Image capture for virtual reality displays

Information

  • Patent Grant
  • 10412373
  • Patent Number
    10,412,373
  • Date Filed
    Friday, April 28, 2017
    7 years ago
  • Date Issued
    Tuesday, September 10, 2019
    4 years ago
Abstract
A light-field camera system such as a tiled camera array may be used to capture a light-field of an environment. The tiled camera array may be a tiered camera array with a first plurality of cameras and a second plurality of cameras that are arranged more densely, but have lower resolution, than those of the first plurality of cameras. The first plurality of cameras may be interspersed among the second plurality of cameras. The first and second pluralities may cooperate to capture the light-field. According to one method, a subview may be captured by each camera of the first and second pluralities. Estimated world properties of the environment may be computed for each subview. A confidence map may be generated to indicate a level of confidence in the estimated world properties for each subview. The confidence maps and subviews may be used to generate a virtual view of the environment.
Description
TECHNICAL FIELD

The present document relates to various techniques for improving image capture for virtual reality displays.


BACKGROUND

Some current volumetric capture systems (or virtual reality (VR) capture systems), such as Lytro Immerge, sparsely sample a light-field volume using a relatively large number of cameras. The cameras can be arranged, for example, over a lattice that covers a flat surface, or a 3D surface such as a sphere. The cameras may thus define a “tiled camera array.” The cameras may be traditional 2D cameras, array cameras, or plenoptic light-field cameras, as described in above-referenced U.S. Provisional Application 62/148,460. Whichever system is used, it is often difficult to avoid some sparseness of the samples, leaving gaps in the coverage. Thus, in order to provide virtual reality functionality, the rendering system may advantageously interpolate between camera views.


When a viewer is watching and interacting with the captured virtual reality environment (or “volume”), it is beneficial for the playback system to allow the viewer to have as many degrees of freedom as feasible to explore the captured volume. For, example, six degrees of freedom may be provided, so as to allow the user full angular viewing freedom (yaw, pitch, roll) as well as spatial viewing freedom (translation side-to-side, up and down, and forward and backward). In general, it is desirable to provide for movement along the degrees of freedom seamlessly and smoothly.


In general, the ability of a VR capture system to deliver high quality playback at interpolated viewpoints is limited by the density of the capture viewpoints and the ability of the system to interpolate between capture viewpoints, which may in turn depend on the quality of the system's estimation of various properties of objects in the world. In order to provide accurate interpolations, it is useful to have information about properties of surfaces and objects. Estimated world properties may include, for example and without limitation, 3D geometry, reflectance, specularity of materials, transparency/translucency of objects, and/or the like. In many situations, however, it may be difficult or impossible to estimate these world properties with a sufficient degree of accuracy or precision to provide the desired results. Fine objects like hair may also be problematic.


Various techniques can be used to improve the quality of the systems with respect to artifacts caused by errors in such estimated properties. One option may be to increase the density of cameras in the capture system, and thus reduce the amount of interpolation that is required. However, increasing density can increase system requirements, costs, storage, processing, heat management, and/or the like. Furthermore, there is a physical limit to how closely cameras may be spaced in the tiled camera array.


Other techniques for improving quality include improving the accuracy of the world estimation process. While such an approach may be appealing, it can be difficult or impossible within the constraints of the system. Another option may be to include additional types of sensors designed for specific purposes. Examples include LiDAR sensors, Time-of-Flight (ToF) sensors, and structured light. Specialized sensors may help improve the accuracy of certain aspects of the world estimation process, but may still not improve the level of accuracy to the desired level.


SUMMARY

Multiple techniques are described herein to improve the overall perceptual quality of the volumetric video playback experience. The systems and methods presented herein may be applied separately or in any suitable combination with one another.


In general, the systems and methods presented herein may provide mechanisms for minimizing errors in interpolation and world property estimation, so as to provide an improved virtual environment experience.


In at least one embodiment, a mix of camera types is used in the capture system, with varying resolution, density, and/or field-of-view. This capture system employing a mix of camera types may be considered a tiered camera array. In some cases the cameras of the tiered camera array may include multiple sets of cameras, for example, with a first plurality of cameras (a “first tier”) with a relatively lower density of cameras with relatively higher resolution, and a second plurality of cameras (a “second tier”) with a relatively higher density of cameras with a relatively lower resolution. If desired, more than two tiers may be used. The tiers may be arranged in interleaved patterns in which voids in denser tiers are filled with cameras from less dense tiers.


