The present invention relates to a distributed illumination panel that may be used as a backlight, for example for use with an at least partially transmissive spatial light modulator, or that may be used for general illumination. The present invention also relates to a display including such a backlight.
The following prior art utilises a light modulating layer, such as a liquid crystal display to control the irradiation of phosphors, and hence the colour of each pixel:
In U.S. Pat. No. 7,248,310 (Philips Lumileds Lighting Company) a colour, transmissive liquid crystal display (LCD) uses a backlight that supplies a uniform blue light to the back of the liquid crystal layer in an LCD. The blue light, after being modulated by the liquid crystal layer, is then incident on the back surface of a phosphor material located above the liquid crystal layer. A first phosphor material, when irradiated with blue light, generates red light for the red pixel areas of the display. A second phosphor material, when irradiated by blue light, generates green light for the green pixel areas of the display. No phosphor is deposited above the blue pixel areas.
In U.S. Pat. No. 5,608,554 (Samsung), a display device, including a backlight source with an emission peak between 380-420 nm, controls the irradiation of red, green and blue coloured phosphors located at the front of the display, by transmission of the light through a light modulating layer, such as a liquid crystal panel.
In U.S. Pat. No. 6,654,079 (Koninklijke Philips Electronics), a display device includes a backlight having a main emission peak below 360 nm. Irradiance of red, green and blue phosphors located in front of the display is controlled by the transmission of light through an electro-optic device (such as a liquid crystal panel).
In U.S. Pat. No. 5,629,783 (Casio), a display device include a polymer dispersed liquid crystal layer that may be used to in either a transmissive or reflective display in conjunction with colour phosphors on either the upper or lower substrate to achieve a colour display. No light source is specified.
In U.S. Pat. No. 6,844,903 (Lumileds Lighting U.S.) a display device includes a liquid crystal panel backlit by blue light distributed by a light guide arrangement. The blue light is controlled by a liquid crystal panel. The same light may then irradiate red or green phosphors in front of the display located above the appropriate sub-pixels. No phosphor is present in front of the blue sub-pixel.
In WO 97/07426 (A. Cupolo), an emissive liquid crystal display has a backlight and a liquid crystal cell for modulating the light. A phosphor layer coated on the light exiting side of the display panel receives the modulated light and converts it into longer wavelengths. The phosphor layer may contain just red and green phosphors, with blue light being injected into the lightguide, or the phosphor may contain red, green and blue phosphors based on near-ultraviolet light injected into the lightguide. The following prior art utilizes the phosphor between the light source and a light modulating layer to generate colour:
In U.S. Pat. No. 6,683,659 (Koninklijke Philips Electronics), a liquid crystal layer between two clear substrates, has at least one colour of phosphor arranged as dots on the back surface. This surface and a yet lower surface form a gastight gas discharge vessel that may be used to illuminate the phosphors. Transmission of the light emitted by the phosphors is controlled by the liquid crystal layer.
In U.S. Pat. No. 6,791,636 (Lumileds Lighting U.S.) a liquid crystal display has a lightguide backlight into which blue light is optically coupled on one or more sides. Red and green phosphors are located above the lightguide, coinciding with the red and green pixel areas of the display. Deformities below the red and green phosphor strips and the blue pixel areas direct blue light onto the backs of the phosphors and the blue pixel areas. If an ultraviolet light source is used, then blue phosphors would need to be used below the blue pixel areas.
In U.S. Pat. No. 6,809,781 (General Electric Company) a liquid crystal display utilizes at least one phosphor positioned between the panel and the backlight source to emit light in the wavelength ranges of colour filters. The backlight source may be a semiconductor light-emitting diode or an organic light-emitting device.
The above prior art all collectively require that a lightguide is used to distribute the light, upon which it is scattered out and then through the phosphor, located either above or below a light modulating layer. The final two use the phosphor, which makes contact with the lightguide, to extract the irradiating light:
In U.S. Pat. No. 5,396,406 (Display Technology Industries), a backlight for a display device may be formed from a lightguiding structure through which ultra-violet light is distributed. Phosphor strips make contact with the lightguide and provide both means for colour conversion and out-coupling from the lightguide. A micro-collimator mirror partially collimates the light emitted from the phosphor and an array of cylindrical lenslets focuses that light onto the display pixels.
