The embodiments herein disclosed relate to computer-assisted medical procedures and more specifically to image annotation in image-guided medical procedures.
The past few decades have seen incredible developments of technology and systems for computer-assisted, image-based, and image-guided surgery and other medical procedures. These advances in image-guided surgery are tied in part to technical and scientific improvements in imaging and three-dimensional (3D) computer graphics. For example, some of the early work of in this field in the late 1980's provided new 3D graphics rendering techniques, medical image shape detection, and head-mounted displays. These are some of the building blocks of later image-guided surgery systems developed in the mid-1990's and thereafter. Image-guided surgery makes use of imaging to aid a surgeon in performing more effective and more accurate surgeries.
Current image-guided surgery systems, however, do not provide adequate mechanisms to annotate images. The process of annotation is difficult and extremely time-consuming. Further, it would be difficult, disruptive, and time consuming for a surgeon or other operator to annotate an image during a medical procedure.
One or more of these problems and others are addressed by the systems, methods, devices, computer-readable media, techniques, and embodiments described herein. That is, some of the embodiments described herein may address one or more issues, while other embodiments may address different issues.
Presented herein are methods, systems, devices, and computer-readable media for image annotation in image-guided medical procedures. In some embodiments, pose information is determined for visualizable medical data and changing pose information is determined for a medical device over time. An annotation in 3D space may be generated based on the pose information over time for the medical device and the pose information for the visualizable medical data; and image guidance information may be generated based at least in part on the annotation in 3D space. A graphical rendering of the image guidance information may be displayed on one or more displays.
In some embodiments, a system may determine device type information for a first medical device; real-time emplacement information for the first medical device; and real-time emplacement information for a second medical device. The system may also determine the real-time relative emplacements of the first and second medical devices with the computer system and real-time prediction information for the first medical device. The image guidance system may then generate image guidance information based on the real-time relative emplacements of the first and second medical devices, the real-time prediction information for the first medical device, and data related to the second medical device. A graphical rendering of the image guidance information may be displayed on one or more displays. It is possible that determining changing pose information for the medical device over time include determining the changing pose information for the medical device over time relative to a 2D screen displaying the visualizable medical data; and/or generating the annotation in 3D space based on the pose information over time for the medical device and the pose information for the visualizable medical data may include determining the annotation in 3D space based at least in part on the 2D pose information.
Numerous other embodiments are described throughout herein. Although various embodiments are described herein, it is to be understood that not necessarily all objects, advantages, features or concepts need to be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the invention not being limited to any particular disclosed embodiment(s).
Overview
In some embodiments herein, an operator, surgeon or other medical practitioner may annotate images during an image-guided medical procedure. In some embodiments, the operator may use medical devices that are typically present during the medical procedure to annotation the medical images. As depicted in
The image 156 may be associated with a medical device, such as an ultrasound transducer (not pictured in
The annotation 171, although it has been drawn on an image 156, may actually be located in 3D space—defined by the placement of the image 156 and the annotation 171.
Using embodiments described herein, a radiologist or other practitioner is not limited to marking tumors or other anatomical references on individual slices of CT scans. Instead, the radiologist may move in an intuitive manner through the CT scan. Further, various embodiments may decrease the time it takes to annotate an image, and/or to display those annotations, during a medical procedure, thereby reducing cost.
By allowing multiple annotations and by enabling the operator to place annotations in 3D space, various embodiments herein allow the operator to mark multiple objects of interest and view the location of those marks of interest at a later time. The annotations may be displayed using any display technique, such as those described in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith and incorporated by reference above for all purposes.
Images may be annotated using embodiments herein during all a portion of a medical procedure. In one embodiment, the image annotation will only occur during an image annotation “session” (e.g. a period of time during which image annotation is performed, and before and after which, image annotation is not performed). An image annotation “session” may be initiated and/or terminated by the operator performing a key stroke, issuing a command (such as a verbal command), performing a gesture with a medical device or hand, pressing a button on the medical device, pressing a foot pedal, pressing a button on the medical device (e.g., a button on a Wacom pen), etc.
As used herein, the term “medical device” is a broad term that encompasses but is not limited to a device, item, or part used in the medical procedure. For example, a medical device could include an ablation needle, an ultrasound transducer, a cauterizer, a scalpel, a glove covering an operator's hand, the operator's hand or finger, etc. The medical device used for pose information could even be the operator's head, eyes, or gaze direction. Pose information for the medical device may be obtained using any system, device, method, or technique, such as those disclosed herein.
Example Systems
In one embodiment, position sensing units 210 and 240 may be tracking systems 210 and 240 and may track surgical instruments 245 and 255 and provide data to the image guidance unit 230. The image guidance unit 230 may process or combine the data and show image guidance data on display 220. This image guidance data may be used by a physician to guide a procedure and improve care. There are numerous other possible embodiments of system 200. For example, many of the depicted modules may be joined together to form a single module and may even be implemented in a single computer or machine. Further, position sensing units 210 and 240 may be combined and track all relevant surgical instruments 245 and 255, as discussed in more detail below and exemplified in
Information about and from multiple surgical systems 249 and/or attached surgical instruments 245 may be processed by image guidance unit 230 and shown on display 220. These and other possible embodiments are discussed in more detail below. Imaging unit 250 may be coupled to image guidance unit 230. In one embodiment, imaging unit 250 may be coupled to a second display unit 251. The second display unit 251 may display imaging data from imaging unit 250. The imaging data displayed on display unit 220 and displayed on second display unit 251 may be, but are not necessarily, the same. In an embodiment, the imaging unit 250 is an ultrasound machine 250, the movable imaging device 255 is an ultrasound transducer 255 or ultrasound 255, and the second display unit 251 is a display associated with the ultrasound machine 250 that displays the ultrasound images from the ultrasound machine 250. In one embodiment, a movable imaging unit 255 may not be connected directly to an imaging unit 250, but may instead be connected to image guidance unit 230. The movable imaging unit 255 may be useful for allowing a user to indicate what portions of a first set of imaging data should be displayed. For example, the movable imaging unit 255 may be an ultrasound transducer 255 or a tracked operative needle or other device 255, for example, and may be used by a user to indicate what portions of imaging data, such as a pre-operative CT scan, to show on a display unit 220 as image 225. Further, in some embodiments, there could be a third set of pre-operative imaging data that could be displayed with the first set of imaging data.
In some embodiments, system 200 comprises a first position sensing unit 210, a display unit 220, and second position sensing unit 240 (if it is included) all coupled to image guidance unit 230. In one embodiment, first position sensing unit 210, display unit 220, and image guidance unit 230 are all physically connected to stand 270. Image guidance unit 230 may be used to produce images 225 that are displayed on display unit 220. The images 225 produced on display unit 220 by the image guidance unit 230 may be determined based on ultrasound or other visual images from first surgical instrument 245 and second surgical instrument 255. For example, if first surgical instrument 245 is an ablation needle 245 and second surgical instrument 255 is an ultrasound probe 255, then images 225 produced on display 220 may include the video or images from the ultrasound probe 255 combined with graphics, such as projected needle drive or projected ablation volume, determined based on the pose of ablation needle 245. If first surgical instrument 245 is an ultrasound probe 245 and second surgical instrument 255 is a laparoscopic camera 255, then images 225 produced on display 220 may include the video from the laparoscopic camera 255 combined with ultrasound data superimposed on the laparoscopic image. More surgical instrument may be added to the system. For example, the system may include an ultrasound probe, ablation needle, laparoscopic camera, cauterizer, scalpel and/or any other surgical instrument or medical device. The system may also process and/or display previously collected data, such as preoperative CT scans, X-Rays, MRIs, laser scanned 3D surfaces etc.
The term “pose” as used herein is a broad term encompassing its plain and ordinary meaning and may refer to, without limitation, emplacement, position, orientation, the combination of position and orientation, or any other appropriate location information. In some embodiments, the imaging data obtained from one or both of surgical instruments 245 and 255 may include other modalities such as a CT scan, MRI, open-magnet MRI, optical coherence tomography, positron emission tomography (“PET”) scans, fluoroscopy, ultrasound, or other preoperative, or intraoperative 2D or 3D anatomical imaging data. In some embodiments, surgical instruments 245 and 255 may also be scalpels, implantable hardware, or any other device used in surgery. Any appropriate surgical system 249 or imaging unit 250 may be coupled to the corresponding medical instruments 245 and 255.
As noted above, images 225 produced may also be generated based on live, intraoperative, or real-time data obtained using second surgical instrument 255, which is coupled to second imaging unit 250. The term “real-time” as used herein is a broad term and has its ordinary and customary meaning, including without limitation instantaneously or nearly instantaneously. The use of the term realtime may also mean that actions are performed or data is obtained with the intention to be used immediately, upon the next cycle of a system or control loop, or any other appropriate meaning Additionally, as used herein, real-time data may be data that is obtained at a frequency that would allow a surgeon to meaningfully interact with the data during surgery. For example, in some embodiments, real-time data may be a medical image of a patient that is updated one time per second or multiple times per second.
Second surgical instrument 255 may be coupled to second position sensing unit 240. Second position sensing unit 240 may be part of imaging unit 250 or it may be separate. Second position sensing unit 240 may be used to determine the pose of second surgical instrument 255. In some embodiments, first and/or second position sensing units 210 and/or 240 may be magnetic trackers and magnetic may be coils coupled to surgical instruments 245 and/or 255. In some embodiments, first and/or second position sensing units 210 and/or 240 may be optical trackers and visually-detectable fiducials may be coupled to surgical instruments 245 and/or 255.