In at least one embodiment, when world properties are estimated, the estimated properties also include an error metric and/or confidence value of the estimated property. For example, such an error metric may be a measure of the photometric consistency of an estimated 3D patch in the world. If all the cameras that can see a particular portion of a scene provide subviews with consistent image data and/or world properties, there may be high confidence in the accuracy of the estimate of world properties for that portion of the scene. If the image data and/or world properties differ widely between the subviews, as may be the case for many visually complex objects and for estimation errors, then the confidence value may be low. A confidence map may be generated for each subview, representing the confidence level in each of multiple regions of the subview.


When a virtual view is to be rendered, the confidence map, the world properties, and/or the subview may be used. Each region of the subview and world properties for a subview may be used in rendering the virtual view to the extent of the confidence level for that region. In some embodiments, some of the cameras may be designated as primary cameras for which the subview and/or world properties are preferentially used. For regions in which the estimated world properties for a primary camera have low confidence, the subview and/or world properties for a secondary camera may be used instead. For a tiered camera array as described previously, the higher resolution cameras may be primary cameras, while lower resolution may be secondary tertiary, etc. Thus, the virtual view may be rendered with a balance between high resolution and high confidence in the associated world properties.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate several embodiments. Together with the description, they serve to explain the principles of the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.



FIG. 1 is a flow diagram depicting a method, from image and/or video capture to virtual view reconstruction, according to one embodiment.



FIG. 2 is a block diagram processing flow, from image and/or video capture to virtual view reconstruction, according to another embodiment.



FIG. 3A shows an illustrative tiled camera array, as viewed from the front, according to one embodiment, with cameras are arranged in a hexagonal lattice on a planar surface.



FIG. 3B shows the tiled camera array of FIG. 3A, as viewed from above, showing the overlapping fields-of-view of the subviews captured by the cameras.



FIG. 4 shows an illustrative tiled camera array, as viewed from above, according to another embodiment, in which cameras are arranged on a convex surface, showing the overlapping fields-of-view of the subviews captured by the cameras.



FIG. 5 is an example of an existing tiled camera array, known as the Lytro Immerge, according to one embodiment.



FIG. 6 is an illustrative example of a tiled camera array including a plurality of discrete cameras, according to one embodiment, in which all cameras are of the same type and have the same resolution.



FIG. 7 is an illustrative example of a tiered camera array including two tiers of camera types, according to one embodiment.



FIG. 8 is an illustrative example of a tiered camera array including three tiers of camera types, according to one embodiment.



FIG. 9 is a plot depicting exemplary data for a calculated high confidence score for a patch of an environment captured in the light-field data, as viewed from a subview of the video data, according to one embodiment.



FIG. 10 is a plot depicting exemplary data for a calculated low confidence score for a patch of an environment captured in the light-field data, as viewed from a subview of the video data, according to one embodiment.



FIG. 11A shows an exemplary subview from a camera in an array light-field capture system, according to one embodiment.



FIG. 11B is a depth map generated from the viewpoint of the camera used to capture the image in FIG. 11A, according to one embodiment.



FIG. 12A is an exemplary projection of the color image shown in camera 11A, using the depth map shown in 11B and the capture system calibration data, to a virtual viewpoint, according to one embodiment.



FIG. 12B shows an exemplary subview from a camera in an array light-field capture system, according to one embodiment.



FIG. 13 shows an exemplary confidence map, projected identically to the image in FIG. 11A, according to one embodiment.



FIG. 14A shows the projected image from 12A, using the confidence data from 13 to assign a per-pixel influence value to use in image reconstruction, according to one embodiment.



FIG. 14B shows the projected image from another subview, according to one embodiment.



FIG. 15 shows a merged projected image, based on the color data shown in FIGS. 14A and 14B, according to one embodiment.





DETAILED DESCRIPTION

Multiple methods for capturing image and/or video data in a light-field volume and creating virtual views from such data are described. The described embodiments may provide for capturing continuous or nearly continuous light-field data from many or all directions facing away from the capture system, which may enable the generation of virtual views that are more accurate and/or allow viewers greater viewing freedom. In some embodiments, the viewer may move with six degrees of freedom while viewing the environment captured in the video data with virtual views rendered in real-time based on the position and orientation of the viewer's head.