JP-A-07-176 794 (Nichia) describes the use of a backlight formed from a lightguide, into which is coupled blue light from an LED, but whereby the scattering features usually present are replaced by yellow phosphor printed directly onto the lightguide itself. This printed phosphor acts both as out-coupling features and the means to convert blue light into white. The light extracted from the lightguide is then directed through the back of a liquid crystal panel as with many other backlight units.
For a full colour LCD panel with red, green and blue sub-pixels and a white light source, the light travels through the lightguide, is scattered out to pass through the optical films and the absorptive red, green and blue filters beneath the appropriate sub-pixels, allowing the reproduction of full colour images. Currently, for small display applications, a white light emitting diode (LED) is often used. Most of the current small white LEDs consist of a semiconductor chip, 7, emitting light in the blue region of the spectrum in a reflective cup, 8, which is filled with a resin holding a suspension of yellow phosphor particles, 9. The yellow phosphor absorbs some of the blue light and re-emits it as yellow light, the combination of the two spectra giving a perceived white colour.
For the yellow phosphor white LED, in order to ensure that enough blue is converted to yellow, a certain amount of phosphor is required in the LED reflective cup. This will enlarge the final dimension of the LED. Enlarging the light source usually means decreasing the quality of the emitted light, which can be a problem when considering the construction of thin backlight systems. Furthermore, covering the LED in a phosphor loaded resin will reduce the thermal conductivity, reducing the dissipation of heat energy, which is created as a by-product of light emission from the blue LED chip. This means that the chip may not be driven to the optimal level to achieve best output of light.
The prior art backlight of JP-A-07-176 794 uses a phosphor medium, for example a phosphor-loaded resin, located outside the immediate proximity of the light source, as shown in FIG. 2—in
The above extraction method (the combination of a, b and c) has a disadvantage that the two colour components of the extracted light have different angular distributions. The angular distribution of the blue and yellow light are shown in
As the colour is determined by the blue/yellow relative ratio, the blue peak would mean that there would be significant colour variation, especially at high angle without very significant diffusion. This is undesirable for both backlighting applications and general illumination systems.
A number of other systems similar to that of JP-A-07-176 794 are known. For example WO2004/099664 discloses a light source having a waveguide plate that is formed of a film that contains phosphors and that is disposed between two light guide plates. JP 2003-036714 discloses a light guide plate having a fluorescent material disposed in a recess formed in a face of the light guide plate. JP 2002-116325 discloses a light source having a light guide plate that is formed of a translucent material that contains a dichroic fluorescent substance.
A first aspect of the present invention provides an illumination panel comprising at least one light source arranged to emit light in at least one first waveband; a lightguide having first and second facing major surfaces, the first of which comprises an output surface for light, and a minor edge surface through which at least one light source is arranged to introduce light into the lightguide; and a plurality of combined light extraction and phosphor elements disposed at least partially between the first and second major surfaces and arranged to cause extraction of light in the waveguide through the output surface and to emit light in at least one visible second waveband, different from the at least one first waveband, when excited by light in the at least one first waveband. The combined elements are arranged to cause extraction of light of the first waveband with a first (angle-dependent) distribution of intensity and to emit light of the second waveband with a second (angle-dependent) distribution of intensity, the variation with angle of the second distribution of intensity being equal or substantially equal to the variation with angle of the first distribution of intensity.
Light propagates within the lightguide by total internal reflection (TIR) until it is incident on a combined light extraction and phosphor element when it may be extracted from the lightguide without a change in wavelength or it may undergo wavelength conversion and be emitted from the light guide at a new wavelength. By locating the combined extraction and phosphor elements at least partially inside the lightguide it is possible to control the angular distribution of the intensity of the extracted light.
Specifying that the combined light extraction and phosphor elements emit light “in at least one visible second waveband” is intended to cover both the case where the combined light extraction and phosphor elements emit substantially monochromatic light within the second wavelength band and the case where the combined light extraction and phosphor elements emit light at two or more wavelengths that combine to give light that appears to an observer to be within the second waveband.
