The present invention relates to an illumination device comprising a base, a U-shaped yoke connected to and rotatable relative to the base and a head connected to and rotatable relative to the yoke. The invention relates also to a method of manufacturing such illumination device.
Moving head lighting fixtures are commonly known in the art of lighting and especially entertainment lighting. A moving head light fixture typically comprises a head having a number of light sources which creates a light beam and a number of light effect means adapted to create various light effects. The head is rotatably connected to a yoke, and the yoke is rotatably connected to a base, and the result is that the head can rotate and direct the light beam in all directions.
The competition in the market has traditionally been based on the optical performance of the moving head such as light output, number of light effects, color mixing etc. The competition in the market has lately changed such that parameters such as quality, serviceability and price have become the most important factors. There is thus a need for a competitive moving head lighting fixture with regard to quality, serviceability and price.
US2009154165 discloses a device for influencing a light beam including a primitive element and a housing which is arranged on a rotatable arm and which is rotatable with respect to the primitive element by means of one of the several drive units, and into which a light source for generating a light beam may be introduced, wherein at least one part of the control electronics for operating the device is arranged in the rotatable arm or in the housing.
EP 1898145 discloses a moving head projector comprising a base to which a yoke is rotationally connected, which yoke is rotationally connected to a head, which head comprises a light source placed partly inside a reflective means, which reflective means forms a light beam, which light beam passes through light forming means, which light beam furthermore passes through at least one lens before the light beam leaves the projector.
FR 2838178A discloses a spotlight having a face which supports a large number of red, green and blue light-emitting diodes which are controlled by an electronic circuit board at the rear to produce various color shades. The spotlight housing may be rotated about a horizontal axis by a motor and toothed belt and about a vertical axis by a motor and toothed belt.
EP 2103865 shows a system for rotating the head of a lighting fixture. A motor comprises a driving wheel, which driving wheel drives a belt, which belt is kept tight by a belt tensioner. The belt tensioner comprises a fixture and a tensioner wheel, which fixture is held under tension by a spring. An absolute encoding module comprises an input wheel driven by the belt. The input wheel rotates a first axle, which first axle rotates a second axle at a different speed. Furthermore, the belt drives a wheel connected to a head.
US2004/070984 discloses a luminaire including a base, a head comprising a lamp and an optical assembly and one arm connecting the base and the head. The arm has opposite first and second terminal ends rotatably coupled to the base and the head, respectively, first and second opposite sides extending between the first and second terminal ends, and first and second actuating members unitary with the arm. The first actuating member extends from the first side at the first terminal end and the second actuating member extends from the second side at the second terminal end. The first actuating member rotates the arm with respect to the base about a first axis, and the second actuating member rotates the head with respect to the arm about a second axis, perpendicular to the first axis. The head is only carried at one side and is thus carried in an unbalanced position. The consequence is that the bearings carrying the head will be worn out relatively fast and thus need to be replaced. Further the unbalanced head is hard to handle especially in connection with larger luminaries.
The prior art moving heads comprise many components and are thus rather complicated to manufacture which increases the price of the moving head and further complicates the serviceability of the moving head.
The object of the present invention is to solve the above-described limitations related to prior art. This is achieved by an illumination device and method as described in the independent claims. The dependent claims describe possible embodiments of the present invention. The advantages and benefits of the present invention are described in the detailed description of the invention.
a and 1b illustrate an illumination device according to the present invention where
a-3b illustrate steps of manufacturing the illumination device of
a-4c illustrate a first embodiment of a yoke shell part comprising belt tensioning means;
a-5c illustrate a second embodiment of a yoke shell part comprising belt tensioning means;
a and 6b illustrate a third embodiment of a yoke shell part comprising belt tensioning means;
a and 7b illustrate a fourth embodiment of a yoke shell part comprising belt tensioning means;
a and 8b illustrate another embodiment of a yoke according to the present invention.
