Many vehicles include one or more illumination lamps to provide visibility in reduced lighting conditions (e.g., at night, during precipitation, etc.). Various regulations, such as U.S. Department of Transportation federal regulations, apply to such lamps to ensure the lamps do not cause, for example, glare, poor contrast, or poor visibility. For example, many regulations require a lamp system to produce a low beam and a high beam.
Vehicular illumination lamps utilize various types of light sources to form beam of lights in compliance with such regulations. One such light source is a light emitting diode (LED). However, many lamps utilizing LED's are overly complex, expensive, and suffer from logistical problems. For example, these lamps often include a high number of light sources (e.g., five to seven light sources) in one lamp. Further, many of these lamps utilize a combination of lens optics and reflector optics to form a beam of light, which complicates and/or reduces the efficiency of light collection and distribution.
Implementations described and claimed herein address the foregoing problems by providing an illumination lamp adapted to efficiently produce a high beam light pattern and a low beam light pattern in compliance with federal regulations for vehicular forward lighting. In one implementation, the illumination lamp includes a first reflector and a second reflector. The first reflector has a first reflecting region adapted to reflect light emitted from a first light emitting diode through an optics-free lens. The light reflected from the first reflecting region forms a first beam light pattern. The second reflector has a second reflecting region adapted to reflect light emitted from a second light emitting diode through the optics-free lens. The light reflected from the second reflecting region forms a second beam light pattern that is different from the first beam light pattern. In some implementations, the first beam light pattern is a low beam light pattern, and the second beam light pattern is a high beam light pattern. In other implementations, the first beam light pattern and the second light beam pattern form a third light beam pattern.
Other implementations are also described and recited herein. Further, while multiple implementations are disclosed, still other implementations of the presently disclosed technology will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the presently disclosed technology. As will be realized, the presently disclosed technology is capable of modifications in various aspects, all without departing from the spirit and scope of the presently disclosed technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not limiting.
Aspects of the presently disclosed technology involve a dual function light emitting diode (LED) vehicular illumination lamp. In one example implementation, the lamp is adapted to utilize reflector optics to provide a low beam light pattern from a first LED in a low beam function and a high beam light pattern from a second LED in a high beam function. Generally, the high beam light pattern maximizes seeing distance by providing a light distribution pattern that is a relatively higher intensity and centrally concentrated. The low beam light pattern provides forward and lateral illumination while reducing glare. In some implementations, the high beam light pattern is generally symmetrical and the low beam light pattern is generally asymmetrical. The lamp may switch between the high beam function and the low beam function manually or automatically. Further, in some implementations, when the lamp is operating in the high beam function, the lamp may further produce the low beam light pattern, at full or partial power, to provide additional light for increased visibility.
For a detailed discussion of an implementation of the vehicular illumination lamp, reference is made to
The lens 102 is coupled to a housing 104, which is comprised of a robust substance, including, but not limited to, a plastic or a metal (e.g., aluminum). The housing 104 may be a variety of shapes, such as generally conical, rectangular, cylindrical, pyramidal, etc. In one implementation, the shape of the housing 104 mirrors the shape of a cavity in a vehicle adapted to receive the lamp 100. The lamp 100 further includes an electrical connector 106 configured to provide power to the lamp 100 from the vehicle, as described herein, for example, with respect to
As shown in
The first reflector 206 and the second reflector 208 are configured to provide different beam functions. Specifically, the first reflector 206 has a first reflector region 214 adapted to produce a first beam light pattern, and the second reflector 208 has a second reflector region 216 adapted to produce a second beam light pattern different from the first beam light pattern. For example, the first reflector 206 may provide the low beam light pattern, and the second reflector 208 may provide the high beam light pattern, as described herein. The first reflector 206 or the second reflector 208 is illuminated to produce either the first beam light pattern or the second beam light pattern, respectively.
In some implementations, the lamp 100 may produce both the first beam light pattern and the second beam light pattern, each at full or partial power, to form a third beam light pattern. In such implementations, the first beam light pattern may be generally similar to or different from the second beam light pattern. Specifically, the lamp 100 illuminates the first and second reflectors 206 and 208 to produce the third beam light pattern, the characteristics of which may vary depending on visibility conditions and user needs. For example, the lamp 100 may be adapted to produce the third beam light pattern for a motorcycle forward auxiliary lamp. In other words, the first and second reflectors 206 and 208 are both illuminated to produce a forward auxiliary beam light pattern. In other implementations, the third beam light pattern is the high beam light pattern, as described herein. Specifically, the first and second reflectors 206 and 208 are illuminated, with the second beam light pattern and the first beam light pattern provided on substantially full or partial power. For example, to produce the high beam light pattern, the first and second beam light patterns may each be provided at partial power. Alternatively, to produce the high beam light pattern, the second beam light pattern may be provided at substantially full power and the first beam light pattern at partial power. In still other implementations, the lamp 100 may be a single function lamp, with a reflector being illuminated to provide a single beam light pattern (e.g., the high beam light pattern or the low beam light pattern).
