This application claims priority in accordance with 37 CF.R. § 1.19(e) to U.S. Provisional Patent Application Ser. No. 62/440,603 filed for ILLUMINATION PLAQUE FOR ACCENTUATING EFFECT OF AN ELECTRICAL DEVICE filed Dec. 30, 2016 which is included herein in its entirety by reference.
The present disclosure relates to utilitarian electrical devices, and more particularly, to an illuminated plaque for enhancing perceived performance of a utilitarian electrical device associated with the plague.
In electrical devices such as proximity card readers, automatically actuated security cameras, and security lighting fixtures, it is desirable to communicate with people in the vicinity. In the case of a proximity card reader, which may have exposed light emitting diodes (hereinafter, LEDs) for signaling status upon reading a card, it may be desirable to accentuate the effect of the LED. In a security camera, it may be desirable to signal to people in the vicinity that the security camera is present and operating. Many security cameras are announced by a sign. However, the sign is a passive device which must be discerned and heeded by people in the vicinity to be effective in deterring undesirable behaviors. In a security light, security lighting or illumination may be ineffectively focused or propagated due to for example reliance upon conventional light bulbs. In a control device for a building, such as a wall mounted thermostat, additional lighting may render the control device more conspicuous. Each of these devices may have enhanced performance if lighting features can be more effectively directed and propagated.
It is desirable to provide enhanced lighting without extensive redesign, complication, and cost of the host electrical device.
There remains a need for an illuminating device which extends effectiveness of a host electrical device through more advantageous projection of light.
The disclosed concepts address the above stated situation by providing a light source which propagates light laterally relative to the direction of light conventionally emitted from an electrical device. To this end, an illumination plaque may comprise a slab containing LED lights. The slab has considerable internal reflectance, so that light emitted by the LEDs is conducted along the length of the slab, and is visible from edges of the slab. The slab has openings for passing electrical power and signal conductors of the host electrical device, and optionally, additional openings for receiving or passing fasteners. Electrical circuitry of the illumination plague may include a pigtail, an informal term referring to shielded electrical conductors, projecting from the plaque, for connection to the electric system of the host electrical device. The pigtail may be connected to circuitry of the host electrical device which powers indicating lights on the host device. Therefore, when the indicating lights of the host device illuminate, the LEDs carried on the illumination plaque will also illuminate. Light from the illumination plaque is conducted to lateral edges of the illumination plague, and propagates laterally relative to the direction of light emission from the indicating lights of the host electrical device. This greatly enhances the effect of the indicating lights of the host device.
In the case of a proximity card reader, the illumination plaque may be fabricated from an electrically non-conductive material. The illumination plaque then performs additional duty as a non-conductive spacer spacing the sensing portion of the proximity card reader from circuitry housed typically within a metallic housing. This feature overcomes interference with sensing or reading cards, which may arise from the metallic housing. Consequently, the illumination plaque not only amplifies signal lighting, but also extends the range of effectiveness of the sensing portion. Consequently, cards may be successfully read at a greater distance from the card reader than would be the case in the absence of the illumination plaque.
For security lighting fixtures, which may be focused forwardly, light may be projected laterally, thereby increasing security illumination.
A wall mounted control such as a thermostat, switch, or lock may be identified as to location in a dark environment by incorporation of the novel illumination plaque.
It is an object to provide improved elements and arrangements thereof by apparatus for the purposes described which is inexpensive, dependable, and fully effective in accomplishing its intended purposes.
These and other objects will become readily apparent upon further review of the following specification and drawings.
Various objects, features, and attendant advantages of the disclosed concepts will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Referring first to
Sheet metal wall 10 may include an opening 24 for passing electrical conductors such as power conductor 22. Ordinarily, scanning head 14 may be mounted on sheet metal wall 10 using fasteners such as bolts 26. Bolts 26 pass through scanning head 14 and engage holes 28 in sheet metal wall 10. In conventional practice, bolts 26 may be of the security type which are not engageable by ordinary tools.