Images 225 may be produced based on intraoperative or real-time data obtained using first surgical instrument 245, which is coupled to first surgical system 249. In
In an embodiment, first position sensing unit 210 tracks the pose of first surgical device 245. First position sensing unit 210 may be an optical tracker 210 and first surgical device 245 may have optical fiducials attached thereto. The pose of optical fiducials may be detected by first position sensing unit 210, and, therefrom, the pose of first surgical device 245 may be determined.
In various embodiments, as depicted in
In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may be an Ascension Flock of Birds, Nest of Birds, driveBAY, medSAFE, trakSTAR, miniBIRD, MotionSTAR, pciBIRD, or Calypso 4D Localization System and tracking units attached to the first and/or second surgical or medical devices 245 and 255 may be magnetic tracking coils. The term “tracking unit,” as used herein, is a broad term encompassing its plain and ordinary meaning and includes without limitation all types of magnetic coils or other magnetic field sensing devices for use with magnetic trackers, fiducials or other optically detectable markers for use with optical trackers, such as those discussed above and below. Tracking units could also include optical position sensing devices such as the HiBall tracking system and the first and second position sensing units 210 and 240 may be part of a HiBall tracking systems. Tracking units may also include a GPS device or signal emitting device that would allow for tracking of the position and, optionally, orientation of the tracking unit. In some embodiments, a signal emitting device might include a radio-frequency identifier (RFID). In such embodiments, the first and/or second position sensing unit 210 and 240 may take in the GPS coordinates of the tracking units or may, for example, triangulate the radio frequency signal being emitted by the RFID associated with tracking units. The tracking systems may also include one or more 3D mice.
In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may be an Aurora® Electromagnetic Measurement
System using sensor coils for tracking units attached to the first and/or second surgical devices 245 and 255. In some embodiments, either or both of the first position sensing unit 210 and the second position sensing unit 240 may also be an optical 3D tracking system using fiducials. Such optical 3D tracking systems may include the NDI Polaris Spectra, Vicra, Certus, PhaseSpace IMPULSE, Vicon MX, InterSense IS-900, NaturalPoint OptiTrack, Polhemus FastTrak, IsoTrak, or Claron MicronTracker2. In some embodiments, either or both of position sensing units 210 and 240 may each be an inertial 3D tracking system comprising a compass, accelerometer, tilt sensor and/or gyro, such as the InterSense InertiaCube or the Wii controller. In some embodiments, either or both of position sensing units 210 and 240 may be attached to or affixed on the corresponding surgical device 245 and 255. In some embodiments, the position sensing units, 210 and 240, may include sensing devices such as the HiBall tracking system, a GPS device, or signal emitting device that would allow for tracking of the position and, optionally, orientation of the tracking unit. In some embodiments, a position sensing unit 210 or 240 may be affixed to either or both of the surgical devices 245 and 255. The surgical devices 245 or 255 may be tracked by the position sensing units 210 or 240. A world reference, such as the display 220 may also be tracked by the position sensing unit 210 or 240 in order to determine the poses of the surgical devices 245 and 255 with respect to the world. Devices 245 and 255 may also include or have coupled thereto one or more accelerometers, which may be used to estimate movement, position, and location of the devices.
In an embodiment, the display unit 220 displays 3D images to a user, such as a physician. Stereoscopic 3D displays separate the imagery shown to each of the user's eyes. This can be accomplished by a stereoscopic display, a lenticular auto-stereoscopic display, or any other appropriate type of display. The display 220 may be an alternating row or alternating column display. Example alternating row displays include the Miracube G240S, as well as Zalman Trimon Monitors. Alternating column displays include devices manufactured by Sharp, as well as many “auto-stereoscopic” displays (e.g., Philips). Display 220 may also be a cathode ray tube. Cathode Ray Tube (CRT) based devices, may use temporal sequencing, showing imagery for the left and right eye in temporal sequential alternation; this method may also be used by newer, projection-based devices, as well as by 120-Hz-switchable liquid crystal display (LCD) devices.
In one embodiment, a user may wear a head mounted display in order to receive 3D images from the image guidance unit 230. In such embodiments, a separate display, such as the pictured display unit 220, may be omitted. The 3D graphics may be produced using underlying data models, stored in the image guidance unit 230 and projected onto one or more 2D planes in order to create left and right eye images for a head mount, lenticular, or other 3D display. The underlying 3D model may be updated based on the relative poses of the various devices 245 and 255, as determined by the position sensing unit(s), and/or based on new data associated with the devices 245 and 255. For example, if the second device is an ultrasound probe 255, then the underlying data model may be updated to reflect the most recent ultrasound image. If the first device 245 is an ablation needle, then the underlying model may be updated to reflect any changes related to the needle, such as power or duration information. Any appropriate 3D graphics processing may be used for rendering including processing based on OpenGL, Direct3D, Java 3D, etc. Whole, partial, or modified 3D graphics packages may also be used, such packages including 3DS Max, SolidWorks, Maya, Form Z, Cybermotion 3D, VTK, Slicer, or any others. In some embodiments, various parts of the needed rendering may occur on traditional or specialized graphics hardware. The rendering may also occur on the general CPU, on programmable hardware, on a separate processor, be distributed over multiple processors, over multiple dedicated graphics cards, or using any other appropriate combination of hardware or technique.
Regardless of the rendering implementation, in various embodiments, the volume can be displayed from several different perspectives:
One or more modules, units, devices, or elements of various embodiments may be packaged and/or distributed as part of a kit. For example, in one embodiment, an ablation needle, tracking elements, 3D viewing glasses, and/or a portion of an ultrasound wand may form a kit. Other embodiments may have different elements or combinations of elements grouped and/or packaged together. Kits may be sold or distributed separately from or with the other portions of the system.
There are numerous other examples of image guidance systems which may use, incorporate, support, or provide for the techniques, methods, processes, and systems described herein, such as the 3D computer-graphics-based assigned to InnerOptic Technologies, Inc. that provides for displaying guidance data from multiple sources, U.S. application Ser. No. 11/833,134, filed Aug. 2, 2007, the contents of which are incorporated by reference herein in their entirety for all purposes. The image guidance may also be performed at least in part using the techniques described in U.S. patent application Ser. No. 11/828,826, filed Jul. 26, 2007, U.S. Pat. No. 7,728,868, U.S. patent application Ser. No. 12/299,899, U.S. patent application Ser. No. 12/483,099, U.S. patent application Ser. No. 12/893,123, U.S. patent application Ser. No. 12/842,261, and/or U.S. patent application Ser. No. 12/703,118, each of which is incorporated by reference herein in its entirety for all purposes.
Depicting Combinations of Graphics
As discussed herein, when there are multiple instruments or devices being used in a procedure, images, graphics, and data associated with the multiple instruments may be displayed to the physician. In some embodiments, as depicted in
The data from two or more devices may be combined and displayed based on their relative emplacements or poses. For example, an ultrasound image 804 may be displayed with respect to an ablation needle on a display 820 in a manner that estimates the relative emplacements or poses of an ultrasound wand 855 and ablation needle 845. This is depicted in
Various embodiments include other combinations of graphics. For example, in some embodiments, data related to a single surgical instrument (such as an ablation needle, ultrasound wand, etc.) may be presented in more than one manner on a single display. Consider an embodiment in which device 845 is an ablation needle and device 855 is an ultrasound transducer. If a physician orients ultrasound transducer 855 such that it is perpendicular to the monitor, the 3D view of the ultrasound image would show only the edge and the ultrasound image would not be visible. In some embodiments, the image guidance system could track the physician's head using a position sensor, such as first and/or second position sensing units 210 and/or 240 of
In some embodiments, the image guidance system can constantly display an additional 2D view of the ultrasound image 805 (in screen space), simultaneous to the 3D depiction of the procedure, so that the ultrasound image is always visible, regardless of the orientation in which the physician holds the transducer. This is illustrated in
In some embodiments, the 2D view 805 of an ultrasound image is depicted in the upper right corner of the monitor (though it can be placed in any corner). The guidance system can automatically (and continually) choose a corner in which to render the 2D view of the ultrasound image, based on the 3D position of the surgical instruments in the rendered scene. For example, in
In some embodiments, the system attempts to avoid having the 2D ultrasound image quickly moving among corners of the display in order to avoid overlapping with graphics and data in the display. For example, a function ƒ may be used to determine which corner is most suitable for the 2D ultrasound image to be drawn in. The inputs to ƒ may include the locations, in the screen coordinate system, of the displayed needle tip, the corners of the 3D ultrasound image, etc. In some embodiments, ƒ's output for any given point in time is independent ƒ's output in the previous frames, which may cause the ultrasound image to move among corners of the display rapidly. In some embodiments, the image guidance system will filter ƒ's output over time. For example, the output of a filter g, for any given frame, could be the corner which has been output by ƒ the most number of times over the last n frames, possibly weighting the most recent values for ƒ most heavily. The output of the filter g may be used to determine in which corner of display 820 to display the 2D ultrasound image and the temporal filtering provided by g may allow the 2D ultrasound image display to move more smoothly among the corners of the display 820.
