The present invention relates to illumination systems and, more particularly, to an illumination system that produces a beam of light having a substantially circularly symmetric irradiance distribution from a lamp having a plurality of linear light emitting elements.
The Ellipsoidal Reflector Spotlight (ERS) and the Parabolic Wash light (PAR) are two of the most popular lighting fixtures used in theatre, television, and architectural lighting. Certain ERS and PAR lighting fixtures employ an incandescent High Performance Lamp (HPL) that includes a plurality of linear, helically-wound filaments arranged with their longitudinal axes substantially parallel with each other and arranged with their longitudinal axes spaced substantially symmetrically about a central longitudinal axis. Such ERS and PAR lighting fixtures typically have a reflector to collect the light from the lamp and direct it forward out of the fixture.
When an HPL lamp is used with a reflector having a circularly symmetric cross section, the irradiance distribution of the forwardly directed beam is not circularly symmetric. Rather, the irradiance distribution is characterized by a number of “hot spots” surrounding a central minimum, or void. The number of hot spots is equal in number to the number of helically wound filaments contained in the HPL lamp. The central minimum is due to the fact that no light emitting element is located along the lamp's central longitudinal axis.
The four emitting filament sections 102, 104, 106 and 108 are composed of tightly wound helical coils, each of which emits light and in certain directions, block the light emitted from other filaments, creating shadows. These shadows are visible in the lamp's intensity distribution. Intensity is defined as the lumens or power directed into a given solid angle. The filament shadows create inconsistencies in a beam of light formed by collecting the light from the lamp and directing it forward with a typical prior art reflector.
Prior art Ellipsoidal Reflector Spotlight (ERS) optical systems that employ the HPL lamp also employ a reflector generated from an ellipsoidal or near-ellipsoidal curve, typically referred to as an ellipsoidal reflector. A generator curve is rotated about the lamp's central longitudinal axis to form a reflecting surface.
As described with regard to
Facets are small planar segments, which are tiled over the reflector's surface. Lunes are ribbon-like segments, which have curvature in one direction only, and are also tiled over the reflector's surface. The facets or lunes are perturbations of the smooth reflecting surface profile, and therefore help to smooth or homogenize the beam formed by the lamp and reflector.
A reflective surface formed according to the prior art method described with regard to
A small number of large facets or lunes tend to smooth the irradiance distribution in the projected beam by filling in the filament shadows present in the lamp's intensity distribution. However, large facets or lunes also cause a significant deviation from the reflector's original shape, resulting in a decrease in the efficiency of the optical system. The efficiency of an optical system is defined as the ratio of the power in the projected beam to the power of the lamp. To preserve efficiency, and minimize the deviation from the reflector's original shape, the size and number of facets or lunes are often varied across the reflector's surface. Such an arrangement smoothes the irradiance distribution of the projected beam, while minimizing the impact on the optical system efficiency.
As the isoirradiance contours in
Thus, the irradiance distribution map 800 is rotationally symmetric, that is, if rotated by some multiple of ninety degrees the resulting map is substantially identical to the original map. However, the map is not circularly symmetric. If rotated by an arbitrary number of degrees (specifically an angle other than a multiple of ninety degrees) the rotated map is not substantially identical to the original map.
A Parabolic Wash light (PAR) may also employ the HPL lamp. In a PAR optical system, a parabolic or near-parabolic curve is rotated about the longitudinal axis of the optical system to form a reflecting surface, typically referred to as a parabolic reflector. Because the generator curve is parabolic or near-parabolic, a beam exiting the reflector is substantially parallel to the optical axis of the PAR system. That is, the light beam is made up of light rays that are substantially parallel to each other and to the optical axis.
A PAR optical system typically consists solely of a reflector and lamp, although a lens may be placed after the reflector to further smooth or shape the beam. As described with regard to an ERS optical system, a parabolic reflector surface in a PAR optical system may be covered with facets or lunes in an attempt to project a beam with a smooth irradiance distribution. However, the irradiance distribution of a beam produced by such a PAR optical system has a central void and four hot spots, as described with regard to an ERS optical system.