The present invention is described in view of a moving head lighting fixture including a number of LEDs that generate a light beam. However, the person skilled in the art realizes that the present invention relates to illumination devices using any kind of light source such as discharge lamps, OLEDs, plasma sources, halogen sources, fluorescent light sources, etc.
a and 1b illustrate an illumination device according to the present invention where
In the illustrated embodiment, the head is embodied as a “bucket” shaped head outer shell 109 wherein a display 111, main PCB (Printed Circuit Board) 113, a fan 115, a heat sink 119, an LED PCB 121, and a lens assembly are stacked. The lens assembly comprises a lens holder 123 and a lens array 125. The head is rotatably connected to the U-shaped yoke by two tilt bearings 127a and 127b, which are supported by the upstanding arms 106a and 106b of the U-shaped yoke as described in connection with the U-shaped yoke. The LED PCB 121 comprises a number of LEDs 128 emitting light and which in cooperation with the lenses 125 in the lens array generate a light beam. The main PCB comprises controlling circuits and driving circuits (not shown) for controlling the LEDs as known in the art of illumination devices. The main PCB comprises further a number of switches (not shown) which extend through a number of holes in the head outer shell 109. The switches and display act as a user interface allowing a user to communicate with the moving head lighting fixture.
The U-shaped yoke 105 comprises two U-shaped yoke shell parts 131a and 131b that are interlocked. Compared to the yoke of prior art moving head lighting fixtures, the U-shaped yoke can as a consequence be manufactured very fast and thereby reduce the price of the moving head lighting fixture. The two U-shaped yoke shells 131a and 131b are interlocked at both of said upstanding arms and across the entire width of the U-shaped yoke along an edge. The two yoke shell parts are thus brought together in a locked position where the yoke shell parts have at least one pair of edges that are positioned adjacent to each other whereby the yoke shells form a tight enclosure and add static strength to the construction. Interlocking the U-shaped yoke shell parts at both of the upstanding arms 106a and 106b of the U-shaped yoke provides a stiff construction as forces can be shared between the two upstanding arms. The yoke shell parts can be interlocked by fastening means such as screws, adhesive, or other kinds of engaging means. The entire width may be defined as the cross section having the largest dimension. This provides a stiff yoke construction as the U-shaped yoke shell parts are interlocked over a large dimension. The manufacturing process of this yoke is very fast since the components, which are to be positioned within the yoke, can be arranged in a first U-shaped yoke shell part 131a whereafter the second U-shaped yoke shell part 131b can locked to the first yoke shell part 131a. The U-shaped yoke shell parts form a monocoque shell which supports at least a part of the structural load provided to the U-shaped yoke. The strength of the interior yoke (metal) structure, which normally takes up the entire structural load in prior art yokes, can thus be reduced for instance by providing simpler structures or by reducing the thickness of the (metal) structure. The interior yoke structure can even in some embodiment be completely omitted. The cost of the interior yoke structure can thus be reduced as a simpler structure can be provided and less material is needed in order to provide proper support of the yoke. The U-shaped yoke shell parts 131a and 131b further fit together across the entire width of the U-shaped yoke whereby it is easier to ensure that the U-shaped yoke shell parts are locked together in a proper way. This can for instance be achieved by providing engaging means which ensure that the U-shaped yoke shell parts only can be locked together in one particular way. The engaging means used in the illustrated embodiment can be seen in
The U-shaped yoke shell parts are further connected to a pan bearing 133 rotatably connected to the base 103 through a shaft 134. The U-shaped yoke comprises in this embodiment a U-shaped metal frame 135 to which a pan motor 136 and tilt motor 137 are arranged. The tilt motor 137 is arranged on a first arm 138a of the U-shaped metal frame and connected to the tilt bearing 127a through a tilt belt 139. Tilt bearing 127a comprises further a toothed wheel 141 which is fixed to the rotating part of tilt bearing 127a and the head 107. The tilt motor comprises also a toothed wheel 143, and the tilt belt 139 is connected to the toothed wheel 141 of the tilt bearing and the toothed wheel 143 of the motor. The tilt belt comprises also a number tooth (not shown) which is adapted to engage the toothed wheels 141 and 143. The tilt motor will as a consequence be able to rotate the head in relation to the U-shaped yoke. It is to be understood that the tilt belt connection between the tilt motor and tilt bearing also can be embodied without the use of engaging teeth.