In some embodiments, other appropriate virtual information can be overlaid on the 2D ultrasound image as well. Examples include: an indication of the distance between the needle's tip and the point in the plane of the ultrasound image that is closest to the needle tip; the cross section or outline of the ablation volume that intersects with the ultrasound slice; and/or the intersection point, box, outline, etc. between the needle's axis and the ultrasound image plane.
Methods for Image Annotation in Image-Guided Medical Procedures
In block 310, pose information for visualizable medical data is determined. “Visualizable medical data” is a broad term that encompasses its ordinary and customary meaning and includes, without limitation, any two-dimensional (2D) or 3D medical data that can be visualized. The visualizable medical data may also be volumetric and can include, without limitation, one or more of a CT scan, an MRI, other 3D preoperative imaging data, other volume data, segmented internal organs, segmented blood vessels, annotations, tumors, etc. The visualizable medical data may also include 2D medical data such as ultrasounds, X-rays, or segments or slices of 3D medical data.
In some embodiments, the visualizable medical data may be associated with a medical device, such as an ultrasound probe, etc., and the medical device may be tracked in the medical scene. In such embodiments, the pose information for the visualizable medical data may be determined in block 310 from the pose of the associated medical device (that is tracked in the medical scene). For example, if the visualizable medical data is associated with an ultrasound probe and the ultrasound probe is tracked, then the pose of the visualizable medical data can be determined from the pose of the ultrasound probe. This can be the case even if the visualizable medical data is not generated by the medical device. For example, if the medical device is an ultrasound transducer and the visualizable medical data is a slice or image from a CT scan that is being navigated using the ultrasound transducer (see, for example, Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes) then the pose for that slice or image from the CT scan can still be determined based on the pose of the medical device.
When navigating/visualizing CT or other volumetric data with a medical device such as an ultrasound transducer, pose information for the medical device may be updated over time. Pose information for the underlying volumetric visualizable medical data set may also be determined (e.g., relative to the medical scene). The pose information for the underlying volumetric visualizable medical data (e.g., a CT scan or other volumetric data) may be determined separately from the pose information of the medical device used to visualize the medical data. Further, in some embodiments, the pose information for the visualizable medical data may initially be determined in order to register or approximately register the 3D visualizable medical data with the medical scene being visualized for the operator. Various techniques for registering the visualizable medical data with the medical scene may be used, including matching features in 3D space with features in the visualizable medical data known to be in the medical scene, such as tumors, bones, blood vessels, etc. Manual registration may also be possible where an operator or other technician manipulates the pose of the visualizable medical data relative to the scene.
In block 320, changing pose information is determined for a medical device. The medical device for which pose information is determined in block 320 may be different from a medical device used for visualization of data in block 310.
Returning again to block 320, pose information for the medical device may be determined using any system, device, method, or technique such as the tracking systems described herein. For example, if the medical device is an ablation needle, such as ablation needle 245 in
As depicted in
The medical device 645 used to point to an object on a screen may also be a stylus, needle, or any other appropriate medical device 645. Further, in some embodiments, the device used for input may not be a screen 621, but may instead be a drawing tablet, or other input device (in which case image 656 may or may not be displayed on the device).
In some embodiments, a medical device, such as finger 645 in
Returning again to
In block 330, annotations are generated in 3D space based on the pose information received in blocks 310 and 320. That is, the pose for the visualizable medical data (block 310) and the pose for the medical device (block 320) may be used to determine the annotations in 3D space (block 330). Referring again to
After an annotation has been created in 3D space in block 330 then in block 340 image guidance information is generated based on the annotation. Generating image guidance information based on the annotation in block 330 may include generating a 3D model or series of 3D models that represent the medical scene to be displayed to the operator. For example, as depicted in
After image guidance information has been generated based on the annotation in block 340, a graphical rendering of the image guidance information is displayed in block 350. In some embodiments, the display of graphical information can be monoscopic or stereoscopic. Further, multiple rendering techniques may be used. Edges or areas near the edge of a region of interest defined by the annotation, a medical device, or the image, may be displayed in a blurred or fading manner. Objects near objects of interest such as the image, the annotation, or the medical device may be displayed in sharper focus, may be displayed brighter, etc. In one embodiment, if an additional set of 3D visualizable medical data is displayed, a tunnel or cut-through that set of medical data may be made so that an image can be shown. Consider for example,
Turning to
As noted extensively herein, the data shown in the region of interest may be any appropriate visualizable medical data, not limited to ultrasound or CT data. Further, the data displayed outside of the region of interest may be any visualizable medical data, and may even be from the same data set as the data shown in the region of interest. For example, MRI data may be shown in fading planes outside of the region of interest and in focus (and visualizable through a tunnel) inside the region of interest. Further, annotation may be displayed along with the rendering of the visualizable medical data inside and/or outside of the region of interest. In this manner, an operator may see the annotations in the context of the visualizable medical data.
In rendering the annotation, each point of the line segment, spline segment, point cloud, etc. may be made transparent and/or blurry based on its distance from the region of interest, and its rendering may be controlled using various graphic techniques, such as bit maps and pixel shaders, such as those discussed in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes.
The blocks of process 300 may be performed in a different order, may be augmented by other blocks or may have sub-blocks within the blocks shown. Further, the process 300 may be performed on a single computer or processor, on multiple computers or processors, on a single or multiple virtual machines, and/or in a distributed fashion on multiple processors, devices, machines, or virtual machines.
Example Procedure
Consider an example ablation procedure. Lesions, which are often less than 3 cm in width, are typical targets of ablation. A physician may be able to see the lesions in a CT scan more clearly than she can in an ultrasound image. The physician may mark the lesions with annotations by navigating around the CT scan data using the techniques herein and various techniques in Image Management in Image-Guided Medical Procedures, to Sharif Razzaque et al., filed concurrently herewith, which is incorporated by reference above for all purposes.
That is, the physician may manipulate a medical device, such as an ultrasound transducer, in order to navigate and view CT data preoperatively (or intraoperatively). The physician may be able to see the small lesions in the CT data. The physician can then annotate those lesions, perhaps by circling, creating a sphere around them, and/or drawing an arrow pointing to them, using annotation the techniques herein.
Intraoperatively, the physician may be able to leverage the preoperative lesion annotation. The physician may use intraoperative ultrasound in order to spot the current location of the various lesions, guided at least in part by the annotation made in 3D space relative to the CT scan. By doing this, the physician has utilized both the relative ease of discovery of lesions on the CT scan as well as the intraoperative accuracy of locating the lesions in the ultrasound. This can increase accuracy and reduce operative times and the problems and costs associated therewith.
Although an example of an ablation is given, these techniques may be used with numerous other procedures, such as laparoscopic, endoscopic, arthroscopic, robotic and percutaneous procedures, resections, tissue transplantation, training, diagnostic, as well as drug delivery procedures, etc.
Other Embodiments
The processes, computer readable medium, and systems described herein may be performed on various types of hardware, such as computer systems or computing devices. In some embodiments, position sensing units 210 and 240, display unit 220, image guidance unit 230, and/or any other module or unit of embodiments herein may each be separate computing devices, applications, or processes or may run as part of the same computing devices, applications, or processes—or one of more may be combined to run as part of one application or process—and/or each or one or more may be part of or run on a computing device. Computing devices or computer systems may include a bus or other communication mechanism for communicating information, and a processor coupled with the bus for processing information. A computer system or device may have a main memory, such as a random access memory or other dynamic storage device, coupled to the bus. The main memory may be used to store instructions and temporary variables. The computer system or device may also include a read-only memory or other static storage device coupled to the bus for storing static information and instructions. The computer systems or devices may also be coupled to a display, such as a CRT, LCD monitor, LED array, e-paper, projector, or stereoscopic display. Input devices may also be coupled to the computer system or device. These input devices may include a mouse, a trackball, touchscreen, tablet, foot pedal, or cursor direction keys. Computer systems or devices described herein may include the image guidance unit 230, first and second position sensing units 210 and 240, and imaging unit 250.
Each computer system or computing device may be implemented using one or more physical computers, processors, embedded devices, field programmable gate arrays (FPGAs), or computer systems or portions thereof. The instructions executed by the computer system or computing device may also be read in from a computer-readable medium. The computer-readable medium may be non-transitory, such as a CD, DVD, optical or magnetic disk, laserdisc, flash memory, or any other medium that is readable by the computer system or device. In some embodiments, hardwired circuitry may be used in place of or in combination with software instructions executed by the processor. Communication among modules, systems, devices, and elements may be over a direct or switched connections, and wired or wireless networks or connections, via directly connected wires, or any other appropriate communication mechanism. Transmission of information may be performed on the hardware layer using any appropriate system, device, or protocol, including those related to or utilizing Firewire, PCI, PCI express, CardBus, USB, CAN, SCSI, IDA, RS232, RS422, RS485, 802.11, etc. The communication among modules, systems, devices, and elements may include handshaking, notifications, coordination, encapsulation, encryption, headers, such as routing or error detecting headers, or any other appropriate communication protocol or attribute. Communication may also messages related to HTTP, HTTPS, FTP, TCP, IP, ebMS OASIS/ebXML, DICOM, DICOS, secure sockets, VPN, encrypted or unencrypted pipes, MIME, SMTP, MIME Multipart/Related Content-type, SQL, etc.