In one implementation, the first and second reflector regions 214 and 216 include a plurality of reflecting surfaces 212 for directing light from a light source through the lens 102 in the first or second beam light pattern. The reflecting surfaces 212 may be generally smooth, angled surfaces, which are oriented to receive light from a light source and reflect the light to form a pattern of light, such as the high beam light pattern or the low beam light pattern. The reflecting surfaces 212 may be contoured to match the shape of the first reflector region 214 or the second reflector region 216.
In one implementation, the first and second reflectors 206 and 208 are each removably attached to the divider 210 and each have an arcuate shape, such as a partial hemispherical or hemi-elliptical shape. In another implementation, the first and second reflectors 206 and 208 are part of a single structure having a generally hemispherical or hemi-elliptical shape that is divided into two regions by the divider 210 to form the first and second reflectors 206 and 208. The first and second reflector regions 214 and 216 are comprised of a generally reflective substance, such as metal or plastic. In one implementation, the first and second reflector regions 214 and 216 are a plastic molding compound that is base-coated and vacuum metalized.
As will be appreciated, the divider 210 permits illumination to be separately received and reflected by the first reflector 206 or the second reflector 208 to provide different beam functions. In other words, during operation, the lamp 100 provides a first beam function (e.g., the low beam function) by illuminating the first reflector 206 and reflecting the light off the reflecting surfaces 212 on the first reflector region 214. Similarly, the lamp 100 provides a second beam function (e.g., the high beam function) by illuminating the second reflector 208 and reflecting the light off the reflecting surfaces 212 on the first reflector region 216. Additionally, the lamp 100 may produce a combination of the first and second beam functions, for example, to provide a third beam function. For example, while the lamp 100 is operating in the second beam function by illuminating the second reflector 208, the lamp 100 may also illuminate the first reflector 206, at full or partial power, to provide additional light. However, it will be understood by those of ordinary skill in the art, that the lamp 100 may produce other combinations of the first beam function and the second beam function, and the divider 210 may be adapted to divide the housing 104 such that the lamp 100 may achieve additional beam functions.
As can be understood from
As described with respect to
The shape and dimensions of the first reflector 206 are adapted to produce the low beam light pattern, as described herein. In one implementation, a distance A from a first side edge 406 of the first reflector 206 to an axis of the first LED 402 is substantially the same as a distance B from a second side edge 408 of the first reflector 206 to the axis of the first LED 402, and a distance E from a back edge 502 of the first reflector 206 to the axis of the first LED 402 is different from a distance F from a front edge 504 of the first reflector 206 to the axis of the first LED 402. When assembled, the front edge 504 is disposed near the lens 102.
The similarities in the sizes of distance A and distance B and the differences in the sizes of distance E and distance F may be based, for example, on the regulatory requirements for the low beam light pattern. For example, the sizes may direct the low beam light pattern at the foreground in front of a vehicle such that light is not emitted higher than that allowed by federal regulations and direct the light away from oncoming traffic. In a specific exemplary implementation, the distance A is substantially the same as the distance B, and the distance E is greater than the distance F. For example, the distances A and/or B may range from approximately 2.950 inches to 3.050 inches, the distance E may range from approximately 1.250 inches to 1.365 inches, and the distance F may range from approximately 0.780 inches to 0.885 inches. In a specific example, the distance E is approximately 1.312 inches and the distance F is approximately 0.833 inches. However, other sizes and relative dimensions of distance A compared to distance B and distance E compared to distance F are contemplated depending, for example, on regulation requirements.
The shape and dimensions of the second reflector 208 are adapted to produce the high beam light pattern, as described herein. In one implementation, a distance C from a first side edge 410 of the second reflector 208 to an axis of the second LED 404 is substantially the same as a distance D from a second side edge 412 of the second reflector 208 to the axis of the second LED 404, and a distance G from a back edge 506 of the second reflector 208 to the axis of the second LED 404 is different from a distance H from a front edge 508 of the second reflector 208 to the axis of the second LED 404. When assembled, the front edge 508 is disposed near the lens 102.
The similarities in the sizes of distance C and distance D and the differences in the sizes of distance G and distance H may be based, for example, on the regulatory requirements for the high beam light pattern. For example, the sizes maximize seeing distance by providing a light distribution pattern that is a relatively higher intensity and centrally concentrated. In a specific exemplary implementation, the distance C is substantially the same as the distance D, and the distance G is less than the distance H. For example, the distances C and/or D may range from approximately 2.950 inches to 3.050 inches, the distance G may range from approximately 0.955 inches to 1.055 inches, and the distance H may range from approximately 1.350 inches to 1.455 inches. In a specific example, the distance G is approximately 1.005 inches and the distance F is approximately 1.402 inches. However, other sizes and relative dimensions of distance C compared to distance D and distance G compared to distance H are contemplated depending, for example, on regulation requirements.