As explained above, the prior art light sources have the disadvantage that the colour of the emitted light is dependent on the output angle of the light, owing to the spike in intensity of the extracted short wavelength (eg blue) light shown in
Preferably the difference between the “first angular distribution” and the “second angular distribution” is sufficiently small that the intended receptor of the output from the light source (for example the human eye or a light sensor) perceives little or no variation with angle in the colour of the overall light output, so that it is not necessary to provide optical components specifically to correct for variation with angle of the colour of the emitted light.
It should be noted that specifying that the “first angular distribution” is equal or substantially equal to the “second angular distribution” does not require that, for a given angle, the output intensity of light of the first waveband is equal in magnitude to the output intensity of light of the second waveband. What is important is that the relative ratio between the magnitude of the output intensity of light of the first waveband and the magnitude of the output intensity of light of the second waveband does not vary significantly with angle, so that the user does not perceive any significant variation with angle in the colour of the output light. Provided that this is achieved, the output intensity of light of the first waveband relative to the output intensity of light of the second waveband may be chosen to give a desired colour for the output light.
The combined elements may be disposed in respective recesses in one major face of the lightguide. The term “recess” as used herein is intended to cover features such as a “groove”, “cavity”, “indent”, etc. Specifying that the combined elements may be disposed in respective recesses in “one” major face of the lightguide is not intended to exclude the possibility that, if desired, combined elements may be disposed in respective recesses in both major faces of the lightguide.
The cross-section of the recesses (as seen in a sectional view through the lightguide) may be a portion of an ellipse. It may be half of an ellipse, with the edges of the recess intersecting the one major face of the lightguide at substantially 90. Alternatively, the cross-section of the recesses may be rectangular, triangular, etc. A term “cross-section” refers to a cross section which is perpendicular to the first major surface, the second major surface, and the minor edge surface.
The surface of a combined element may be co-planar or continuous with the one of the first and second major surfaces of the light guide in which the combined element is provided. This minimises or even eliminates light extraction by method b) of
Alternatively, the surface of one or more of the combined element may protrude beyond the one major face of the lightguide. In this case, the surface of a combined element may have a planar portion.
Alternatively, the combined elements may be disposed within the lightguide, such that they are spaced from both the first and second surfaces of the lightguide. They may be disposed within the respective cavities within the lightguide. They may have an elliptical cross-section (as seen in a sectional view through the lightguide). Alternatively, the cross-section of the recesses may be rectangular, triangular, etc.
Light from the output surface may be arranged to appear white. The at least one first waveband may comprise at least one visible first waveband. The at least one visible first waveband may comprise a single colour, for example blue.
The at least one visible second waveband may be yellow.
The combined elements may comprise first and second sets arranged to emit red and green light, respectively, when respectively excited by yellow light and blue light. Again, the first (second) set of combined elements may emit substantially monochromatic light within the red (green) wavelength band or they may emit light at two or more wavelengths that combine to give light that appears red (green).
The at least one light source may comprise at least one blue or ultraviolet source and the combined elements may comprise first, second and third sets arranged to emit blue, green and red light when excited by ultraviolet or blue light, respectively. Again, each set of combined elements may emit substantially monochromatic light within its wavelength band or may emit light at two or more wavelengths that combine to give light that appears to be within its wavelength band.
The at least one light source may comprise at least one light-emitting diode or at least one semiconductor laser or gas discharge vessel.
The illumination panel may comprise a reflector facing the second major surface.
A second aspect of the present invention provides a display comprising an illumination panel of the first aspect disposed behind an at least partially transmissive spatial light modulator. By “disposed behind” is meant that the illumination panel is disposed on the opposite side of the spatial light modulator to an observer so as to act as a backlight.
The spatial light modulator may be a liquid crystal display.
Preferred embodiments of the present invention will be described by way of illustrative example, with references to the accompanying drawings.
The illumination panel of the present invention will be described with particular reference to a backlight for use with a display having an at least partially transmissive spatial light modulator. The illumination panel of the invention is not however limited to this use.