Definitions


For purposes of the description provided herein, the following definitions are used:















Degrees of
The dimensions in which a user or viewer may


freedom
explore during playback. Six degrees of freedom



(or 6DOF) allow the user full angular viewing



freedom (yaw, pitch, roll) as well as spatial



viewing freedom (translation side-to-side, up and



down, and forward and backward)


Vantage
Precomputed virtual view that may or may not be



co-located with a physical camera.


Photometric
Measure of agreement between cameras, for example,


consistency
calculated by adjusting and comparing pixel



windows from different cameras. Adjustments may be



made taking into account the estimated world



properties, such as the 3D location of a patch of



the captured environment that appears in the



subview under consideration. The photometric



consistency may be based on agreement or



consistency between versions of the patch, as



viewed from different subviews. Various metrics



may be used, including calculation of the average



pixel error.


View-
Apparent changes in appearance of a point on an


dependent
object that are dependent on the position of the


lighting
observer. For example, surface reflections and



refractive objects may appear very different when



viewed from slightly different positions, based



on the viewpoint position relative to light



reflecting from or passing through the object.


Light-field
The four dimensional sample representing the


image
information carried by the ray bundles of light



depicting an environment. Each ray may be indexed



by a standard four-dimensional coordinate system.


Light-field
In this document, a light-field volume is the


volume
combination of all images captured into a single



data set. A light-field volume may be fully or



sparsely sampled.


Fully-sampled
A fully sampled light-field volume includes ray


light-field
data from all directions at any location within


volume
the volume. Within a fully-sampled light-field



volume, virtual views may be generated from any



point, facing any direction, with any



field-of-view. Further, the virtual views may be



generated without the need for estimated world



properties (for example, 3D scene information). In



general, camera arrays do not capture a fully



sampled light-field volume.


Sparsely
A light-field volume that is not fully sampled. In


sampled
general, capture systems may record image and/or


light-field
video data from a number of discrete viewpoints.


volume
The data captured at these discrete viewpoints may



be considered the sparse samples. Data may not be



recorded between the discrete viewpoints.



Virtual views may be generated from a sparsely



sampled light-field volume, but may require the



use of estimated world properties (for example,



3D scene information) to produce acceptable



results.


Capture
In this document, the term “capture system”


system
refers to any system usable for capturing a volume



for use in a virtual reality system. One example



of a capture system is an array of cameras used to



capture a light-field volume. A camera system is



one type of capture system. A light-field camera



is one type of camera system, and may be a



light-field camera such as a plenoptic light-field



camera or a tiled camera array (a “tiled camera



array”). A tiered camera array is one type of



tiled camera array.


Capture
The physical surface of the capture system that


surface
actively captures photons. The capture surface may



be considered to be approximately the surface



defined by the combined outward-facing surfaces of



all objective lenses of the camera system.


Camera
Measure of number of cameras per unit of area on


density
the capture surface.


Light-field
A device that can capture a light-field image.


camera


Capture
Calibration data for a multiview and/or multi-


system
camera capture system. The calibration data may


calibration
include, but is not limited to, camera intrinsic


data
calibration (focal length, undistortion



parameters, pixel size, etc.), camera extrinsic



calibration (camera position and orientation



relative to a reference coordinate system), and



traditional camera calibration data (for example,



black frame data, color conversion matrices,



lens vignetting correction values, etc.)


Plenoptic
A specific implementation of a light-field camera.


light-field
This is a microlens-based approach where a


camera
plenoptic microlens array is inserted in-between



the objective lens and the photosensor.


Plenoptic
A microlens array in a plenoptic camera that is


microlens
used to capture the directional information. Each


array
microlens in the array may create an image of the



aperture stop of the objective lens on the surface



of the sensor.


Disk image
A single image of the aperture stop, viewed



through a plenoptic microlens, and captured by a



region on the sensor surface.


Tiled camera
A specific implementation of a light-field camera.


array
This implementation contains an array of objective



lenses with overlapping fields-of-view and one or



more photosensors. Each viewpoint, with one



corresponding to each lens in the objective lens



array, in a tiled camera array is captured as a



separate image. A tiled camera array is one type



of multiview capture system.