The pan motor 136 is arranged on a second arm 138b of the U-shaped metal frame 135 and connected to the pan bearing 133 through a pan belt 145. The pan bearing and pan motor both comprise a toothed wheel (145 and 147 respectively) interconnected by a toothed pan belt 149. The toothed wheel 145 of the pan bearing is fixed in relation to the base 103, and the pan motor can thus rotate the U-shaped yoke in relation the base. The U-shaped metal frame makes it possible to mount the components which are to be positioned inside the U-shaped yoke, such as pan motor, tilt motor, pan bearing, tilt bearing and other electronic or mechanical devices, before mounting the yoke shell parts. The U-shaped metal frame is a bent one-sheet metal plate which reduces costs since the U-shaped metal frame can be bent by a machine as known in the art of metal production. It is to be understood that the metal frame in other embodiments does not need to be U-shaped. The skilled person will also realize that the metal frame can be omitted in other embodiments and that the components which are to be positioned inside the U-shaped yoke can be mounted directly onto the U-shaped yoke shell parts prior to locking the yoke shell parts together. This can for instance be achieved by providing mounting guides such as flanges, spacers or holes in the yoke shell parts. The mounting guides can for instance be molded as a part of the yoke shell parts.
The base 103 comprises a one-sheet metal main base frame 151 and two base shell parts 153a and 153b. The two base shell parts are arranged on the metal main base frame and have vent holes 155 on top for air cooling. The base further comprises 5-Pin XLR male and female connectors 157 for DMX signals as known in the art; input and output power connectors 159, power supply PCB's (not shown) and fan (not shown).
The U-shaped yoke shell parts comprise engaging means adapted to engage with the other interlocked U-shaped yoke shell part. The engaging means function as guides which ensure that the two U-shaped yoke shell parts only can be locked together in the correct way. In the illustrated embodiment, the engaging means are embodied as a number of flanges 203a and 203b protruding from the locking edges 201a and 201b respectively. The flanges are adapted to engage with a corresponding number of recesses 205a (the recesses of U-shaped yoke shell part 131b are not visible) in the locking edge of the other U-shaped yoke shell parts. In the illustrated embodiment, the protruding flanges and recesses are positioned asymmetrically around the center of the yoke such that each flange will engage with an opposite recess when the two U-shaped yoke shell parts are positioned with the locking edges 201a and 201b in front of each other. The engaging means are further embodied as a number of bosses 207a and 207b protruding from the locking edges 201a and 201b respectively and a corresponding number of mating bores 209a and 209b integrated in the locking edges 201a and 201b respectively. The bores are further adapted to accommodate screws which are tightened into the bosses e.g. into a threaded hole or by forcing the screw directly into each boss.
The U-shaped yoke shell parts comprise also bearing guiding means embodied as arc-shaped flanges 211a and 211b. The bearing guiding means are adapted to hold the tilt bearing when the U-shaped yoke shell parts are interlocked and function further as belt tensioning means as explained in connection with
The U-shaped yoke shell parts comprise mounting guiding means adapted to support at least one component positioned within said yoke. The mounting guiding means can for instance be embodied as flanges, bosses, recesses or bores integrated into the internal side of the yoke shell part. The components can for instance be attached to these parts by using fastening means such as screws, adhesives, snap mechanisms etc. Mounting guiding means can also be shaped as partial cavities shaped to accommodate the components which are to be positioned inside the yoke. The illustrated U-shaped yoke shell parts comprise mounting guiding means in the form of a recess 213a for accommodating the U-shaped metal frame (shown in
The present invention relates also to a method of manufacturing an illumination device like the illumination device illustrated in
a-4c illustrate a yoke shell part where the belt tensioning mechanism is formed as bearing guiding means adapted to displace the bearing in relation to a motor upon mounting the yoke shell part 400 to the yoke.