The present invention provides a reflector for use with a light source having a plurality of linear light emitting elements arranged with their longitudinal axes substantially parallel with each other and spaced substantially symmetrically about a central longitudinal axis. The reflector and light source form an efficient optical system that produces a beam with a substantially circularly symmetric irradiance distribution that is substantially without hot spots or voids.
More specifically, aspects of the invention may be found in an illumination system having a light source with a plurality of linear light emitting elements and a concave reflector with a corresponding plurality of reflecting zones. The light emitting elements are arranged symmetrically around a longitudinal axis of the light source and the longitudinal axes of the light emitting elements are parallel to each other. The reflecting zones are aligned with the plurality of light emitting elements. The illumination system produces a light beam having a substantially circularly symmetric irradiance distribution.
Other aspects of the invention may be found in a concave reflector for use with a light source having a plurality of linear light emitting elements arranged with their longitudinal axes substantially parallel with each other and spaced substantially symmetrically about a central longitudinal axis. The reflector includes a plurality of reflecting zones corresponding to, and aligned with, the plurality of light emitting elements. The reflector produces a light beam having a substantially circularly symmetric irradiance distribution.
A surface of a reflecting zone may be defined by rotating a generator curve around an axis of rotation that is not coaxial with the longitudinal axis of the light source.
Further aspects of the invention may be found in a method for producing a light beam having a substantially circularly symmetric irradiance distribution from a light source having a plurality of linear light emitting elements arranged with their longitudinal axes substantially parallel with each other and spaced substantially symmetrically about a central longitudinal axis. Steps of the method include forming a concave reflector having a plurality of reflecting zones corresponding to the plurality of light emitting elements, and installing the light source coaxially in the reflector so that the light emitting elements are aligned with the reflecting zones.
The step of forming the concave reflector may include the step of defining a surface of a reflecting zone by rotating a generator curve around an axis of rotation that is not coaxial with the longitudinal axis of the light source.
As such, a concave reflector, illumination system and method for producing a light beam having a substantially circularly symmetric irradiance distribution from a light source having a plurality of linear light emitting elements arranged with their longitudinal axes substantially parallel with each other and spaced substantially symmetrically about a central longitudinal axis is described. Other aspects, advantages and novel features of the present invention will become apparent from the detailed description of the invention and claims, when considered in conjunction with the accompanying drawings.
For a more complete understanding of the present invention and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:
A preferred embodiment of the present invention is a reflector having a non-circular cross section in a plane perpendicular to the reflector's central longitudinal axis. The reflector includes reflecting zones equal in number to, and rotationally aligned with, the light emitting elements of a prior art High Performance Lamp (HPL).
The location and orientation of the axis of rotation 904 is determined through an iterative optimization procedure. The optimization procedure seeks an axis of rotation that maximizes the circular symmetry of the resulting irradiance distribution, minimizes hot spots and voids in the irradiance distribution, and maximizes the resulting optical system efficiency
A reflecting surface is defined by rotating the generator curve 902 about the axis of rotation 904. Arrow 908 depicts the sense of rotation during the construction process. A dotted curve 906 represents an opening of the reflecting surface, and dotted curve 910, in combination with the generator curve 902, depicts a cross section of the reflecting surface.
The generator curve 902, as shown, is an arbitrary curve. Alternatively, the generator curve used could be a segment of an elliptical, parabolic or hyperbolic curve or any other curve described by a polynomial or other mathematical function. As is well known in the art, a conventional reflector defined by an ellipsoidal or near-ellipsoidal curve will produce a converging light beam, a conventional reflector defined by a parabolic or near-parabolic curve will produce a substantially parallel light beam, and a conventional reflector defined by a hyperbolic or near-hyperbolic curve will produce a diverging light beam. Whether a light beam converges, diverges or is parallel is typically referred to as the angle of the beam.
In contrast, the angle of a light beam produced by a reflector constructed according to the present invention is determined not only by the shape of generator curve used, as described above, but also by the angle that the axis of rotation 904 makes with the optical axis 304. Regardless of the shape of generator curve used, the convergence of a beam may be increased by tipping the forward tip of a generator curve toward the optical axis. Similarly, as the forward tip of a generator curve is tipped farther away from the optical axis, a less convergent beam is produced. Thus, by selecting a shape for the generator curve and an angle that the axis of rotation makes with the optical axis, a designer may create a reflector according to the present invention that produces a light beam of a desired angle.