Any appropriate 3D graphics processing may be used for displaying or rendering, including processing based on OpenGL, Direct3D, Java 3D, etc. Whole, partial, or modified 3D graphics packages may also be used, such packages including 3DS Max, SolidWorks, Maya, Form Z, Cybermotion 3D, VTK, Slicer, Blender or any others. In some embodiments, various parts of the needed rendering may occur on traditional or specialized graphics hardware. The rendering may also occur on the general CPU, on programmable hardware, on a separate processor, be distributed over multiple processors, over multiple dedicated graphics cards, or using any other appropriate combination of hardware or technique.
The features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the processes, methods, and flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.
All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more general purpose computers or processors, such as those computer systems described above. The code modules may be stored in any type of computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. application Ser. No. 13/014,596, which claims benefit to U.S. Provisional Patent Application No. 61/322,991 filed Apr. 12, 2010, and U.S. Provisional Patent Application No. 61/387,132, filed Sep. 28, 2010. Each of the provisional applications, 61/322,991 and 61/387,132 is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3556079 | Omizo | Jan 1971 | A |
4058114 | Soldner | Nov 1977 | A |
RE30397 | King | Sep 1980 | E |
4249539 | Vilkomerson et al. | Feb 1981 | A |
4294544 | Altschuler et al. | Oct 1981 | A |
4390025 | Takemura et al. | Jun 1983 | A |
4407294 | Vilkomerso | Oct 1983 | A |
4431006 | Trimmer et al. | Feb 1984 | A |
4567896 | Barnea et al. | Feb 1986 | A |
4583538 | Onik et al. | Apr 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4671292 | Matzuk | Jun 1987 | A |
4839836 | Fonsalas | Jun 1989 | A |
4862873 | Yajima et al. | Sep 1989 | A |
4884219 | Waldren | Nov 1989 | A |
4899756 | Sonek | Feb 1990 | A |
4911173 | Terwillige | Mar 1990 | A |
4945305 | Blood | Jul 1990 | A |
5076279 | Arenson et al. | Dec 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5078142 | Siczek et al. | Jan 1992 | A |
5095910 | Powers | Mar 1992 | A |
5109276 | Nudelman et al. | Apr 1992 | A |
5158088 | Nelson et al. | Oct 1992 | A |
5161536 | Vilkomerson et al. | Nov 1992 | A |
5193120 | Gamache et al. | Mar 1993 | A |
5209235 | Brisken et al. | May 1993 | A |
5249581 | Horbal et al. | Oct 1993 | A |
5251127 | Raab | Oct 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5307153 | Maruyama et al. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5371543 | Anderson | Dec 1994 | A |
5383454 | Bucholz | Jan 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5411026 | Carol | May 1995 | A |
5433198 | Desai | Jul 1995 | A |
5433739 | Sluijter | Jul 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5446798 | Morita et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5474073 | Schwartz et al. | Dec 1995 | A |
5476096 | Olstad et al. | Dec 1995 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5488431 | Gove et al. | Jan 1996 | A |
5489952 | Gove et al. | Feb 1996 | A |
5491510 | Gove | Feb 1996 | A |
5494039 | Onik et al. | Feb 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5505204 | Picot et al. | Apr 1996 | A |
5515856 | Olstad et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5531227 | Schneider | Jul 1996 | A |
5532997 | Pauli | Jul 1996 | A |
5541723 | Tanaka | Jul 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5568811 | Olstad | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5581271 | Kraemer | Dec 1996 | A |
5588948 | Takahashi et al. | Dec 1996 | A |
5608468 | Gove et al. | Mar 1997 | A |
5608849 | King, Jr. | Mar 1997 | A |
5611345 | Hibbeln | Mar 1997 | A |
5611353 | Dance et al. | Mar 1997 | A |
5612753 | Poradish et al. | Mar 1997 | A |
5625408 | Matsugu et al. | Apr 1997 | A |
5628327 | Unger et al. | May 1997 | A |
5629794 | Magel et al. | May 1997 | A |
5630027 | Venkateswar et al. | May 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5647373 | Paltieli et al. | Jul 1997 | A |
5660185 | Shmulewitz et al. | Aug 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5699444 | Palm | Dec 1997 | A |
5701898 | Adam et al. | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5726670 | Tabata et al. | Mar 1998 | A |
5728044 | Shan | Mar 1998 | A |
5758650 | Miller et al. | Jun 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5784098 | Shoji et al. | Jul 1998 | A |
5792147 | Evans et al. | Aug 1998 | A |
5793701 | Wright et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5817022 | Vesely | Oct 1998 | A |
5820554 | Davis et al. | Oct 1998 | A |
5820561 | Olstad et al. | Oct 1998 | A |
5829439 | Yokosawa et al. | Nov 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5851183 | Bodiolz | Dec 1998 | A |
5870136 | Fuchs et al. | Feb 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5961527 | Whitmore, III et al. | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
6016439 | Acker | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6048312 | Ishrak et al. | Apr 2000 | A |
6064749 | Hirota et al. | May 2000 | A |
6091546 | Spitzer | Jul 2000 | A |
6095982 | Richards-Kortum et al. | Aug 2000 | A |
6099471 | Torp et al. | Aug 2000 | A |
6108130 | Raj | Aug 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6160666 | Rallison et al. | Dec 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6181371 | Maguire, Jr. | Jan 2001 | B1 |
RE37088 | Olstad et al. | Mar 2001 | E |
6216029 | Paltieli | Apr 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6245017 | Hashimoto et al. | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6248101 | Witmore, III et al. | Jun 2001 | B1 |
6261234 | Lin | Jul 2001 | B1 |
6341016 | Malione | Jan 2002 | B1 |
6348058 | Melken et al. | Feb 2002 | B1 |
6350238 | Olstad et al. | Feb 2002 | B1 |
6352507 | Torp et al. | Mar 2002 | B1 |
6379302 | Kessman et al. | Apr 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6442417 | Shahidi et al. | Aug 2002 | B1 |
6447450 | Olstad | Sep 2002 | B1 |
6456868 | Saito et al. | Sep 2002 | B2 |
6470207 | Simon et al. | Oct 2002 | B1 |
6471366 | Hughson et al. | Oct 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6517485 | Torp et al. | Feb 2003 | B2 |
6518939 | Kikuchi | Feb 2003 | B1 |
6527443 | Vilsmeier et al. | Mar 2003 | B1 |
6529758 | Shahidi | Mar 2003 | B2 |
6537217 | Bjærum et al. | Mar 2003 | B1 |
6545706 | Edwards et al. | Apr 2003 | B1 |
6546279 | Bova et al. | Apr 2003 | B1 |
6551325 | Neubauer et al. | Apr 2003 | B2 |
6570566 | Yoshigahara | May 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6579240 | Bjaerum et al. | Jun 2003 | B2 |
6587711 | Alfano et al. | Jul 2003 | B1 |
6591130 | Shahidi | Jul 2003 | B2 |
6592522 | Bjaerum et al. | Jul 2003 | B2 |
6594517 | Nevo | Jul 2003 | B1 |
6597818 | Kumar et al. | Jul 2003 | B2 |
6604404 | Paltieli et al. | Aug 2003 | B2 |
6616610 | Steininger et al. | Sep 2003 | B2 |
6626832 | Paltieli et al. | Sep 2003 | B1 |
6652462 | Bjaerum et al. | Nov 2003 | B2 |
6669635 | Kessman et al. | Dec 2003 | B2 |
6676599 | Torp et al. | Jan 2004 | B2 |
6689067 | Sauer et al. | Feb 2004 | B2 |
6695786 | Wang et al. | Feb 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6725082 | Sati et al. | Apr 2004 | B2 |
6733458 | Steins et al. | May 2004 | B1 |
6764449 | Lee et al. | Jul 2004 | B2 |
6766184 | Utzinger et al. | Jul 2004 | B2 |
6768496 | Bieger et al. | Jul 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6827723 | Carson | Dec 2004 | B2 |
6863655 | Bjaerum et al. | Mar 2005 | B2 |
6873867 | Vilsmeier | Mar 2005 | B2 |
6875179 | Ferguson et al. | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6895268 | Rahn et al. | May 2005 | B1 |