The first LED 402 is positioned relative to the first reflector shelf aperture 604, and the second LED 404 is positioned relative to the second reflector shelf aperture 610. During operation, the first LED 402 emits light through the aperture 604 in the first reflector shelf 302, which is received and reflected by the first reflecting region 214 in the first reflector 206. Similarly, the second LED 404 emits light through the aperture 610 in the second reflector shelf 304, which is received and reflected by the second reflecting region 216 in the second reflector 208, as described herein. In one implementation, the shields 308 and 310 are positioned relative to the apertures 604 and 610 in the first and second reflector shelves 302 and 304, respectively, to absorb light rays emitted directly from the first LED 402 or the second LED 404 that have not been reflected by the first or second reflector regions 214 and 216. Specifically, the shields 308 and 310 may help prevent the first and second LED's 402 and 404 from emitting light through the lens 102 via the apertures 604 and 610 directly, without having first been reflected off the first or second reflector regions 214 and 216.
In one implementation, the first and second reflector shelves 302 and 304 include one or more mounting members 606 configured to engage the first and second reflectors 206 and 208, respectively, as shown best in
As can be understood from
The circuit board 806 is configured to receive and/or execute commands to illuminate the first LED 402 and/or the second LED 404 at full or partial power, as well as commands to turn off the first LED 402 and/or the second LED 404. In other words, the first LED 402 and the second LED 404 may be selectively illuminated to form the first beam light pattern and/or the second beam light pattern. In some implementations, a user (e.g., a driver of the vehicle) manually selects the first beam function and/or the second beam function, and in response to the command, the first LED 402 and/or the second LED 404 are illuminated. In other implementations, the circuit board 806 automatically executes commands to illuminate the first LED 402 and/or the second LED 404 in response to lighting and visibility conditions. For example, the lamp 100 may include one or more sensors to determine when darker lighting conditions are present and automatically illuminate the first LED 402 and/or the second LED 404, accordingly. In still other implementations, a third beam light pattern may be formed by illuminating the first LED 402 and the second LED 404, together, at full or partial power. For example, the third beam light pattern may be produced by illuminating the second LED 404 at substantially full power and the first LED 402 at partial power.
In one implementation, the electrical connector 106 is connected to the circuit board 806 through an opening 820 in the housing 104. The electrical connector 106 engages the housing 104, for example, with a mounting screw 824 and a ring 822, which provides a seal between the electrical connector 106 and the housing 104. The ring 822 may be, for example, a silicone O-ring.
The first and second reflectors 206 and 208 are connected to the housing 104, for example, by inserting one or more mounting screws 810 through openings 808 in the housing 104 to engage with one or more channels 826 on the first and second reflectors 206 and 208. In a specific example implementation, four mounting screws 810 are inserted through four openings 808 to engage with two channels 826 in the first reflector 206 and with two channels 826 in the second reflector 208. However, other amounts and additional mounting mechanisms are contemplated.
As can be understood from
In one implementation, the housing 104 includes an aperture 812, which may be covered by a breathable membrane 814.
As can be understood from
The first LED 402 is in electrical communication with the circuit board 806 via the leads 802. In one implementation, the leads 802 are mounted on the surface 602 of the first reflector shelf 302 to position the first LED 402. In another implementation, the leads 802 are mounted on the housing shelf 816. The first LED 402 is positioned to direct light into the first reflector 206 through the aperture 604. The reflecting surfaces 212 redirect the light from various angles to form the first beam light pattern (e.g., the low beam light pattern).
Similarly, the second LED 404 is in electrical communication with the circuit board 806 via the leads 804. In one implementation, the leads 804 are mounted on the surface 608 of the second reflector shelf 304 to position the second LED 404. In another implementation, the leads 804 are mounted on the housing shelf 816. The second LED 404 is positioned to direct light into the second reflector 208 through the aperture 610. The reflecting surfaces 212 redirect the light from various angles to form the second beam light pattern (e.g., the high beam light pattern).
The circuit board 806 is in electrical communication with the electrical connector 106 to power the first and second LED's 402 and 404. As shown in
All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, counterclockwise, etc.) are only used for identification purposes to aid the reader's understanding of the presently disclosed technology, and do not create limitations, particularly as to the position, orientation, or use of any of the implementations. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the spirit and scope of the presently disclosed technology. For example, while the embodiments described above refer to particular features, the scope of this disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the presently disclosed technology is intended to embrace all such alternatives, modifications, and variations together with all equivalents thereof.
The present application claims benefit of priority to U.S. Provisional Patent Application No. 61/481,529, entitled “LED Headlamp with Low and High Beam” and filed on May 2, 2011, which is specifically incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61481529 | May 2011 | US |