The technical field relates to an illumination device, a light source, and a light module, and in particular to a Light-Emitting Diode application.
Light-Emitting Diodes (LED) are semiconductor components. The materials of the light-emitting chips are mainly chemical compounds of groups III-V, such as gallium phosphide (GaP) or gallium arsenide (GaAs), and are capable of converting electrical energy into optical energy. The lifespan of LEDs is more than a hundred thousand hours, and LEDs have quick response, small size, low power consumption, low pollution, high reliability, and are suitable for mass production.
With increasing demands for energy conservation and environmental protection, it has become a trend worldwide for people to use LEDs to construct lighting devices for use in daily life. In common practice, LEDs are usually installed on a carrier (e.g. a printed circuit board) to become an illumination device.
Nevertheless, LEDs produce a lot of heat at the same time as producing light. Therefore, the heat generated by the LEDs among the abovementioned lighting components is often unable to be effectively dissipated to the exterior, thus resulting in reduction of device performance. As a result, concurrently achieving both light source illumination and heat dissipation efficiency in order to enhance the reliability of LEDs has become an essential topic.
The disclosure provides an illumination device, a light source and a light module having concurrently both enhanced illumination and enhanced heat dissipation efficiency.
According to one exemplary embodiment, an illumination device comprises a base, a light bar and a cover. The base has a cavity. The light bar is disposed at the bottom of the cavity. The light bar comprises a plurality of dot light sources arranged along a first axial direction. The cover is assembled to the base for correspondingly covering the light bar. The cover has a plurality of openings, and the distribution density of the openings increases from a corresponding location of a dot light source towards two opposite ends along the first axial direction.
According to one exemplary embodiment, a light source comprises a light bar and a cover. The light bar comprises a plurality of dot light sources arranged along a first axial direction. The cover covers the light bar. The cover has a plurality of openings, and the distribution density of the openings increases from a corresponding location of a dot light source towards two opposite ends along the first axial direction.
According to one exemplary embodiment, a light module comprises a plurality of light bars arranged along a second axial direction and a cover correspondingly covering the light bars. Each of the light bars comprises a plurality of dot light sources arranged along a first axial direction. The cover has a plurality of openings, and the distribution density of the openings increases from a corresponding location of a dot light source towards two opposite ends along the first axial direction.
According to one exemplary embodiment, an illumination device comprises a base and a plurality of light sources. The base has a central axial direction and a plurality of cavities surrounding the arranged central axial direction. The light sources are disposed separately at the cavities. Each of the light sources comprises a light bar and a cover. The light bar is located at the bottom of the corresponding cavity, and the light bar comprises a plurality of dot light sources. The cover is assembled to the base for covering the cavity and the light bar inside the cavity. The cover has a plurality of openings, and the distribution density of the openings increases when going from a corresponding location of a dot light source towards an adjacent dot light source location.
Based on the above, in another exemplary embodiment, the light source, the light module and the illumination device use the cover with a plurality of openings to cover the light bar, so as to enable the light of the dot light source to emit out of the cover in a more uniform manner. Furthermore, heat generated by the dot light source can also be dissipated effectively with the presence of these openings, thus improving the reliability of the dot light source. Therefore, the light source, the light module and the illumination device concurrently have enhanced illumination and enhanced heat dissipation efficiency.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The cover 114 is assembled to the base 120 for correspondingly covering the cavity 122 and the light bar 112 inside the cavity 122. The cover 114 has a plurality of openings 114a, so as to enable the light emitted by the dot light source 112a to penetrate through the cover 114. The distribution density of the openings 114a increases from a corresponding location of a dot light source 112a towards two opposite ends along the first axial direction X1. The non-opening region of the cover 114, which corresponds to the surface of the dot light source 112a, has a reflective diffusion material layer for reflecting or scattering the light emitted by the dot light source 112a back into the cavity. Moreover, the interior wall of the cavity 122 also has the reflective diffusion material layer for re-scattering out some of the light reflected or scattered back into the cavity 122 by the cover 114, and thus the light is reflected or scattered back and forth within the cavity 122, so as to enable some of the light to transport out of the illumination device 100 through the openings 114a.