6915150 | Cinquin et al. | Jul 2005 | B2 |
6917827 | Kienzle, III | Jul 2005 | B2 |
6923817 | Carson et al. | Aug 2005 | B2 |
6936048 | Hurst | Aug 2005 | B2 |
6947783 | Immerz | Sep 2005 | B2 |
6968224 | Kessman et al. | Nov 2005 | B2 |
6978167 | Dekel et al. | Dec 2005 | B2 |
7008373 | Stoianovici et al. | Mar 2006 | B2 |
7033360 | Cinquin et al. | Apr 2006 | B2 |
7072707 | Galloway, Jr. et al. | Jul 2006 | B2 |
7077807 | Torp et al. | Jul 2006 | B2 |
7093012 | Olstad et al. | Aug 2006 | B2 |
7110013 | Ebersole et al. | Sep 2006 | B2 |
7171255 | Holupka et al. | Jan 2007 | B2 |
7209776 | Leitner | Apr 2007 | B2 |
7245746 | Bjaerum et al. | Jul 2007 | B2 |
7248232 | Yamazaki et al. | Jul 2007 | B1 |
7261694 | Torp et al. | Aug 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7331932 | Leitner | Feb 2008 | B2 |
7351205 | Szczech et al. | Apr 2008 | B2 |
7379769 | Piron et al. | May 2008 | B2 |
7385708 | Ackerman et al. | Jun 2008 | B2 |
7392076 | Moctezuma de la Barrera | Jun 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7466303 | Yi et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7505809 | Strommer et al. | Mar 2009 | B2 |
7588541 | Floyd et al. | Sep 2009 | B2 |
7652259 | Kimchy et al. | Jan 2010 | B2 |
7662128 | Salcudean et al. | Feb 2010 | B2 |
7678052 | Torp et al. | Mar 2010 | B2 |
7728868 | Razzaque et al. | Jun 2010 | B2 |
7797032 | Martinelli et al. | Sep 2010 | B2 |
7798965 | Torp et al. | Sep 2010 | B2 |
7833168 | Taylor et al. | Nov 2010 | B2 |
7833221 | Voegele et al. | Nov 2010 | B2 |
7846103 | Cannon, Jr. et al. | Dec 2010 | B2 |
7876942 | Gilboa | Jan 2011 | B2 |
7889905 | Higgins et al. | Feb 2011 | B2 |
7901357 | Bova et al. | Mar 2011 | B2 |
7912849 | Ohrn et al. | Mar 2011 | B2 |
7920909 | Lyon et al. | Apr 2011 | B2 |
7962193 | Edwards et al. | Jun 2011 | B2 |
7976469 | Bonde et al. | Jul 2011 | B2 |
8023712 | Ikuma et al. | Sep 2011 | B2 |
8038631 | Sanghvi et al. | Oct 2011 | B1 |
8041413 | Barbagli et al. | Oct 2011 | B2 |
8050736 | Piron et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8066644 | Sarkar et al. | Nov 2011 | B2 |
8073528 | Zhao et al. | Dec 2011 | B2 |
8086298 | Whitmore, III et al. | Dec 2011 | B2 |
8135669 | Olstad et al. | Mar 2012 | B2 |
8137281 | Huang et al. | Mar 2012 | B2 |
8147408 | Bunce et al. | Apr 2012 | B2 |
8152724 | Ridley et al. | Apr 2012 | B2 |
8167805 | Emery et al. | May 2012 | B2 |
8216149 | Oonuki et al. | Jul 2012 | B2 |
8221322 | Wang et al. | Jul 2012 | B2 |
8228028 | Schneider | Jul 2012 | B2 |
8257264 | Park et al. | Sep 2012 | B2 |
8296797 | Olstad et al. | Oct 2012 | B2 |
8340379 | Razzaque et al. | Dec 2012 | B2 |
8350902 | Razzaque et al. | Jan 2013 | B2 |
8482606 | Razzaque et al. | Jul 2013 | B2 |
8554307 | Razzaque et al. | Oct 2013 | B2 |
8641621 | Razzaque et al. | Feb 2014 | B2 |
8670816 | Green et al. | Mar 2014 | B2 |
8831310 | Razzaque et al. | Sep 2014 | B2 |
20010007919 | Shahidi | Jul 2001 | A1 |
20010016804 | Cunningham et al. | Aug 2001 | A1 |
20010045979 | Matsumoto et al. | Nov 2001 | A1 |
20020010384 | Shahidi et al. | Jan 2002 | A1 |
20020032772 | Olstad et al. | Mar 2002 | A1 |
20020049375 | Strommer et al. | Apr 2002 | A1 |
20020077540 | Kienzie, III | Jun 2002 | A1 |
20020077543 | Grzeszczuk et al. | Jun 2002 | A1 |
20020105484 | Navab et al. | Aug 2002 | A1 |
20020135673 | Favalora et al. | Sep 2002 | A1 |
20020138008 | Tsujita et al. | Sep 2002 | A1 |
20020140814 | Cohen-Solal et al. | Oct 2002 | A1 |
20020156375 | Kessmam et al. | Oct 2002 | A1 |
20020198451 | Carson | Dec 2002 | A1 |
20030040743 | Cosman et al. | Feb 2003 | A1 |
20030073901 | Simon et al. | Apr 2003 | A1 |
20030135119 | Lee et al. | Jul 2003 | A1 |
20030163142 | Paltieli et al. | Aug 2003 | A1 |
20030164172 | Chumas et al. | Sep 2003 | A1 |
20030231789 | Willis et al. | Dec 2003 | A1 |
20040034313 | Leitner | Feb 2004 | A1 |
20040078036 | Keidar | Apr 2004 | A1 |
20040095507 | Bishop et al. | May 2004 | A1 |
20040116810 | Olstad | Jun 2004 | A1 |
20040147920 | Keidar | Jul 2004 | A1 |
20040152970 | Hunter et al. | Aug 2004 | A1 |
20040181144 | Cinquin et al. | Sep 2004 | A1 |
20040215071 | Frank et al. | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040243146 | Chesbrough et al. | Dec 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040249281 | Olstad | Dec 2004 | A1 |
20040249282 | Olstad | Dec 2004 | A1 |
20040254454 | Kockro | Dec 2004 | A1 |
20050010098 | Frigstad et al. | Jan 2005 | A1 |
20050085717 | Shahidi | Apr 2005 | A1 |
20050085718 | Shahidi | Apr 2005 | A1 |
20050090742 | Mine et al. | Apr 2005 | A1 |
20050111733 | Fors et al. | May 2005 | A1 |
20050159641 | Kanai | Jul 2005 | A1 |
20050182316 | Burdette et al. | Aug 2005 | A1 |
20050192564 | Cosman et al. | Sep 2005 | A1 |
20050219552 | Ackerman et al. | Oct 2005 | A1 |
20050222574 | Giordano et al. | Oct 2005 | A1 |
20050251148 | Friedrich | Nov 2005 | A1 |
20060004275 | Vija et al. | Jan 2006 | A1 |
20060020204 | Serra et al. | Jan 2006 | A1 |
20060036162 | Shahidi et al. | Feb 2006 | A1 |
20060052792 | Boettiger et al. | Mar 2006 | A1 |
20060058609 | Olstad | Mar 2006 | A1 |
20060058610 | Olstad | Mar 2006 | A1 |
20060058674 | Olstad | Mar 2006 | A1 |
20060058675 | Olstad | Mar 2006 | A1 |
20060100505 | Viswanathan | May 2006 | A1 |
20060122495 | Kienzle | Jun 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060193504 | Salgo et al. | Aug 2006 | A1 |
20060229594 | Francischelli et al. | Oct 2006 | A1 |
20060235290 | Gabriel et al. | Oct 2006 | A1 |
20060235538 | Rochetin et al. | Oct 2006 | A1 |
20060241450 | Da Silva et al. | Oct 2006 | A1 |
20060253030 | Altmann et al. | Nov 2006 | A1 |
20060253032 | Altmann et al. | Nov 2006 | A1 |
20060271056 | Terrill-Grisoni et al. | Nov 2006 | A1 |
20060282023 | Leitner | Dec 2006 | A1 |
20060293643 | Wallace et al. | Dec 2006 | A1 |
20070016035 | Hashimoto | Jan 2007 | A1 |
20070032906 | Sutherland et al. | Feb 2007 | A1 |
20070073155 | Park et al. | Mar 2007 | A1 |
20070073455 | Park et al. | Mar 2007 | A1 |
20070078346 | Park et al. | Apr 2007 | A1 |
20070167699 | Lathuiliere et al. | Jul 2007 | A1 |
20070167701 | Sherman | Jul 2007 | A1 |
20070167705 | Chiang et al. | Jul 2007 | A1 |
20070167771 | Olstad | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070225553 | Shahidi | Sep 2007 | A1 |
20070239281 | Gotte et al. | Oct 2007 | A1 |
20070244488 | Metzger et al. | Oct 2007 | A1 |
20070255136 | Kristofferson et al. | Nov 2007 | A1 |
20070270718 | Rochetin et al. | Nov 2007 | A1 |
20070276234 | Shahidi | Nov 2007 | A1 |
20080004481 | Bax et al. | Jan 2008 | A1 |
20080004516 | DiSilvestro et al. | Jan 2008 | A1 |
20080030578 | Razzaque et al. | Feb 2008 | A1 |
20080039723 | Suri et al. | Feb 2008 | A1 |
20080051910 | Kammerzell et al. | Feb 2008 | A1 |
20080091106 | Kim et al. | Apr 2008 | A1 |
20080114235 | Unal et al. | May 2008 | A1 |
20080161824 | McMillen | Jul 2008 | A1 |
20080200794 | Teichman et al. | Aug 2008 | A1 |
20080208031 | Kurpad et al. | Aug 2008 | A1 |
20080208081 | Murphy et al. | Aug 2008 | A1 |
20080214932 | Mollard et al. | Sep 2008 | A1 |
20080232679 | Hahn et al. | Sep 2008 | A1 |
20080287794 | Li et al. | Nov 2008 | A1 |
20080287805 | Li | Nov 2008 | A1 |
20080287837 | Makin et al. | Nov 2008 | A1 |
20090024030 | Lachaine et al. | Jan 2009 | A1 |
20090118724 | Zvuloni et al. | May 2009 | A1 |
20090137907 | Takimoto et al. | May 2009 | A1 |
20090226069 | Razzaque et al. | Sep 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090312629 | Razzaque et al. | Dec 2009 | A1 |
20100045783 | State et al. | Feb 2010 | A1 |
20100198045 | Razzaque et al. | Aug 2010 | A1 |
20100208963 | Kruecker et al. | Aug 2010 | A1 |
20100268067 | Razzaque et al. | Oct 2010 | A1 |
