Not Applicable
1. Field
Illuminating the interior of a compartment such as an elevator passenger compartment.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
It is known for screw-in type replaceable light emitting diode (LED) lamps to be used in lamp housings such as track lighting housings. However, existing LED lamp designs are generally adapted to retrofit such LED lamps into lamp housings designed to accept standard screw-in type incandescent lamps.
An assembly for illuminating the interior of a compartment and comprising a lamp housing having an opening at one end and configured to be mounted on an interior panel in a position to direct light from the housing opening into the compartment through a hole in the panel. A lamp is removably supportable within the lamp housing in a position to emit light from the housing through the housing opening when the lamp is energized. The lamp includes an LED module having a module opening at one end and carrying a light-emitting diode (LED). The LED module is removably receivable by the lamp housing into an installed position in which light emitted by the LED is directed through the module opening and the housing opening. A lens is disposed across the module opening and a reflector is carried by the LED module and configured and disposed in a position to reflect light from the LED such that the light passes through the housing and module openings and the lens into the compartment when the LED module is in its installed position in the lamp housing.
These and other features and advantages will become apparent to those skilled in the art in connection with the following detailed description and drawings of one or more embodiments of the invention, in which:
An interior illumination assembly for illuminating the interior of a room or compartment 12 such as a passenger compartment or cab 12 of an elevator 14 is shown at 10 in
The assembly 10 may include a generally canister-shaped lamp housing 16 that may comprise cast metal, may be configured to be mounted on a ceiling panel 24 of, for example, an elevator 14, and may have an opening 18 at a lower end of the housing 16. More specifically, the lamp housing 16 may be mounted in, for example, an elevator plenum 20 in a position to direct light downward through a hole 22 formed in a ceiling panel 24 defining the elevator plenum. The lamp housing 16 may include a retainer clamp 26 positioned to securely mount the lamp housing 16 to a ceiling panel 24. The retainer clamp 26 may be of any suitable type known in the art to include the types disclosed in U.S. Pat. No. 5,003,432 issued 26 Mar. 1991; U.S. Pat. No. 5,408,394 issued 18 Apr. 1995; U.S. Pat. No. 5,412,542 issued 2 May 1995; or U.S. Pat. No. 7,066,617 issued 27 Jun. 2006; which are all assigned to the assignee of the present invention and are incorporated herein by reference. The retainer clamp 26 locks the lamp housing 16 to a ceiling panel 24. In an elevator application this would help to prevent the assembly 10 from breaking loose and falling from a ceiling panel 24 in an annual elevator drop test or actual elevator malfunction that results in sudden deceleration.
A lamp 28 may be removably supported within the lamp housing 16 in a position to emit light from the housing 16 through the housing opening 18 into a compartment 12 when the lamp 28 is energized. The lamp 28 may comprise a light-emitting diode (LED) and, as shown in the drawings, may include three high-powered light-emitting diodes (LEDs) 30 of the type having, for example, the specifications: 1001 m, 3 watt, 2800-3050K (warm white) @3.5V In other embodiments the lamp 28 may include any suitable type and number of LEDs. The assembly 10 is configured to allow for LEDs 30 to be removed from the assembly 10 from within a compartment 12 in which the assembly 10 is installed and without having to remove the lamp housing 16. In other words, a person can gain access to and remove the LEDs 30 from the assembly 10 from a position standing in a compartment such as the passenger compartment 12 of the elevator 14. There is no need for a person to gain access to the assembly 10 from above, e.g., through an upper access panel or trap door of an elevator 14.
The LEDs 30 may be carried by a generally disk or puck-shaped LED module 32 that may be removably received by the lamp housing 16. The LED module 32 and lamp housing 16 may be sized for mounting in a low-clearance space such as an elevator plenum 20. The LED module 32 may include a thermal conductor 34 which may include a generally cylindrical die-cast metal heat sink 34 that may carry the LEDs 30. The LEDs may be carried in a triangular array on a lower axially-recessed circular upper wall 36 of a lower cylindrical recess 38 of the heat sink 34 such that the LEDs 30 can dissipate heat through thermally conductive communication with the heat sink 34 and such that light emissions from the LEDs 30 are directed downward through the housing opening 18 when the LED module 32 is received in the lamp housing 16. In other words, the lamp housing 16 removably receives the LED module 32 and supports the LED module 32 in a position to direct light emitted from the LEDs 30 downward into a compartment such as the passenger cab of the elevator 14.
