This application claims the priority of Taiwanese patent application Nos. 102216632, filed on Sep. 4, 2013, and 103200952, filed on Jan. 16, 2014, which are incorporated herewith by reference.
1. Field of the Invention
The present invention relates generally to an illumination device, and more particularly to an illumination device which utilizes an appropriate optical lens, a light emitting unit and a light reflector in such a manner to collect all of the light beams within a predetermined range, thereby providing the maximum illumination effect.
2. The Prior Arts
One problem encountered presently when designing the application of a light emitting diode (LED) device is how to arrange the components in order to achieve extra illumination from the secondary light beam. The optical lens implemented in a conventional illumination device generally provides an illumination range, which is insufficient in brightness so as to cause blur vision on the illuminated spot. Insufficiency of brightness may result in discomfort to a viewing person and finally leads to visual fatigue. The manufacturers of LED devices have noted the presently existing problem and are searching urgently a way to develop an LED device that is capable of providing comfortable visual effect to a viewer in addition to providing the maximum illumination effect.
As best shown in
The non-uniform illumination density may result in discomfort to a viewing person and finally leads to visual fatigue. Therefore, a critical problem to be solved urgently is how to improve the collection of all the scattered emitted light beams into a predetermined range so as to provide the maximum illumination with uniform density.
A primary objective of the present invention is to provide an illumination device, which utilizes an appropriate optical lens, a light emitting unit and a light reflector in such a manner to collect all of the light beams within a predetermined range, thereby providing the maximum illumination effect.
Another objective of the present invention is to provide an illumination device, which includes a light reflector, a base member disposed below the light reflector, and having an upper surface provided with a light emitting unit for emitting a direct light beam that extends directly to an exterior of the light reflector and an indirect light beam that extends to the exterior of the light reflector only after being reflected from the light reflector.
An optical lens is disposed within the light reflector in such a manner so as to be located above, spaced apart from the light emitting unit at a predetermined distance and lied within a traveling path of the direct light beam such that the direct light beam is adapted to pass through the optical lens.
In addition, the illumination device of the present invention further includes a lens seat mounted securely on the light reflector, has a lower surface that faces the base member and that is formed with a plurality of light incident sections located adjacent to one another.
The present invention will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings, in which:
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Referring to
The base member 3 is disposed below, at a lower open end of the light reflector 1, has an upper surface provided with a light emitting unit 31 for emitting a direct light beam L1 that extends directly to an exterior of the light reflector 1 and an indirect light beam L2 that extend to the exterior of the light reflector 1 only after being reflected from the light reflector 1. Preferably, in this embodiment, a light emitting diode (LED) unit serves as the light emitting unit 31.
As shown in
The optical lens 5 is disposed within the light reflector 1 in such a manner so as to be located above, spaced apart from the light emitting unit 31 at a predetermined distance D such that the optical lens 5 is located within a traveling path of the direct light beam L1 such that the direct light beam L1 is adapted to pass through the optical lens 5. Preferably, the optical lens is either a convex lens (see
As shown in
Preferably, in this embodiment, a translucent plate serves as the elongated lens base 71 so as to permit extension of the direct light beam L1 and the indirect light beam L2 after being reflected from the reflector 1.
One distinct feature of the present invention resides in that since an entire of the direct light beam L1 can pass through the optical lens 5, there is no problem of light loss or light collection as encountered in the prior art technique and hence the illumination device 100 of the present invention provides the maximum illumination effect. In addition, owing to the secondary optical effect of the optical lens 5, all the light beams L1, L2 extend frontward so as to provide the maximum illumination effect or range.
By providing flexible design relative to convex and concave configurations of the incident sections 711, the maximum illumination effect can be achieved in addition to the large illumination angle.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102216632 U | Sep 2013 | TW | national |
103200952 U | Jan 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7473007 | Wang | Jan 2009 | B1 |
7567754 | Kinoshita | Jul 2009 | B2 |
7570439 | Bogdan | Aug 2009 | B2 |
8746920 | Chen | Jun 2014 | B2 |
8864343 | Inoue | Oct 2014 | B2 |
9022610 | Mar | May 2015 | B2 |
20120218765 | Inoue | Aug 2012 | A1 |
20130027922 | Chen | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150062917 A1 | Mar 2015 | US |