20100268072 | Hall et al. | Oct 2010 | A1 |
20100268085 | Kruecker et al. | Oct 2010 | A1 |
20100305448 | Dagonnau et al. | Dec 2010 | A1 |
20100312121 | Guan | Dec 2010 | A1 |
20100331252 | Clements et al. | Dec 2010 | A1 |
20110043612 | Keller et al. | Feb 2011 | A1 |
20110046483 | Fuchs et al. | Feb 2011 | A1 |
20110046486 | Shin et al. | Feb 2011 | A1 |
20110057930 | Keller | Mar 2011 | A1 |
20110082351 | Razzaque et al. | Apr 2011 | A1 |
20110130641 | Razzaque et al. | Jun 2011 | A1 |
20110137156 | Razzaque et al. | Jun 2011 | A1 |
20110201915 | Gogin et al. | Aug 2011 | A1 |
20110201976 | Sanghvi et al. | Aug 2011 | A1 |
20110230351 | Fischer et al. | Sep 2011 | A1 |
20110237947 | Boctor et al. | Sep 2011 | A1 |
20110238043 | Kleven | Sep 2011 | A1 |
20110251483 | Razzaque et al. | Oct 2011 | A1 |
20110274324 | Clements et al. | Nov 2011 | A1 |
20110282188 | Burnside et al. | Nov 2011 | A1 |
20110288412 | Deckman et al. | Nov 2011 | A1 |
20110295108 | Cox et al. | Dec 2011 | A1 |
20110301451 | Rohling | Dec 2011 | A1 |
20120035473 | Sanghvi et al. | Feb 2012 | A1 |
20120059260 | Robinson | Mar 2012 | A1 |
20120071759 | Hagy et al. | Mar 2012 | A1 |
20120078094 | Nishina et al. | Mar 2012 | A1 |
20120101370 | Razzaque et al. | Apr 2012 | A1 |
20120108955 | Razzaque et al. | May 2012 | A1 |
20120143029 | Silverstein et al. | Jun 2012 | A1 |
20120143055 | Cheng et al. | Jun 2012 | A1 |
20120165679 | Orome et al. | Jun 2012 | A1 |
20120259210 | Harhen et al. | Oct 2012 | A1 |
20130030286 | Alouani et al. | Jan 2013 | A1 |
20130044930 | Li et al. | Feb 2013 | A1 |
20130079770 | Kyle, Jr. et al. | Mar 2013 | A1 |
20130129175 | Razzaque | May 2013 | A1 |
20130132374 | Olstad et al. | May 2013 | A1 |
20130151533 | Udupa et al. | Jun 2013 | A1 |
20130178745 | Kyle et al. | Jul 2013 | A1 |
20140016848 | Razzaque et al. | Jan 2014 | A1 |
20140078138 | Martin et al. | Mar 2014 | A1 |
20140180074 | Green | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
7656896 | May 1997 | AU |
9453898 | Apr 1999 | AU |
1719601 | Jun 2001 | AU |
9036301 | Mar 2002 | AU |
2003297225 | Jul 2004 | AU |
2001290363 | Feb 2006 | AU |
0113882 | Jul 2003 | BR |
2420382 | Apr 2011 | CA |
60126798 | Oct 2007 | DE |
0 427 358 | May 1991 | EP |
1955284 | Aug 2008 | EP |
S63-290550 | Nov 1988 | JP |
H07-116164 | May 1995 | JP |
2005-058584 | Mar 2005 | JP |
2005-323669 | Nov 2005 | JP |
2009-517177 | Apr 2009 | JP |
WO 9605768 | Feb 1996 | WO |
WO 9715249 | May 1997 | WO |
WO 9717014 | May 1997 | WO |
WO 9926534 | Jun 1999 | WO |
WO 0139683 | Jun 2001 | WO |
WO 03032837 | Apr 2003 | WO |
WO 03034705 | Apr 2003 | WO |
PCTUS200317987 | Dec 2003 | WO |
WO 03105289 | Dec 2003 | WO |
WO 2005010711 | Feb 2005 | WO |
WO 2007019216 | Feb 2007 | WO |
WO 2007067323 | Jun 2007 | WO |
WO 2007067323 | Sep 2007 | WO |
WO 2008017051 | Feb 2008 | WO |
WO 2009063423 | May 2009 | WO |
WO 2009094646 | Jul 2009 | WO |
WO 2010057315 | May 2010 | WO |
WO 2010096419 | Aug 2010 | WO |
WO 2011014687 | Feb 2011 | WO |
WO 2012169990 | Dec 2012 | WO |
WO 2013116240 | Aug 2013 | WO |
Entry |
---|
“3D Laparoscope Technology,” http://www.inneroptic.com/tech—3DL.htm, copyright 2007 InnerOptic Technology, Inc. printed Sep. 19, 2007, 2 pages. |
“Cancer Facts & Figures 2004,” www.cancer.org/downloads/STT/CAFF—finalPWSecured.pdf, copyright 2004 American Cancer Society, Inc., printed Sep. 19, 2007, 60 pages. |
“David Laserscanner <-Latest News <-Institute for Robotics and Process Control <-Te . . . ,” http://www/rob.cs.tu-bs.de/en/news/david, printed Sep. 19, 2007, 1 page. |
“Laser scanned 3d model Final” video, still image of video attached, http://www.youtube.com/watch?v=DaLglgmoUf8, copyright 2007 YouTube, LLC, printed Sep. 19, 2007, 2 pages. |
“Olympus Endoscopic Ultrasound System,” www.olympusamerica.com/msg—section/download—brochures/135—b—gfum130.pdf, printed Sep. 20, 2007, 20 pages. |
“Point Grey Research Inc.—Imaging Products—Triclops SDK Samples,” http://www.ptgrey.com/products/triclopsSDK/samples.asp, copyright 2007 Point Grey Research Inc., printed Sep. 19, 2007, 1 page. |
“Robbins, Mike—Computer Vision Research—Stereo Depth Perception,” http://www.compumike.com/vision/stereodepth. php, copyright 2007 Michael F. Robbins, printed Sep. 19, 2007, 3 pages. |
“RUE, Registered Ultrasound-Endoscope,” copyright 2007 InnerOptic Technology, Inc., 2 pages. |
Advertisement, “Inspeck 3DC 3D Capturor,” Inspeck 3DC 3D Capturor (www.inspeck.com), 1998. |
Advertisement, “Virtual 3D High Speed Non-Contact Surface Perception,” Virtual 3-D Technologies Corporation (www.virtual3dtech.com)., Dec. 21, 1998. |
Advertisements, “Virtuoso,” Visual Interface, Inc. (www.visint.com), Dec. 21, 1998. |
Akka, “Automatic Software Control of Display Parameters for Stereoscopic Graphics Images,” SPIE vol. 1669: Stereoscopic Displays and Applications III, pp. 31-38 (1992). |
Ali et al., “Near Infrared Spectroscopy and Imaging to Probe Differences in Water Content in Normal and Cancer Human Prostate Tissues,” Technology in Cancer Research & Treatment; Oct. 2004; 3(5):491-497; Adenine Press. |
Aylward et al., Analysis of the Parameter Space of a Metric for Registering 3D Vascular Images, in W. Niessen and M. Viergever (Eds.): MICCAI 2001, LNCS 2208, pp. 932-939, 2001. |
Aylward et al., Registration and Analysis of Vascular Images, International Journal of Computer Vision 55(2/3), 123-138, 2003. |
Aylward, et al., Intra-Operative 3D Ultrasound Augmentation, Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, Jul. 2002. |
Azuma, “A Survey of Augmented Reality,” Presence: Teleoperators and Virtual Environments 6, 4:1-48 (Aug. 1997). |
Bajura, Michael et al.,, “Merging Virtual Objects with the Real World: Seeing Ultrasound Imagery within the Patient,” Computer Graphics, Proceedings of SIGGRAPH 1992, vol. 26(2), pp. 203-210, available from www.cs.unc.edu/˜fuchs/publications/MergVirtObjs92.pdf, printed Sep. 20, 2007, 8 pages. |
Benavides et al., “Multispectral digital colposcopy for in vivo detection of cervical cancer,” Optics Express; May 19, 2003; 11(1 0) Optical Society of America; USA. |
Beraldin, J.A. et al., “Optimized Position Sensors for Flying-Spot Active Triangulation Systems,” Proceedings of the Fourth International Conference on a 3-D Digital Imaging and Modeling (3DIM), Banff, Alberta, Canada, Oct. 6-10, 2003, pp. 334-341, NRC 47083, copyright 2003 National Research Council of Canada, http:/iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-47083.pdf, printed Sep. 19, 2007, 9 pages. |
Billinghurst, M. et al., Research Directions in Handheld AR; Int. J. of Virtual Reality 5(2),51-58 (2006). |
Bishop, Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMD,” Paper Presented at SIGGRAPH '94 Annual Conference in Orlando, FL (1994). |
Blais, F., “Review of 20 Years of Range Sensor Development,” Journal of Electronic Imaging, 13(1): 231-240, Jan. 2004, NRC 46531, copyright 2004 National Research Council of Canada, http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-46531.pdf, printed Sep. 19, 2007, 14 pages. |
Bouguet, Jean-Yves, “Camera Calibration Toolbox for Matlab,” www.vision.caltech.edu/bouguetj/calib—doc, printed Sep. 20, 2007, 5 pages. |
Buxton et al.; “Colposcopically directed punch biopsy: a potentially misleading investigation,” British Journal of Obstetrics and Gynecology; Dec. 1991; 98:1273-1276. |
Caines, Judy S. et al. Stereotaxic Needle Core Biopsy of Breast Lesions Using a Regular Mammographic Table with an Adaptable Stereotaxic Device, American Journal of Roentgenology, vol. 163, No. 2, Aug. 1994, pp. 317-321. Downloaded from www.ajrorline.org on Jul. 10, 2013. |
Cancer Prevention & Early Detection Facts & Figures 2004; National Center for Tobacco-Free Kids; 2004; American Cancer Society; USA. |