As best shown in
As is best shown in
The LED module 32 may also include two LED module installation detent surfaces 64 disposed in the same small apertures 54 where, as is again best shown in
The LED module 32 may also carry three magnifying lenses 68 supported in a triangular array and in axial alignment with the respective LEDs 30 and disposed between the three respective LEDs 30 and the compartment 12. The three magnifying lenses 68 may be so positioned to maximize the amount of light directed from the three LEDs 30 into the compartment 12. The lenses 68 may be carried in respective circular apertures 70 formed in a circular disk-shaped aluminum LED lens plate 72 that may be supported across a lower opening 74 of the lower cylindrical recess 38 of the heat sink 34. In other words, an outer circumferential rim 76 of the LED lens plate 72 may be secured to a circular heat sink rim 78 that defines the lower opening 74 of the lower cylindrical recess 38 of the heat sink 34.
Each magnifying lens 68 may have the general shape of a frusto-conical prism having a circular lower surface 80 that may be disposed axially opposite a circular upper apex 82. Each magnifying lens 68 may also include an annular rim 84 that extends radially and integrally outward from around the lens 68 adjacent the lower surface 80 and includes a circumferential land 86 shaped and sized to engage a portion of the LED lens plate 72 surrounding one of the circular apertures 70 formed in the LED lens plate 72.
As is best shown in
The assembly 10 may further include an LED dimmer 92 that is accessible from within the compartment 12 to adjust the amount of light emitted by the LEDs 30 into a compartment 12, e.g., the passenger cab of an elevator 14, in which the assembly 10 is installed. The LED dimmer 92 may comprise two polarizing filters 94, 96 carried by the lamp housing 16 below the lamp 28 and coaxially supported for relative rotation between conditions of parallel polarization (high projected light intensity) and cross-polarization (low projected light intensity). An upper filter 94 or the two polarizing filters may be secured against rotation relative to the lamp housing 16 and a lower filter 96 of the two filters may be free to rotate relative to the lamp housing 16. The filters 94, 96 may be oriented across a paths of light emitted from the LEDs 30 such that, when the LEDs 30 are energized, their emitted light passes through both filters 94, 96 allowing the intensity of emitted light to be controlled by relative rotation of the polarizing filters 94, 96.
The assembly 10 may include a polarizing filter module 98 which may comprise a two-part retainer ring 100 having an upper part 101 that supports the upper filter 94 of the polarizing filters 94, 96 against rotation relative to the retainer ring 100, and a lower part 103 that supports the lower filter 96 of the polarizing filters for rotation relative to the retainer ring 100 and the upper filter 94. As best shown in
The polarizing filter module 98 may include two filter module removal detent surfaces 106 disposed in respective filter module engagement apertures 108 positioned to be engaged by the respective wrench first detent surfaces 58 disposed on respective wrench prongs 60 of the spanner wrench 62, which are shaped to allow an installer to apply counter-clockwise torque to and rotate the polarizing filter module 98 counter-clockwise relative to the lamp housing 16. The lower filter 96 may include lower lens apertures 110 axially alignable with the respective filter module engagement apertures 108 in which are disposed the filter module removal detent surfaces 106 in the upper filter 94, and which are shaped to allow prongs 60 of a spanner wrench 62 to extend through the lower lens apertures 110 of the lower filter 96 and engage the filter module removal detent surfaces 106 of the upper filter 94. This allows an installer to apply counter-clockwise torque to the filter module 98 to unthread and remove the filter module 98 from the lamp housing 16.
The polarizing filter module 98 may also include two filter module installation detent surfaces 112 disposed in the respective filter module engagement apertures 108. The filter module installation detent surfaces 112 may be positioned to be engaged by respective wrench second detent surfaces 66 disposed on the respective wrench prongs 60 of the spanner wrench 62 to allow an installer to apply clockwise torque to the filter module 98 to install the filter module 98 by rotating it clockwise relative to the lamp housing 16 and threading the module into the lamp housing 16. The lower lens apertures 110 may be axially aligned with the respective filter module engagement apertures 108 in which are disposed the filter module installation detent surfaces 112 in the upper filter 94 and may be shaped to allow the prongs 60 of the spanner wrench 62 to extend through the lower lens apertures 110 of the lower filter 96 and engage the installation detent surfaces of the upper filter 94 so that an installer can apply clockwise torque to the filter module 98 to install the filter module in the lamp housing 16. The upper lens apertures and lower lens apertures 110 may be spaced from each other and shaped generally the same as the LED module engagement apertures 54 so that the same wrench 62 may be shaped to both install and uninstall both the filter module 98 and the LED module 32.