The security system of which scanning head 14 is part has been improved by incorporation of illumination plaque 100 for enhancing illumination from an electrical device (e.g., the security system including scanning head 14) having illumination light(s) 30 projecting light forwardly from the electrical device. Another important benefit of illumination plaque 100 is that when illumination plaque 100 is interposed between scanning head 14 and sheet metal wall 10 typical of most card reader installations, scanning head 14 becomes operable at greater distances from card 16, as illumination plaque 100 is fabricated from an electrically non-conductive material.
Referring also to
The array of light emitting elements 116 may comprise a flexible strip of light emitting diodes (LEDs) mounted on a flexible substrate 130 (
Referring specifically to
Slab 102 may be fabricated from poly(methyl methacrylate), also known by the IUPAC name of poly(methyl 2-methylpropenoate), popularly abbreviated as PMMA, as well as acrylic plastic or acrylic glass, and by the trade names Plexiglas, Acrylite, Lucite, and Perspex.
Referring also to
Channel 122 may be impinge on only obverse face 106 as shown in
As seen in
Unless otherwise indicated, the terms “first”, “second”, etc., are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the times to which these terms refer. Moreover, reference to, e.g., a “second” item does not either require or preclude the existence of, e.g., a “first” or lower-numbered item, and/or, e.g., a “third” or higher-numbered item.
In some realizations of illumination plaque 100, obverse face 106 and opposed reverse face 108 of slab 102 are rectangular, and peripheral edge 110 is perpendicular to obverse face 106 and reverse face 108. This arrangement maximizes distance of projection of light from slab 102.
The invention may be thought of as a method of projecting light laterally from an appliance (e.g., scanner head 14) including a voltage source, wherein the appliance is mounted to an environmental surface (e.g., sheet metal wall 10). The method may comprise interposing between the environmental surface and the appliance a light transmissive slab 102 of material having internal reflectance from external surfaces of slab 102, wherein slab 102 includes obverse face 106, opposed reverse face 108, peripheral edge 110 extending from obverse face 106 to opposed reverse face 108, central opening 112 extending from obverse face 106 to opposed reverse face 108, an electrically powered illumination element 116 within slab 102, and electrical supply circuit conductors 118 connected to the illumination element 116 and extending from slab 102, such that slab 102 is parallel to the environmental surface. The method may also comprise connecting electrical supply circuit conductors 118 to the voltage source (e.g., terminals in remote electronics 18,
The method may further comprise routing electrical supply conductors 22 of the appliance through central opening 112 of 102 slab from the appliance to support circuitry (e.g., remote electronics 18) for the appliance behind the environmental surface.
The method may further comprise providing at least one fastener hole 114 in addition to central hole 112 of slab 102 parallel to at least one fastener mounting axis 28A (
The method is articularly useful in enhancing light projection from pre-existing commercial products not originally designed for lateral light projection. Notably, not only may the method be used with proximity card readers such as that described above, but may be used with exterior and interior building lights, especially security lighting having illumination heads projecting light only forwardly, and wall mounted controls such as thermostats, switches, and others. In the latter examples, devices not originally fitted with illumination lights such as illumination light 30 may be modified to provide a pilot light as well as enhanced lateral general illumination.
In this application, electrical devices will be understood to encompass appliances operating on either or both AC and DC current, and purely electrical devices such as resistance based incandescent lighting and other forms of lighting, electric solenoids and motors, and other devices, and also electronics, such as those utilizing electronic circuitry incorporating semiconductors such as transistors.
While the disclosed concepts have been described in connection with what is considered the most practical and preferred implementation, it is to be understood that the disclosed concepts are not to be limited to the disclosed arrangements, but are intended to cover various arrangements which are included within the spirit and scope of the broadest possible interpretation of the appended claims so as to encompass all modifications and equivalent arrangements which are possible.
Number | Name | Date | Kind |
---|---|---|---|
7925223 | Raggam | Apr 2011 | B2 |
9218823 | Kief | Dec 2015 | B2 |
20110194282 | Paik | Aug 2011 | A1 |
20140226361 | Vasylyev | Aug 2014 | A1 |
20150076231 | Buccola | Mar 2015 | A1 |
20160110639 | Finn et al. | Apr 2016 | A1 |
20160181695 | Mukherjee | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190078770 A1 | Mar 2019 | US |