Cantor et al., “Cost-Effectiveness Analysis of Diagnosis and Management of Cervical Squamous Intraepithelial Lesions,” Diagnostic Strategies for SILs; Feb. 1998; 91(2):270-277. |
Catalano et al. “Multiphase helical CT findings after percutaneous ablation procedures for hepatocellular carcinoma.” Abdom. Imaging, 25(6),2000, pp. 607-614. |
Chiriboga et al., “Infrared Spectroscopy of Human Tissue. IV. Detection of Dysplastic and Neoplastic Changes of Human Cervical Tissue Via Infrared Microscopy,” Cellular and Molecular Biology; 1998; 44(1): 219-229. |
Crawford, David E. et al., “Computer Modeling of Prostate Biopsy: Tumor Size and Location—Not Clinical Significance—Determine Cancer Detection,” Journal of Urology, Apr. 1998, vol. 159(4), pp. 1260-1264, 5 pages. |
Deering, Michael “High Resolution Virtual Reality.” Proceedings of SIGGRAPH '92, Computer Graphics, 26(2), 1992, pp. 195-202. |
Depiero et al., “3-D Computer Vision Using Structured Light: Design, Calibration and Implementation Issues,” The University of Tennessee, pp. 1-46, (1996). |
Dodd, G.D. et al. “Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough.” Radiographies 20(1),2000, pp. 9-27. |
Drascic et al., “Perceptual Issues in Augmented Reality,” SPIE vol. 2653: Stereoscopic Displays and Virtual Reality Systems III, pp. 123-134 (Feb. 1996). |
Dumoulin, C.L. et al, Real-Time Position Monitoring of Invasive Devices Using Magnetic Resonance, Magnetic Resonance in Medicine, vol. 29, Issue 3, Mar. 1993, pp. 411-415. |
Fahey et al., “Meta-analysis of Pap Test Accuracy; American Journal of Epidemiology,” 1995 141(7):680-689; The John Hopkins University School of Hygiene and Public Health; USA. |
Foxlin et al., “An Inertial Head-Orientation Tracker with Automatic Drift Compensation for Use with HMD's,” Proceedings of the 1994 Virtual Reality Software and Technology Conference, Aug. 23-26, 1994, Singapore, pp. 159-173 (1994). |
Fronheiser et al., Real-Time 3D Color Doppler for Guidance of Vibrating Interventional Devices, IEEE Ultrasonics Symposium, pp. 149-152 (2004). |
Fuchs, Henry et al. “Augmented Reality Visualization for Laparoscopic Surgery,” Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) 1998, pp. 934-943, available from www.cs.unc.edu/˜fuchs/publications/AugRealVis—LaparoSurg98.pdf, printed Sep. 20, 2007, 10 pages. |
Fuchs, et al.: “Virtual Environments Technology to Aid Needle Biopsies of the Breast,” Health Care in the Information Age, Ch. 6, pp. 60-61, Presented in San Diego, Jan. 17-20, 1996, published by IOS Press and Ohmsha Feb. 1996. |
Garrett, William F. et al., “Real-Time Incremental Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees,” Proceedings of IEEE Visualization 1996, pp. 235-240, available from www.cs.unc.edu/˜andrei/pubs/1996—VIS—dualBSP—Mac.pdf, printed Sep. 20, 2007, 7 pages. |
Georgakoudi et al., “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” American Journal of Obstetrics and Gynecology; Mar. 2002; 186(3):374-382; USA. |
Herline et al., Surface Registration for Use in Interactive, Image-Guided Liver Surgery, Computer Aided Surgery 5:11-17 (2000). |
Holloway, R.; Registration Error Analysis for Augmented Reality; Presence: Teleoperators and Virtual Environments 6(4), 413-432 (1997). |
Hornung et al., “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Human Reproduction; 1999; 14(11):2908-2916; European Society of Human Reproduction and Embryology. |
Howard, M.D., et al.: “An Electronic Device for Needle Placement during Sonographically Guided Percutaneous Intervention”, Radiology 2001; 218:905-911. |
InnerAim Brochure; 3D Visualization Software for Simpler, Safer, more Precise Aiming, Published no earlier than Apr. 1, 2010. |
InVision System Brochure; A “GPS” for Real-Time 3D Needle Visualization & Guidance, Published no earlier than Mar. 1, 2008. |
InVision User Manual; Professional Instructions for Use, Published no earlier than Dec. 1, 2008. |
Jacobs, Marco C. et al., “Managing Latency in Complex Augmented Reality Systems,” ACM SIGGRAPH Proceedings of the Symposium of Interactive 3D Graphics 1997, pp. 49-54, available from www.cs.unc.edu/˜us/Latency//ManagingRelativeLatency.html, printed Sep. 20, 2007, 12 pages. |
Jolesz, Ferenc A, M.D., et al. MRI-Guided Laser-Induced Interstitial Thermotherapy: Basic Principles, SPIE Institute on Laser-Induced Interstitial Thermotherapy (L1TT), Jun. 22-23, 1995, Berlin, Germany. |
Kadi, A Majeed, et al., Design and Simulation of an Articulated Surgical Arm for Guidling Sterotactic Neurosurgery, SPIE vol. 1708 Applications of Artificial Intelligence X: Machine Vision and Robotics (1992). Downloaded from: http://proceedings.spiedigitallibrary.org/ on Jul. 11, 2013. |
Kanbara et al., “A Stereoscopic Video See-through Augmented Reality System Based on Real-time Vision-Based Registration,” Nara Institute of Science and Technology, pp. 1-8 (2000). |
Kato, Amami, et al., A frameless, armless navigational system for computer-assisted neurosurgery, Journal of Neurosurgery, vol. 74, No. 5, May 1991, pp. 845-849. |
Lass, Amir, “Assessment of Ovarian Reserve,” Human Reproduction, 2004, vol. 19(3), pp. 467-469, available from http://humrep.oxfordjournals.orgcgi/reprint/19/3/467, printed Sep. 20, 2007, 3 pages. |
Lee et al., “Modeling Real Objects Using Video See-Through Augmented Reality,” Presence, 11(2):144-157 (Apr. 2002). |
Leven et al., DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability, in J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3749, pp. 811-818, 2005. |
Levy, et al., An Internet-Connected, Patient Specific, Deformable Brain Atlas Integrated into a Surgical Navigation System, Journal of Digital Imaging, vol. 10, No. 3. Suppl. 1 (August), 1997: pp. 231-237. |
Livingston, Mark A. et al., “Magnetic Tracker Calibration for Improved Augmented Reality Registration,” Presence: Teleoperators and Virtual Environments, 1997, vol. 6(5), pp. 532-546, available from www.cs.unc.edu/˜andrei/pubs/1997—Presence—calibr.pdf, printed Sep. 20, 2007, 14 pages. |
Matsunaga et al., “The Effect of the Ratio Difference of Overlapped Areas of Stereoscopic Images on each Eye in a Teleoperalion,” Stereoscopic Displays and Virtual Reality Systems VII, Proceedings of SPIE, 3957:236-243 (2000). |
Meehan, Michael et al., “Effect of Latency on Presence in Stressful Virtual Environment,” Proceedings of IEEE Virtual Reality 2003, pp. 141-148, available from http://www.cs.unc.edu/˜eve/pubs.html, printed Sep. 20, 2007, 9 pages. |
Milgram et al., “Adaptation Effects in Stereo due to Online Changes in Camera Configuration,” SPIE vol. 1669-13, Stereoscopic Displays and Applications III, pp. 1-12 (1992). |
Mtchell et al., “Colposcopy for the Diagnosis of Squamous Intraepithelial lesions: A metaanalysis,” Obstetrics and Gynecology; Apr. 1998; 91(4):626-631. |
Nakamoto et al., 3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery, in T. Dohi and R. Kikinis (Eds.): MICCAI 2002, LNCS 2489, pp. 148-155, 2002. |
Nordstrom et al., “Identification of Cervical Intraepithelial Neoplasia (CIN) Using UV-Excited Fluorescence and Diffuse-Reflectance Tissue Spectroscopy,” Lasers in Surgery and Medicine; 2001; 29; pp. 118-127; Wiley-Liss, Inc. |
Ohbuchi et al. “An Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging”, UNC-CH Computer Science Technical Report TR91-003, (1991). |
Ohbuchi et al., “Incremental Volume Reconstruction and Rendering for 3D Ultrasound Imaging,” Visualization in Biomedical Computing, SPIE Proceedings, pp. 312-323, (Oct. 13, 1992). |
Ohbuchi, “Incremental Acquisition and Visualization of 3D Ultrasound Images,” Ph.D. Dissertation, UNC-CH Computer Science Technical Report TR95-023, (1993). |
PCT, International Search Report and Written Opinion, re PCT Application No. PCT/US07/75122, mailing date Aug. 20, 2008. |
