Addition of a diffuser may be used to increase spatial uniformity while increasing solid angle of the output light cone. Desirably after diffusion, the FWHM of the output light cone is less than 30 degrees, preferably less than 25 degrees and most preferably less than 20 degrees.
As shown in
Advantageously a display may be provided that can switch between wide angle mode for use by multiple users and for wide range of viewing directions; and a narrow angle mode of operation that may provide privacy viewing, low stray light operation and high power efficiency with extended battery lifetime. Further very high luminance may be achieved in on-axis directions for low power consumption.
The distance 711 of the micro-LEDs 3A from the optical axis 11 may further be modified across the area of the illumination apparatus, such that the direction of peak luminance is pointed at a nominal observer location. The output may be pupillated such that for an observer in a nominal viewing location advantageously display luminance uniformity may be increased.
Alternative arrangements for reflective light input structure 68 and refractive light output structure 56 will now be described.
The operation of the refractive light output structure 56 arranged on the transmissive output surface 52 will now be described. In the embodiment of
It would be desirable to provide a backlight with increased robustness and reduced sensitivity to thermal variations.
Light rays from the plurality of micro-LEDs 3 is guided within the catadioptric optical array 100 between the reflective surface 64 and the second surface 52 of the transmissive LED support substrate 50. Advantageously such a backlight may achieve increased robustness to thermal variations and mechanical deformations.
Alternatively, the micro-LED may be provide ultra-violet light and the wavelength conversion layer 205 may be provided to achieve white output light.
The operating temperature of the wavelength conversion layer 205 may be reduced in comparison to the conversion layer 5 aligned to the micro-LED 3 in
In comparison to
It would be desirable to provide a flexible backlight.
Each catadioptric optical element 38a. 38b is separated from adjacent element 38b by gap 97 that is arranged to provide some mechanical deformation region during flexing of the substrates. Reflective coating 65 is arranged to extend over the outer surface of each element 38 including the reflective sides 36 of each catadioptric optical element 38. In operation, light that is guided within the catadioptric optical array is reflected from the sides 36. Advantageously increased deformation of the catadioptric optical elements may be provided to enable the catadioptric optical array to confirm to a curved shape in at least one dimension. Features of the arrangement of
Further in the embodiment of
Light rays 300, 302 that are output from the curved display may have an increased cone angle in comparison to that illustrated in
It would be desirable to address an array of micro-LEDs 3 in an efficient way. It would also be desirable to address micro-LEDs 3 with a reduced number of column electrodes 700 and row electrodes 702.
It may be desirable to reduce the complexity of the reflective surface 70.
The surface 70 is arranged to provide output rays 370 with a narrow cone angle. In comparison to the arrangement of
It may be desirable to provide off-axis viewing of a display operating in privacy mode or with low stray light.
It would be desirable to provide a display that is visible from more than one direction
First and second pluralities of LEDs 3A. 3B may be provided where each LED is offset from the optical axis 11 of the respective aligned catadioptric optical element 38. Output rays 374A may be provided in one direction and output rays 374B provided in a different direction. Such a display may provide low stray light images for two users, for example the driver and passenger of a vehicle.
Further the backlight controller 130 and display controller 230 may cooperate to provide a dual view display. In a first phase of operation the LEDs 3A are illuminated and a first image displayed on the LCD 200. In a second phase of operation the LEDs 3B are illuminated and a second image display on the LCD 200. The first and second images may be different. Advantageously a dual view display may be provided.
Features of the arrangement of
It would be desirable to reduce the peak LED current while maintaining light output levels.
It would be desirable to provide some resilience of the display or backlight to failure of individual micro-LEDs 3. The failure may be an open circuit which may be caused for example by mis-placement of micro-LEDs 3 in manufacture or may be a short circuit for example from damaged electrode wiring.
Features of the arrangements of
It would be desirable to provide a large size display with precise and uniform alignment of micro-LEDs 3 to the optical axes of catadioptric optical elements 38 to achieve uniform output spatial and directional luminous intensity directional distribution. A method to form an illumination apparatus will now be further described.
A shaped tool 600 may be provided as shown in
In a first step an input substrate 602 is provided as shown in
A shaped tool 606 may be provided as shown in
In a second step a reflective surface 64 is provided as shown in
In a third step a reflective coating 65 is provided as shown in
Features of the arrangements of
In a fourth step a refractive light output structure 56 is provided on a substrate 610 as shown in
In a fifth step an addressing electrode array may be provided as shown in
In a sixth step, opaque mask regions 7 may be provided as shown in
Features of the arrangements of
In a seventh step a monolithic semiconductor wafer 2 may be provided as shown in
In an eighth step a non-monolithic array of micro-LEDs 3a. 3b may be extracted from the monolithic wafer 2 as shown in
In a ninth step the non-monolithic array of micro-LEDs 3a, 3b may be transferred onto the transparent LED support substrate 50 as shown in
Micro-LEDs 3a, 3b may be arranged on substrate 52 in alignment with electrodes 8 and refractive light output structure 66. The LED support substrate 50 may already be provided with drive circuit 720 comprising for example TFT 706 and/or integrated circuit 708 as described with reference to
The LEDs of the plurality of LEDs are thus from a monolithic wafer 4 arranged in an array with their original monolithic wafer positions and orientations relative to each other preserved; and wherein in at least one direction, for at least one pair of the plurality of LEDs in the at least one direction, for each respective pair there was at least one respective LED in the monolithic wafer 4 that was positioned in the monolithic wafer 4 between the pair of LEDs in the at least one direction and that is not positioned between them in the array of LEDs 3.
In a tenth step, further layers (not shown) including addressing electrodes, wavelength conversion layers and optical bonding layers may be provided on the micro-LEDs 3 and the first surface of the transmissive LED support substrate 50. Further electrodes may alternatively or additionally be provided on the catadioptric input substrate 60 as described in WO2012052722, incorporated herein in its entirety by reference.
In an eleventh step an illumination apparatus may be provided as shown in
The substrate 50 may be aligned with the plurality of catadioptric optical elements 38 with separations s5 to provide an illumination apparatus, such that separation s5 may be the same as separation s1. Optical bonding such as optically clear adhesives may be used to provide attachment between the two substrates 50, 60 to advantageously provide increased robustness of alignment. Advantageously large numbers of elements may be formed over large areas using small numbers of extraction steps, while preserving alignment to a respective array of optical elements. Alignment of micro-LEDs 3 to catadioptric optical elements is described further in WO2010038025, incorporated herein in its entirety by reference.
Further for the present disclosure, micro-LEDs are unpackaged LED die chips, and are not packaged LEDs. Advantageously individual wire bonding to LEDs is not used and the number of pick and place processes is significantly reduced.
Number | Date | Country | Kind |
---|---|---|---|
GB1803767.1 | Mar 2018 | GB | national |
GB1819612.1 | Nov 2018 | GB | national |