Tiered camera
A tiled camera array including two or more types


array (or
of cameras, in which each type (or tier) may


“tiered array
capture images and/or video of a different


light-field
resolution.


camera”)


Ray, or
A “Ray bundle” refers to set of light rays


Ray bundle
recorded in aggregate by a single pixel in a



photosensor. The terms “ray” and “ray bundle”



may be used interchangeably.


Patch
A small, oriented surface in 3D space within an



environment captured in light-field data such as



light-field video data, used for multiview



photoconsistency calculations. These patches are



often (but need not be) rectangular, and in some



cases may correspond in size to approximately



3 × 3 or 5 × 5 pixel regions within a subview.


Reference
During some computations using multiview datasets,


camera
it may be pragmatic to perform calculations and/or



comparisons in a reference frame that is



consistent with the subview from a single camera.



This camera may be considered the reference camera



during the computation.


Entrance
In an optical system, the entrance pupil is the


pupil
optical image of the physical aperture stop, as



seen through the front of the lens system. The



geometric size, location, and angular acceptance



of the entrance pupil may determine the camera's



window of view into the world.


Subview
A subview is the view or image from an individual



view in a light-field camera. In a plenoptic



light-field camera, this is a subaperture image.



In a tiled camera array, this is the image created



by a single objective lens in the objective lens



array. In a tiled camera array with multiple



cameras with independent photosensors, a subview



is the image captured the sensor of an individual



photosensor.


Virtual view
A reconstructed view, typically for display in a



virtual reality (VR) or augmented reality (AR)



headset. The virtual view may be generated by



resampling and/or interpolating from the



light-field volume.


Virtual
An immersive viewing experience, typically


reality
delivered by a VR headset or other device.


(VR)


Augmented
An immersive viewing experience that includes a


reality
combination of virtual reality elements with


(AR)
real-world surroundings and objects, typically



delivered by an AR headset or other device.


Stereo
An extended form of virtual reality in which each


virtual
eye is shown a different view of the virtual


reality
world, enabling stereoscopic 3D perception.


Confidence
A numerical value, often in [0, 1], that may be



assigned to estimated world properties. A value at



or near 0 may indicate little or no confidence in



the accuracy of the estimate, while a value at or



near 1 indicates a high degree of confidence.


Influence
A numerical value, often in [0, 1], that may be



assigned to pixel data and/or ray samples. The



value may be used to weight the relative



contributions of the pixel data and/or ray samples



during image reconstruction at a virtual



viewpoint. A value at or near 0 may indicate that



the contribution should be very low, while a value



at or near 1 may indicate that the contribution



should be high. Notably, influence and confidence



are often tightly coupled, where the



influence may be calculated as a function of the



confidence and potentially other factors.


Hallucination
An algorithm that fills in voids or low-resolution


Algorithm
areas in an image, or in light-field data, with



color and/or other data based on those present in



surrounding areas.









In addition, for ease of nomenclature, the term “camera” is used herein to refer to an image capture device or other data acquisition device. Such a data acquisition device can be any device or system for acquiring, recording, measuring, estimating, determining and/or computing data representative of a scene, including but not limited to two-dimensional image data, three-dimensional image data, and/or light-field data. Such a data acquisition device may include optics, sensors, and image processing electronics for acquiring data representative of a scene, using techniques that are well known in the art. One skilled in the art will recognize that many types of data acquisition devices can be used in connection with the present disclosure, and that the disclosure is not limited to cameras. Thus, the use of the term “camera” herein is intended to be illustrative and exemplary, but should not be considered to limit the scope of the disclosure. Specifically, any use of such term herein should be considered to refer to any suitable device for acquiring image data.


In the following description, several techniques and methods for processing light-field images and/or video are described. One skilled in the art will recognize that these various techniques and methods can be performed on images and on video (generalized herein as “video data,” or in the light-field context, “light-field video data”). Further, the techniques and methods presented herein may be used in connection with a wide variety of camera types. Even though several examples utilize a tiered camera array, one of skill in the art will recognize how the described methods and techniques could be applied to a tiled camera array that is not a tiered camera array, or to a plenoptic light-field camera.