One feature of the invention is the re-location of the phosphor medium extraction features of an illumination system similar to that of
It should be noted that a “yellow phosphor medium” refers to a phosphor medium which, when illuminated with light of a suitable wavelength, emits light that appears to be in the yellow region of the spectrum. A “yellow phosphor medium” may emit light at a single wavelength in the yellow region of the spectrum, or it may emit light at two or more different wavelengths such that the overall output of the phosphor medium appears yellow to an observer. Terms such as “red phosphor” or “green phosphor” etc. have analogous meanings. The light perceived by an observer when a phosphor medium is illuminated will, in general, contain a component emitted by the phosphor medium and a component corresponding to the part of the illuminating light that is not absorbed by the phosphor medium (provided that the illuminating light is in the visible spectral region). As an example an excited phosphor medium may emit light that appears to be in the yellow spectral region and so the output light may, if the unabsorbed illuminating blue light can be ignored, also appear yellow. Where two or more different colour phosphors are provided, the overall light output perceived by an observer will, in general, contain components emitted by each phosphor and a component corresponding to the unabsorbed part of the illuminating light, so that the overall light output may appear different from the individual phosphors. For example, red and green phosphors may emit light that appears to be red and green respectively, but the combined output may appear yellow.
The creation and extraction of the longer wavelength light is by absorption of the short wavelength light by the phosphor particles and re-emission of that light at longer wavelength. However, the advantage of the current invention is the swap in relative importance of the extraction methods of the short wavelength light. Whereas in prior art the short wavelength light is extracted primarily by interaction with the resin/air interface (method b,
The similarity in the extraction mechanisms of both the short and the long wavelength components of the light has the extra advantage that the perceived source of both wavelength spectra is in the same location. This is an advantage over the prior art, where the well-defined beam in the short wavelength has to be redistributed over a wider angle range by optical films located above the lightguide. By this prior art method, the two spectra appear to come from different locations, leading to the possibility of perceived colour dislocation.
As explained above, the difference between the variation with angle of the intensity of short wavelength light scattered out of the light guide by method c (the “first angular distribution”) and the variation with angle of the intensity of longer wavelength light re-emitted from of the light guide by the phosphors by method a (the “second angular distribution”) is preferably sufficiently small that the intended receiver of the output from the light source (for example the human eye or other light sensor) perceives little or no variation with angle in the colour of the overall light output from the light guide. By providing for the colour of the overall light output as perceived by the user to be the same at all angles the invention provides a significant improvement over the prior art. As explained, the prior art light source would show a distinct change in colour towards the blue region of the spectrum (in the two-component blue/yellow example) at a certain angle.
More formally, the difference between the variation with angle of the intensity of short wavelength light scattered out of the light guide by method c (the “first angular distribution”) and the variation with angle of the intensity of longer wavelength light re-emitted from of the light guide by the phosphors by method a (the “second angular distribution”) should be small enough that the colour of the overall light output does not vary by more than a set range of values over all angles of emission. This is what is meant by stating the variation with angle of the output intensity for the two wavelength bands (eg. the angular variations of output intensity in the graphs of
A shift in colour of Δx=0.05 and Δy=0.05 on the CIE 1931 colour chart may give a change in colour that is perceptible to the human eye, and a shift in colour of Δx=0.075 and Δy=0.075 on the CIE 1931 colour chart would give a change in colour that would almost certainly be perceptible to the human eye. In the case of a light source intended for viewing by the human eye, therefore, the difference between the variation with angle of the intensity of short wavelength light scattered out of the light guide by method c (the “first angular distribution”) and the variation with angle of the intensity of longer wavelength light re-emitted from of the light guide by the phosphors by method a (the “second angular distribution”) is preferably small enough that the shift in the colour of the overall light output over the angular range is less than Δx=0.075 and Δy=0.075 on the CIE 1931 colour chart, and is preferably less than Δx=0.05 and Δy=0.05 on the CIE 1931 colour chart. Ideally this requirement would be met over the entire angular range from −90° to 90°. However, many applications do not require viewing angles of up to −90° or 90°, and in most if not all practical cases it will be sufficient if the requirement is met over the angular range from −85° to 85° or even over the angular range from −80° to 80°.
As noted above, the relative magnitudes of the intensities in the first and second wavebands may be chosen to give a desired colour for the overall output.
The current invention has the further advantage that location of the phosphor medium may be inside indents cut into a major surface of the lightguide, allowing for accurate shape definition and location of the extraction features. This may be more well-controlled than in the prior art arrangement which would rely on either the surface tension of the resin or a separate step in the process to define the shape.