A single application may include a plurality of interior illumination assemblies 10, each including an LED dimmer 92. As shown in
Where, for example, interior illumination assemblies 10 are installed in an elevator 14, the illumination assemblies 10 may also include an emergency illumination system 122. An emergency light power supply 124 for the emergency illumination system 122 may include a 12 VDC battery power source comprising two 6 VDC batteries 126 connected in series. The 12 VDC battery power source 126 may be connected to and energize an inverter 128 that is, in turn, connected to and provides power to the LEDs 30 in the event of a failure of the main power supply 114, to power at least two of the three LEDs 30 in one interior illumination assembly 10 for at least 4 hours in the event of a main electrical power supply 114 failure. In other words, one of the drivers powering one of the interior illumination assemblies 10, instead of being connected directly to the main external electrical power source 116, is normally connected to the main external electrical power source 116 through the emergency illumination system 122. Any of the interior illumination assemblies 10 may be powered through the emergency illumination system 122 in this way or may, alternatively, be connected directly to the external electrical power source 116 by, for example, jumper wires. The emergency illumination system 122 may also include a charger 130 connectable between the external electrical power source 116 and the batteries 126 to charge the batteries when external electrical power is available. A relay 132 is connected between the external electrical power source 116 and the charger 130, between the external electrical power source 116 and each of the drivers 120 connected to the interior illumination assemblies 10, between the charger 130 and the batteries 126, and between the inverter 128 and the driver 134 that's connected to the interior illumination assembly that's to be powered by the emergency illumination system 122 in the event of an external power source failure. When the external electrical power source 116 is applying 120 VAC to the relay 132, the relay 132 closes a circuit that allows electrical current to flow from the external electrical power source 116 to the drivers 120, and closes a circuit that allows electrical current to flow from the charger 130 to the batteries 126, but does not close an electrical circuit that would allow electrical power to be applied to the inverter 128. When the external electrical power source 116 fails, and is not applying 120 VAC to the relay 132, the relay is energized by 12 VDC applied by the batteries 126, opens the circuit that would otherwise allow electrical current to flow from the external electrical power source to the drivers 120, closes a circuit that allows 12 VDC electrical current to flow from the batteries 126 to the inverter 128 and 120 VAC to flow from the inverter 128 to the driver 134 that's connected to the interior illumination assembly intended to be powered by the emergency illumination system 122, and closes a circuit that allows 12 VDC to flow from the batteries 126 to an electrically-driven emergency bell 138.
In practice, emitted light levels may be equalized between interior illumination assemblies that use LEDs 30 to produce light in a compartment 12 such as an elevator passenger cab, by first providing the compartment 12 with a plurality of the interior illumination assemblies, each of which may comprise an LED dimmer 92 configured to be accessible from within the compartment 12 to adjust the amount of light emitted by the assembly 10 into a compartment 12 in which the assembly 10 is installed. A person then enters the compartment 12 and reaches up to gain access to the LED dimmers of the assemblies from within the compartment 12. The person may then adjust the light emission levels of the interior illumination assemblies by adjusting their respective LED dimmers, one at a time, to generally match that of a selected one of the interior illumination assemblies that is producing a desired light level. Where the dimmer 92 includes relatively rotatable polarizing filters 94, 96 as described above, the person may accomplish this by rotating one of the polarizing filters 94, 96 of relatively brighter interior illumination assemblies in a direction diminishing light transmission through the filters, and/or rotating one of the polarizing filters 94, 96 of a relatively darker interior illumination assembly 10 in a direction increasing light transmission through the filters.