In further detail, the relationship between the distribution of the opening strips 114b and the dot light sources 112a at the bottom of the cavity 122 is described as below:
p
i=(i/1)gamma×(h/2)|i=0˜1,
wherein i is the normalized variable of the opening strips, h is the spacing value of the dot light source, gamma is the locational modulation coefficient, and pi is the location of each corresponding opening and dot light source.
Accordingly, the density distribution of the opening strips 114b, on the cover 114, directly above the dot light sources 112a is at the minimum, as shown in
If the openings 114a of the cover 114 are approximately divided into region A and region B, on the first axial direction X1, the distribution density of the opening in region A would be greater than the distribution density of the opening in region B. Therefore, based on the above relation, when disposing the dot light sources 112a at the bottom of the cavity 122, the dot light sources 112a have to be disposed in the region B.
The distribution density of the openings 114a on the cover 114 directly opposite the dot light sources 112a, is less than the distribution density of the openings 114a along either side of the dot light sources along first axial direction X1, hence the light exit on the cover 114 is less, thus reducing the light concentration therein. Correspondingly, the distribution density of the openings 114a on the cover 114, corresponding to the center between two adjacent dot light sources 112a, is at the maximum, thus enhancing the light exit therein. Based on the above, the light generated by the dot light sources 112a would not completely emit through the cover 114 due to excessive openings 114a directly opposite the dot light sources 112a. However, the distribution density of the openings 114a not directly opposite the dot light sources 112a is greater than the distribution density of the opening 114a directly opposite the dot light source 112a, thus balancing the light exit in order to form the strip-shaped illumination device 100 capable of uniformly emitting light. As an additional indication, the term “directly opposite” mentioned above means that the dot light sources 112a are directly projecting onto the location of the cover 114.
In an embodiment, the cover 114 is white reflective sheet or another reflective material capable of reflecting or scattering back the light. Furthermore, the interior wall of the base 120 also has a reflective diffusion material layer. This enables the illumination device 100 to enhance the efficiency of the dot light sources 112a inside of the cavity 122, emitting out of the cover 114 by reflecting or scattering through the openings 114a.
The effect this embodiment produces is similar to arranging the light source 110 in
Accordingly, the light source 300 is able to have a curved plate-shape as shown in
Furthermore, the base 420 is integrally formed of thermal conductive plastic for instance, or is formed of metal with good thermal conductivity, so the light bar 412 configured on it is able to dissipate heat. In addition, when the base 420 is constructed or turning processed to encompass a multiple-curved strip-shaped form relative to the circularly arranged cavities 422 of the central axial direction C1, such as shown in
Accordingly, a lighting effect similar to the conventional light bulb can be generated when the light source 410 is disposed inside of the cavities 422 of the base 420. Moreover, through the distribution of the openings 414a on the cover 414, the brightness and illuminance uniformity and effectiveness of the illumination device 400 can be further enhanced.
The light source in the abovementioned embodiments is not limited to the strip-shaped, plate-shaped, or curved strip-shaped form. The number of the light sources is also not limited, under the condition that the relationship between the dot light source and the openings on the cover is satisfied, and users can appropriately adjust the number according to the application environment or lighting style.
In general, by using the cover with a plurality of openings to cover the light bar, the light source, the light module and the illumination device are able to emit the light of the dot light sources out of the cover in a more uniform manner. Furthermore, with the presence of the openings, the heat generated by the dot light source is able to be dissipated effectively, thus improving the reliability of the dot light source, and further concurrently enhancing the illumination and heat dissipation efficiency of the light source, the light module and the illumination device.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of U.S. provisional application Ser. No. 61/557,352, filed on Nov. 8, 2011. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
61557352 | Nov 2011 | US |