The four reflecting zones in the exemplary reflectors shown in
The embodiment of the present invention described in this disclosure is a reflector for use with an HPL lamp having four linear, helically-wound incandescent filaments. However, it will be apparent to one of ordinary skill in the art that a reflector according to the present invention may be employed with lamps having other numbers of linear light emitting elements which are parallel to each other and are also parallel to the lamp's central longitudinal axis. For example, such lamps could be have two, three, five, eight, or any other number of elements.
Furthermore, the linear light emitting elements need not be comprised of helically-wound incandescent filaments. The elements may be multiple HID arc lamps, mounted parallel to each other and equally spaced around a central longitudinal axis. A single HID arc lamp, comprised of multiple light emitting volumes, each enclosed in a common burner and equally spaced about a central longitudinal axis, may also be employed. The linear light emitting elements may also be a parallel arrangement of optical fibers, whose surfaces have been scored to allow light to escape along their length. Alternatively, the elements may be a plurality of fluorescent tubes, either separate lamps or a single lamp with a number of parallel tubes arranged about a central longitudinal axis. One skilled in the art will recognize that other light sources having multiple linear light emitting elements may also be used with a reflector according to the present invention.
The above disclosure describes embodiments of the present invention for use in an ellipsoidal reflector spotlight (ERS) and a parabolic wash light (PAR). However, one skilled in the art will recognize that a reflector according to the present invention may be employed to collect and redistribute light from a plurality of parallel linear light sources in optical systems in a number of other applications, as well. For example, such optical systems might include cinema projection systems, theatrical follow-spotlight systems, digital projection systems employing digital micro-mirrors, digital projection systems employing reflective or refractive liquid crystal displays, rear projection televisions, fiber optic illuminators, and head up display illuminators.
Finally, the preferred embodiment depicted in
This application claims the benefit of U.S. Provisional Application No. 60/591,315, filed Jul. 27, 2004, and U.S. Provisional Application No. 60/592,073, filed Jul. 29, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3492474 | Hishinuma et al. | Jan 1970 | A |
4242727 | deVos et al. | Dec 1980 | A |
4545000 | Fraley et al. | Oct 1985 | A |
4575788 | Lewin | Mar 1986 | A |
4617619 | Gehly | Oct 1986 | A |
4683525 | Camm | Jul 1987 | A |
4855886 | Eijkelenboom et al. | Aug 1989 | A |
4985814 | Lyons | Jan 1991 | A |
4994948 | Cooch | Feb 1991 | A |
5008781 | Nino | Apr 1991 | A |
5192962 | Nishida et al. | Mar 1993 | A |
5268613 | Cunningham | Dec 1993 | A |
D351251 | Schreder | Oct 1994 | S |
5446637 | Cunningham et al. | Aug 1995 | A |
5562342 | Nino | Oct 1996 | A |
5607229 | Rykowski et al. | Mar 1997 | A |
RE36316 | Cunningham | Sep 1999 | E |
5951139 | Smith et al. | Sep 1999 | A |
6034473 | McBride et al. | Mar 2000 | A |
6122440 | Campbell | Sep 2000 | A |
6447147 | Kramer et al. | Sep 2002 | B1 |
6467934 | Holten et al. | Oct 2002 | B1 |
6525452 | Guinard | Feb 2003 | B1 |
6621214 | Schloemer et al. | Sep 2003 | B1 |
6633112 | Davies et al. | Oct 2003 | B2 |
6783263 | Cronk | Aug 2004 | B1 |
6793375 | Anderson | Sep 2004 | B2 |
6796682 | Hough et al. | Sep 2004 | B2 |
6840654 | Guerrieri et al. | Jan 2005 | B2 |
7048412 | Martin et al. | May 2006 | B2 |
20020181231 | Luk | Dec 2002 | A1 |
20030206414 | Wood et al. | Nov 2003 | A1 |
20050036332 | Steinhart et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
12 27 404 | Oct 1966 | DE |
1 371 901 | Dec 2003 | EP |
1371901 | Dec 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20060007688 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60591315 | Jul 2004 | US | |
60592073 | Jul 2004 | US |