Where the upper filter 94 of the relatively rotatable filters is fixed relative to the lamp housing 16, the LED dimmer 92 may be adjusted by rotating the lower filter 96 of the two polarizing filters 94, 96 relative to the upper filter 94. To gain access to the lower filter 96 of the two polarizing filters 94, 96 of the LED dimmer 92 an operator may apply a suction cup 140 to the lower filter 96 such that a longitudinal axis of the suction cup 140 is generally aligned with a rotational axis of the lower filter 96, and rotate the lower filter by rotating the suction cup. The suction cup 140 may be supported on a stick 142 which may then be used to extend the reach of the operator. The suction cup 140 may be rotated by rotating the stick 142 supporting the cup.
LED lamps of an interior illumination assembly 10 constructed as described above are harder to steal than the lamps of current designs because a special tool must be used to remove an LED module 32 of such an assembly 10. In addition, the superior longevity of LED lamps dramatically reduces the frequency of lamp replacement over incandescent lamp use—especially in light of the fact that elevator lights generally burn continuously. Also, since LED lamps are less likely to fail, in elevator applications especially, passenger safety is enhanced. The magnifying lenses 68 of an interior illumination assembly 10 constructed according to the invention provide more light with less energy and fulfill elevator code requirements for protecting passengers from bulb breakage. A single interior illumination assembly 10 constructed according to the invention and including at least two LEDs has the additional advantage of meeting elevator code requirements for emergency lighting. This is because the emergency light power supply 124 that may be included in an assembly allows the assembly to surpass the elevator code requirement (set forth in ASME A17.1-2004 section 2.14.7.1.3) to power at least two bulbs of equal wattage for at least 4 hours. Further regarding the emergency illumination system 122, the use of LEDs allows for the use of an emergency power supply of reduced size and weight, which are important factor in elevators due to the limited size of elevator plenums and the limited power output of elevator motors/hydraulic pumps. The use of LEDs also allows for reduced interior illumination assembly size and weight due to the relatively lower power demand of LEDs and consequent reduction in size and weight of batteries 126 required for emergency operation.
An alternative embodiment of an interior illumination assembly is generally shown at 200 in
A lamp generally indicated at 210 in
The LED 222 may be of any suitable type to include one configured to emit a light beam having a 105 degree beam angle and comprising an array of six 6 “miniature” LEDs supported on a chip. In other embodiments the LED 22 may include more or less than 6 miniature LEDs and may be configured to emit a light beam or beams having a beam angle less than or greater than 105 degrees.
The lamp 210 may also include a lens 226 disposed across the module opening 218 as best shown in
The reflector 228 may comprise plastic molded into a general bowl shape having a relatively small and generally circular reflector top aperture 230 that may be disposed axially opposite a relatively large and generally circular base opening 232 as best shown in
The reflector 228 may include a first generally annular (radially inner and axially upper) reflective surface 234 configured and positioned to reflect light from the LED 222 toward the lens 226 where a portion of the reflected light is reflected back toward the reflector 228 and a remaining portion of the reflected light is refracted through the lens 226 as shown in
As is also shown in
The reflector 228 may also include a second generally annular, radially outer, and axially lower reflective surface 248. The second reflective surface 248 may be configured and positioned concentrically with the first reflective surface 234 as shown in
The reflector 228 may further include a third annular reflective surface 264 disposed between and joining the inner (first) and outer (second) annular reflective surfaces 234, 248 to reflect light in such a way as to prevent the appearance of a dark circle in the lens 226 between the inner and outer annular reflective surfaces 234, 248 of the reflector 228. The third annular reflective surface 264 may have a flat profile oriented generally normal to the beam axis 238 and configured to reflect LED light that has reflected off the inside facing surface 287 of the lens 226 as shown in
The combination of light received by and refracted through the lens 226 directly from the LED and indirectly from the first, second, and third reflective surfaces 234, 248, 264 provide a combined illumination effect comprising more uniform light output across the lens 226.
As best shown in
As best shown in
As best shown in
The lens 226 may be frosted to increase the amount of light reflected back from the upper lens surface 287 rather than transmitted or refracted through the lens 226. The first, second, and third annular reflective surfaces 234, 248, 264 of the reflector 228 help re-transmit that light back through the lens and reduce any “dark” areas that might otherwise be left.
The lens 226 may comprise an opaque, radially outer circumferential lens mask 286 shaped to conceal a forward perimeter surface 288 of the LED module 212 and to limit or preclude the appearance of a dark ring on the lens as viewed from below. As shown in
The reflective surfaces 234, 248, and/or 264 and lens 226 of an interior illumination assembly constructed as described above will provide a multitude of reflections and refractions that will together form a single smooth beam from a source LED. The outer circumferential lens mask will conceal interior structures and limit or preclude formation of a dark outer ring.