Indents 19 or recesses are made in the bottom major surface of the lightguide 3 to receive a phosphor (for example a phosphor/resin mixture) to form combined light extraction and phosphor elements. In this embodiment the upper major surface (“first major surface”) of the lightguide 3 is the output surface and the recess 19 are made in the other major surface (ie in the “second major surface”) of the lightguide 3. The preferred shape (as seen in a sectional view through the lightguide 3) of the combined light extraction and phosphor elements is half of an elliptical tube (a tube, a cross section of which is half of an ellipse), the edges (sides) of which intersect the bottom major surface at 90 (20,
The refractive index of the phosphor/resin mixture may for example be matched or approximately matched to the refractive index of the lightguide material. This provides the optimal coupling of light into the phosphor medium.
The shape of the phosphor medium surface inside the lightguides 3 is not limited to the precise shape described in the preferred embodiment of
The remote phosphor pattern 21 may alternatively be located on the top major surface of the lightguide,
The phosphor medium 22 may be fully embedded inside (within) the lightguide 3, as shown in
As a further alternative the phosphor 23 may be located adjacent both major surfaces of the lightguide 3 simultaneously, as shown
The phosphor extraction features (combined light extraction and phosphor elements) are not limited to the specific orientation of
The phosphor extraction features may be rotated to some other angle in the plane perpendicular to the light propagation direction.
The phosphor extraction features may be divided into discrete sections, as denoted by 28 in
When the phosphor extraction feature is subdivided, it may still intersect a surface of the lightguide 3, but it is not necessary and may depend on the requirements of the application.
It is also possible to partially embed the phosphor medium inside the lightguide 3, but in such a way that some of the extraction feature 32 remains outside the lightguide 3,
In this embodiment the bottom part of the phosphor may be flat. The bottom surface of the phosphor medium may be substantially flat, and parallel to the major surface of the lightguide, as indicated in
The refractive index of the resin/phosphor mixture is not limited to matching that of the lightguide material. In principle, any refractive index resin/phosphor mixture could be used.
More than one colour phosphor may be mixed in with the resin 33,
The efficiency of wavelength conversion by a phosphor is related to the degree which the wavelength is shifted by the phosphor, and reduces as the required wavelength shift increases. Thus, as an example, when the combined light extraction and phosphor elements comprise a first set having red phosphor elements and a second set having green phosphor elements, it might be preferable to generate green light from the green phosphor elements illuminated (excited) by blue light, and red light from the red phosphor elements illuminated (excited) by a yellow light source. Alternatively, the combined light extraction and phosphor elements may comprise both a red phosphor element and a green phosphor element, so that a combined light extraction and phosphor element may, when suitably illuminated, emit blue and/or yellow light.
The invention is not limited to the specific example, however, and other combinations of wavelengths and phosphors may be used, such as red, green and blue phosphors illuminated by a UV or blue light source, etc. In other words, the display may comprise at least one blue or ultraviolet source and the combined light extraction and phosphor elements may comprise first, second and third sets arranged to emit blue, green and red light when excited by ultraviolet or blue light, respectively. The number of phosphors or light sources is not limited to two and more than two phosphors and/or light sources may be used. This may apply to other embodiments.
Where a light source of the invention emits/extracts light in three (or more) wavebands, the variation with angle of intensity in each waveband may be the same or substantially the same as one another. This will ensure that the colour of the overall light vary does not vary significantly with output angle.
Alternatively, where a light source of the invention emits/extracts light in three (or more) wavebands, the variation with angle of intensity in two (or more) of these wavebands may be the same or substantially the same as one another, but may be different from the variation with angle of intensity in another waveband. This may be the case where, for example, one waveband is in a region of the spectrum in which the human eye (or other desired receptor) is not very sensitive, so that the intensity of this waveband may vary with the output angle by some degree without significantly affecting the perceived colour of the overall light output. In the case of the human eye, this may be true for a waveband in the blue/violet end of the visible spectrum or in the red end of the visible spectrum, since the human eye is less sensitive in these wavebands (the eye being most sensitive around the green region of the spectrum).
The extraction features may be made to have different cross-section, as indicated in
Number | Date | Country | Kind |
---|---|---|---|
0812373.9 | Jul 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/062644 | 7/7/2009 | WO | 00 | 1/4/2011 |