PCT, International Preliminary Report on Patentability, re PCT Application No. PCT/US07/75122, mailing date Mar. 3, 2009. |
PCT, International Search Report and Written Opinion, re PCT Application No. PCT/US2010/024378, mailing date Oct. 13, 2010. |
PCT, International Search Report and Written Opinion, re PCT Application No. PCT/US2010/043760, mailing date Mar. 3, 2011. |
PCT, The International Search Report and Written Opinion of the International Searching Authority, mailed Sep. 9, 2009, for case PCT/US2009/032028. |
Progue, Brian W. et al., “Analysis of acetic acid-induced whitening of high-grade squamous intraepitheliallesions,” Journal of Biomedical Optics; Oct. 2001; 6(4):397-403. |
Raij, A.B., et al., Comparing Interpersonal Interactions with a Virtual Human to Those with a Real Human; IEEE Transactions on Visualization and Computer Graphics 13(3), 443-457 (2007). |
Raz et al, Real-Time Magnetic Resonance Imaging-Guided Focal Laser Therapy in Patients with Low-Risk Prostate Cancer, European Urology 58, pp. 173-177. Mar. 12, 2010. |
Robinett et al., “A Computational Model for the Stereoscopic Optics of a Head-Mounted Display,” SPIE vol. 1457, Stereoscopic Displays and Applications II, pp. 140-160 (1991). |
Rolland et al., Towards Quantifying Depth and Size Perception in Virtual Environments, Presence: Teleoperators and Virtual Environments, Winter 1995, vol. 4, Issue 1, pp. 1-21 and 24-49. |
Rosenthal, Michael et al., “Augmented Reality Guidance for Needle Biopsies: An Initial Randomized, Controlled Trial in Phantoms,” Proceedings of Medical Image Analysis, Sep. 2002, vol. 6(3), pp. 313-320, available from www.cs.unc.edu/˜fuchs/publications/AugRealGuida—NeedleBiop02.pdf, printed Sep. 20, 2007, 8 pages. |
Rosenthal, Michael et al., “Augmented Reality Guidance for Needle Biopsies: A Randomized, Controlled Trial in Phantoms,” Proceedings of MICCAI 2001, eds. W. Niessen and M. Viergever, Lecture Notes in Computer Science, 2001, vol. 2208, pp. 240-248, available from www.cs.unc.edu/˜us/AugmentedRealityAssistance.pdf, printed Sep. 20, 2007, 9 pages. |
Screenshots from video produced by the University of North Carolina, produced circa 1992, Screenshots from video produced by the University of North Carolina, produced circa 1992. |
Splechtna, Fuhrmann A. et al., Comprehensive calibration and registration procedures for augmented reality; Proc. Eurographics Workshop on Virtual Environments 2001,219-228 (2001). |
State et al., “Case Study: Observing a Volume Rendered Fetus within a Pregnant Patient,” Proceedings of IEEE Visualization 1994, pp. 364-368, available from www.cs.unc.edu/˜fuchs/publications/cs-ObservVolRendFetus94.pdf, printed Sep. 20, 2007, 5 pages. |
State et al., “Interactive Volume Visualization on a Heterogenous Message-Passing Multicomputer,” Proceedings of 1995 Symposium on Interactive 3D Graphics, 1995, pp. 69-74, 208, available from www.cs.unc.edu/˜andrei/pubs/1995—I3D—vol2—Mac.pdf, printed Sep. 20, 2007. |
State et al., “Simulation-Based Design and Rapid Prototyping of a Parallax-Free, Orthoscopic Video See-Through Head-Mounted Display,” Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR) 2005, available from www.cs.unc.edu/˜andrei/pubs/2005—ISMAR—VSTHMD—design.pdf, printed Sep. 20, 2007, 4 pages. |
State et al., “Stereo Imagery from the UNC Augmented Reality System for Breast Biopsy Guidance” Proc. Medicine Meets Virtual Reality (MMVR) 2003 (Newport Beach, CA, Jan. 22-25, 2003). |
State et al., “Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking,” ACM SIGGRAPH Computer Graphics, Proceedings of SIGGRAPH 1996, pp. 429-438, available from www.cs.princeton.edu/courses/archive/fall01/cs597d/papers/state96.pdf, printed Sep. 20, 2007, 10 pages. |
State et al., “Technologies for Augmented Reality Systems: Realizing Ultrasound-Guided Needle Biopsies,” Computer Graphics, Proceedings of SIGGRAPH 1996, pp. 429-438, available from www.cs.princeton.edu/courses/archive/fall01/cs597d/papers/state96.pdf, printed Sep. 20, 2007. |
State, Andrei “Exact Eye Contact with Virtual Humans.” Proc. IEEE International Workshop on Human Computer Interaction 2007 (Rio de Janeiro, Brazil, Oct. 20, 2007), pp. 138-145. |
Takagi et al., “Development of a Stereo Video See-through HMD for AR Systems,” IEEE, pp. 68-77 (2000). |
Ultraguide 1000 System, Ultraguide, www.ultraguideinc.com, 1998. |
Van Staveren et al., “Light Scattering in Intralipid—10% in the wavelength range of 400-1100 nm,” Applied Optics; Nov. 1991; 30(31):4507-4514. |
Viola et al., “Alignment by Maximization of Mutual Information,” International Journal of Computer Vision, vol. 24, No. 2, pp. 1-29 (1997). |
Viola, Paul A., Alignment by Maximization of Mutual Information, Ph.D. Dissertation, MIT-Artificial Intelligence Laboratory Technical Report No. 1548 (Jun. 1995). |
Ware et al., “Dynamic Adjustment of Stereo Display Parameters,” IEEE Transactions on Systems, Many and Cybernetics, 28(1):1-19 (1998). |
Watson et al., “Using Texture Maps to Correct for Optical Distortion in Head-Mounted Displays,” Proceedings of the Virtual Reality Annual Symposium '95, IEEE, pp. 1-7 (1995). |
Welch, Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking System, University of North Carolina Chapel Hill Department of Computer Science, TR 95-048 (1995). |
Yinghui et al., Real-Time Deformation Using Modal Analysis on Graphics Hardware, Graphite 2006, Kuala Lumpur, Malaysia, Nov. 29-Dec. 2, 2006. |
Zitnick et al., “Multi-Base Stereo Using Surface Extraction,” Visual Interface Inc., (Nov. 24, 1996). |
U.S. Appl. No. 11/828,826, filed Jul. 26, 2007, Keller et al. |
Azuma et al., “Improving Static and Dynamic Registration in an Optical See-Through HMO,” Proceedings of SIGGRAPH '94, Computer Graphics, Annual Conference Series, 1994, 197-204 (1994). |
Badler et al., “Simulating Humans: Computer Graphics, Animation, and Control,” Oxford University Press (1993). |
Fuchs, et al.: “Optimizing a Head-Tracked Stereo Display System to Guide Hepatic Tumor Ablation,” Departments of Computer Sciences and Radiology, and School of Medicine, University of North Carolina at Chapel Hill; InnerOptic Technology, Inc. 2008. |
Fuhrmann et al. “Comprehensive calibration and registration procedures for augmented reality,” Proc. Eurographics Workshop on Virtual Environments 2001, 219-228 (2001). |
http://www.planar.com/products/flatpanel—monitors/stereoscopic/ (Printed Dec. 29, 2011). |
Keller et al., “What is it in Head Mounted Displays (MDs) that really make them all so terrible?,” pp. 1-8 (1998). |
Lee, et al., “Modeling Real Objects Using Video See-Through Augmented Reality,” Proceedings of the Second International Symposium on Mixed Reality, ISMR 2001, pp. 19-26 (Mar. 14-15, 2001). |
State et al., “Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking,” ACM SIGGRAPHG Computer Graphics, Proceedings of SIGGRAPH 1996, pp. 1-8 (Aug. 1996). |
State, et al.: Contextually Enhanced 3D Visualization for Multi-Born Tumor Ablation Guidance, Departments of Computer Science and Radiology, and School of Medicine, University of North Carolina at Chapel Hill; InnerOptic Technology, Inc. 2008, Chapel Hill, NC, pp. 70-77. |
Symons et al., “What are You Looking at? Acuit for Triadic Eye Gaze,” J. Gen. Psychology 131(4), pp. 451-469 (2004). |
Takacs et al., “The Virtual Human Interface: A Photorealistic Digital Human,” IEEE Computer Graphics and Applications 23(5), pp. 38-45 (2003). |
Takayama et al., “Virtual Human with Regard to Physical Contact and Eye Contact,” Entertaining Computing 2005, LNCS, vol. 3711, pp. 268-278 (2005). |
Number | Date | Country | |
---|---|---|---|
20140094687 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61322991 | Apr 2010 | US | |
61387132 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13014596 | Jan 2011 | US |
Child | 14047628 | US |