This description, rather than describing limitations of an invention, only illustrates embodiments of the invention that's recited in the claims. The language of this description is therefore exclusively descriptive and is non-limiting.
Obviously, it's possible to modify this invention from what the description teaches. Within the scope of the claims, one may practice the invention other than as described above.
This application is a continuation-in-part of Ser. No. 12/207,795, filed Sep. 10, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1767988 | Knapp | Jun 1930 | A |
2835791 | Horwitz | May 1958 | A |
3189788 | Cady | Jun 1965 | A |
3336473 | Buzan | Aug 1967 | A |
3760179 | Addington, Jr. | Sep 1973 | A |
3808499 | Edwards | Apr 1974 | A |
4032828 | Strobl et al. | Jun 1977 | A |
4071749 | Balogh | Jan 1978 | A |
4156891 | Roche | May 1979 | A |
4218725 | Heffner et al. | Aug 1980 | A |
4223232 | Bulat | Sep 1980 | A |
4234907 | Daniel | Nov 1980 | A |
4241871 | Newell, III et al. | Dec 1980 | A |
4271621 | Garcia et al. | Jun 1981 | A |
4441143 | Richardson, Jr. | Apr 1984 | A |
4504894 | Reibling | Mar 1985 | A |
4520436 | McNair et al. | May 1985 | A |
4587597 | Meyers | May 1986 | A |
4682078 | Pascilade | Jul 1987 | A |
4727291 | Bavaro | Feb 1988 | A |
4749908 | Stifter | Jun 1988 | A |
4751398 | Ertz, III | Jun 1988 | A |
4802065 | Minter et al. | Jan 1989 | A |
4875553 | Smith et al. | Oct 1989 | A |
4885663 | Parker | Dec 1989 | A |
4905579 | Dame | Mar 1990 | A |
4907132 | Parker | Mar 1990 | A |
4977818 | Taylor et al. | Dec 1990 | A |
5003432 | Mandy | Mar 1991 | A |
5005108 | Pristash et al. | Apr 1991 | A |
5021928 | Daniel | Jun 1991 | A |
5025349 | Gow | Jun 1991 | A |
5123875 | Eubank et al. | Jun 1992 | A |
5145247 | Mandy | Sep 1992 | A |
5161879 | McDermott | Nov 1992 | A |
5568964 | Parker et al. | Oct 1996 | A |
5613751 | Parker et al. | Mar 1997 | A |
5618096 | Parker et al. | Apr 1997 | A |
5850126 | Kanbar | Dec 1998 | A |
5876107 | Parker et al. | Mar 1999 | A |
5894686 | Parker et al. | Apr 1999 | A |
5895115 | Parker et al. | Apr 1999 | A |
5921652 | Parker et al. | Jul 1999 | A |
6030089 | Parker et al. | Feb 2000 | A |
6079838 | Parker et al. | Jun 2000 | A |
6158867 | Parker et al. | Dec 2000 | A |
6185356 | Parker et al. | Feb 2001 | B1 |
6712481 | Ezell et al. | Mar 2004 | B2 |
6752505 | Parker et al. | Jun 2004 | B2 |
6827456 | Parker et al. | Dec 2004 | B2 |
6872220 | Williams et al. | Mar 2005 | B2 |
6874925 | Page et al. | Apr 2005 | B2 |
7077544 | Parker | Jul 2006 | B2 |
7261453 | Morejon et al. | Aug 2007 | B2 |
7722216 | Amor et al. | May 2010 | B2 |
20040125246 | Okamori et al. | Jul 2004 | A1 |
20050036321 | Ward | Feb 2005 | A1 |
20050190345 | Dubin et al. | Sep 2005 | A1 |
20060038192 | Williams | Feb 2006 | A1 |
20070242461 | Reisenauer et al. | Oct 2007 | A1 |
20070247850 | Hawkins et al. | Oct 2007 | A1 |
20100002451 | Reynolds | Jan 2010 | A1 |
20110170298 | Anaokar et al. | Jul 2011 | A1 |
20130010476 | Pickard et al. | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120106138 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12207795 | Sep 2008 | US |
Child | 13344629 | US |