a-5c illustrate a yoke shell part where the belt tensioning mechanism is formed as motor guiding means adapted to displace the motor in relation to a bearing upon mounting the yoke shell part to the yoke.
a and 6b illustrate a setup where the tilt bearing 403 and tilt motor 401 are arrange in a first yoke shell part 601 using mounting guiding means 602 and 603, where guiding means 602 is adapted to accommodate the tilt bearing and guiding means 603 is adapted to accommodate the tilt motor 401. The mounting guiding means can be molded as part of the first yoke shell part 601 and formed to accommodate the tilt motor and tilt bearing. The guiding means can also include a snap mechanism adapted to hold the tilt motor or the tilt bearing in the mounting guiding means. In this embodiment the belt tensioning mechanism is formed as belt guiding means adapted to displace least a part of the belt upon mounting the yoke shell part 605 on the yoke. The belt guiding means are embodied as a pulley 607 connected to the yoke shell part 605. The pulley is adapted to displace a part of the tilt belt as indicated by arrow 609 by pushing to the tilt belt when the yoke shell part is mounted as indicated by arrow 409. The displacement of the tilt belt results in the fact that the path which the tilt belt follows when rotating is increased and the tilt belt is as a consequence tensioned as illustrated in
a and 7b illustrate a setup similar to the one in
It is to be understood that any combination of the principles illustrated in
It is to be understood that the principles of the belt tensioning mechanism integrated into the yoke shell part also can be used in an illumination device comprising a light source generating a light beam where the illumination device comprises at least one housing, and where the at least one housing comprises an outer shell comprising a number of shell parts surrounding at least one motor connected to a bearing through a belt wherein said at least one of the shell parts comprises belt tensioning means adapted to tighten said belt upon mounting of the shell part to the housing. The housing can for instance be an outer housing surrounding most of the components in the illumination device. The housing can also be a modular housing functioning as an internal housing surrounding a part of the components in the illumination device. The modular housing can for instance be a zoom system where a number of optical lenses are adapted to move along an axis for instance by using a motor belt mechanism whereby this belt mechanism can for instance be tightened by a belt tensioning mechanism integrated in a shell part surrounding at least a part of the components in the zoom module.
a and 8b illustrate another embodiment of a yoke for an illumination device according to the present invention where
Like the yoke in
Number | Date | Country | Kind |
---|---|---|---|
2010 00127 | Feb 2010 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2011/050040 | 2/11/2011 | WO | 00 | 9/7/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/100972 | 8/25/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4419721 | Gregoire et al. | Dec 1983 | A |
5590955 | Bornhorst et al. | Jan 1997 | A |
6213626 | Qian | Apr 2001 | B1 |
20040228133 | Tsao | Nov 2004 | A1 |
20050047142 | Lui | Mar 2005 | A1 |
20060269278 | Kenoyer et al. | Nov 2006 | A1 |
20090231850 | Rasmussen et al. | Sep 2009 | A1 |
20090323364 | Bornhorst et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
101430078 | May 2009 | CN |
1001212 | May 2000 | EP |
1898145 | Mar 2008 | EP |
Entry |
---|
International Search Report; International Application No. PCT/DK2011/050040; International Filing Date Feb. 11, 2011; 3 pages. |
Chinese Application No. 2011800066130; First Office Action; Dated: Oct. 18, 2013; 5 pages (with translation 4 pages). |
Chinese Application No. 2011800066130; Search Report (Translation); Dated: Oct. 10, 2013; 1 page. |
European Application No. 11744292; Extended European Search Report; Dated: Jun. 20, 2013; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130003372 A1 | Jan 2013 | US |