1. Technical Field
The present disclosure relates generally to illumination devices, and more particularly to an illumination device for use with solid state light emitters, e.g., light emitting diodes (LEDs).
2. Description of Related Art
LEDs as a source of illumination provide advantages such as resistance to shock and nearly limitless lifetime under specific conditions. Thus, illumination devices utilizing LEDs present a cost-effective yet high quality replacement for incandescent and fluorescent lamps.
Conventional lamps such as incandescent lamps can emit light radially and illuminate all around the lamps. However, LEDs are area light sources and the light emitted by the LEDs is of high directivity. Lamps using LEDs as light sources can not illuminate rear directions thereof, which is not convenient for the users, especially when the lamps are applied in mines or tunnels.
What is needed therefore is an illumination device having reflectors which can overcome the above limitations.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the views.
Referring to
The housing 10 comprises a heat sink 12. The heat sink 12 comprises a base 121 and a plurality of fins 122 extending from a surface of the base 121. The light source 20 is mounted on another surface of the base 121 opposite to the fins 122. The base 121 is a substantially rectangular metal plate, and the surface on which the light source 20 is mounted is flattened. It is understood that, in alternative embodiments, the base 121 can be other shapes such as circular and square, and the surface can be curved, or have posts, plates or other similar structures formed thereon for mounting the light source 20.
In some embodiments, the envelope 30 can engage with the heat sink 12 directly. In the present embodiment, the housing 10 further comprises a frame 14 mounted on the heat sink 12. The envelope 30 engages with the frame 14 of the housing 10. Specifically, the frame 14 surrounds the light source 20 and has a predetermined height along the main emission direction M to define a receiving room (not labeled) therein. The housing 10 further comprises a pressing collar 16 depressing edges of the envelope 14 on the frame 14 to secure the envelope 30 onto the frame 14.
The light source 20 comprises a plurality of LED modules 21. In other embodiments, the light source 20 could comprise other light emitters such as laser diodes or organic light emitting diodes. The LED modules 21 are mounted on the base 121 of the heat sink 12 and face the envelope 30.
Two decorating plates 23 are mounted on the LED modules 21 and received in the receiving room of the frame 14. The decorating plates 23 can hide portions of the LED modules 21 which do not emit light for aesthetic purpose. The decorating plates 23 can also extend around the LED modules 21 to function as a reflecting plate.
A power module 50 is assembled on the heat sink 12 and over the fins 122 to provide electrical power for the LED modules 21. Specifically, a hole 123 is defined in the base 121 for lead wires (not shown) extending therethrough to electrically connect to the power module 50 and the LED modules 21. A shield plate 125 covers the hole 123 to protect the lead wires and other elements. The shield plate 125 is positioned between the LED modules 21 to divide the LED modules 21 into two separated parts.
Two supporting racks 60 are respectively positioned on two ends of the base 121 of the heat sink 12 for mounting the illumination device on an object such as a pole or a wall. Each of the supporting racks 60 further comprises a positioning structure 62, which is used to adjust the relative position of the supporting racks 60 and the housing 10. By the positioning structure 62, the orientation of the LED modules 21 and according the illuminating direction of the illumination device can be adjusted.
Referring to
The reflector 40 is compliantly adhered onto the inclined surface 32. Since the inclined surface 32 is angled with the main emission direction M, the light generated by the LED modules 21 can be more efficiently reflected to the direction sideways and opposite to the main emission direction M. In the present embodiment, the reflector 40 is a thin plate made of material with high reflectivity and is adhered on an inner side of the inclined surface 32. Understandably, the reflector 40 can also be a reflective layer painted on the inclined surface 32.
As shown in
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0186083 | May 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6250774 | Begemann et al. | Jun 2001 | B1 |
20090046457 | Everhart | Feb 2009 | A1 |
20100110660 | Brukilacchio | May 2010 | A1 |