Problem Description


In order to create the highest image quality possible, particularly for VR or AR experiences with six degrees of freedom, it may be desirable to capture a fully sampled light-field volume. With a fully sampled light-field volume dataset, virtual views may be computed directly from the ray samples, and may not require additional information (for example, estimated world properties like 3D scene information). However, capturing a fully sampled light-field volume of sufficient size and resolution to generate a desirable virtual reality experience may be highly impractical or even impossible.


Due to practical considerations, existing solutions for capturing light-field volume video data are limited to capturing sparsely sampled light-field volumes. In general, existing systems employ a plurality of discrete cameras, each of which captures a subview. For example, FIG. 5 is an example of an existing tiled camera array 500, known as the Lytro Immerge, according to one embodiment. The Lytro Immerge has a large number of identical cameras 510 laid out approximately in a planar hexagonal lattice.


In order to use a sparsely sampled light-field volume to reconstruct arbitrary virtual views (for example, virtual views at locations and/or locations within the light-field volume that are determined by the location and/or orientation of the viewer's head), estimated world properties may be required. World properties may include aspects of the 3D environment captured in the light-field video, which may include but are not limited to the geometry and/or properties (such as reflectance, specularity, and/or translucency of the objects) of objects appearing in the video data.


Further, the required accuracy and/or complexity of the estimated world properties may be inversely related to the density of the cameras in the capture system. For example, reconstructing a virtual view based on a center of perspective that is one centimeter from a subview may be significantly easier and have significantly lower error than reconstructing the same virtual view from a subview that is ten centimeters away. In many cases, the projection error (measured in pixel displacement) may increase approximately linearly with the distance between the center of perspective of the virtual view and the center of perspective of the subview, given the same error in the estimated world properties.


As a result, it may be desirable to space cameras as closely as possible in the capture system, and thus reduce the amount of interpolation that is required. However, increasing density can increase system requirements, costs, storage, processing, heat management, and/or the like. Furthermore, there is a physical limit to how closely cameras may be spaced.


Overview



FIG. 1 is a flow diagram depicting a method 100 from image and/or video capture to virtual view reconstruction, according to one embodiment. The method 100 may start 110 with a step 120 in which video data is captured with a light-field camera system. In some embodiments, the video data may be captured with a tiered camera array with two or more different tiers of cameras that differ in resolution and/or density of arrangement, as will be shown and described subsequently. In alternative embodiments, a different light-field camera, such as a tiled camera array with only one camera type (i.e., a non-tiered camera array) or a plenoptic camera system may be used.


In a step 130, world properties may be estimated. The world properties may be estimated via analysis of the light-field video and/or other information, such as camera parameters and/or information about the scene from other sources. In some examples, other sensors such as LiDAR sensors may be used to provide geometry information regarding the environment captured in the video data. Such additional information may facilitate estimation of the world properties. In the alternative to or in addition to the foregoing, any techniques known in the art for estimating world properties for an environment captured in light-field or conventional video data may be used.


In a step 140, a confidence level in the estimated world properties ascertained in the step 130 may be calculated. The confidence level may represent the level of confidence that the estimated world properties are accurate. The confidence level may be expressed in many ways; according to one example, the confidence level may be numeric and may range from 0 to 1, with 0 representing low or no confidence, and 1 representing complete confidence.


In a step 150, a confidence map and/or an influence map may be generated for each of one or more of the subviews. A confidence map may be based on the world properties, as viewed from the subview, and may indicate a confidence level in the estimated world properties for objects visible in each region of the subview. A “region” may represent a ray bundle received in the photosensor of the camera system, and may have any size; in some embodiments, a region may be a single pixel; in other embodiments, each region may be 3×3 pixels square, 5×5 pixels square, or the like. In some embodiments, the confidence map may be a grayscale image, with light areas representing high confidence regions and darker areas representing low confidence regions.


In addition to or in the alternative to generation of a confidence map, an influence map may be generated in the step 150. The influence map may, for example, be a grayscale image indicative how much influence each region should have over the virtual view to be rendered. For example, lighter shades may be used for regions that are to have a high level of influence on the virtual view, while darker shades may be used for less influential regions. Like the confidence map, the influence map may be based, at least in part, on the confidence levels ascertained in the step 140.


In a step 160, one or more virtual views may be generated through the use of the subviews, the estimated world properties, and/or the confidence levels associated with each ray bundle. The estimated world properties may be used to enhance the quality of extrapolation between subviews as described above. The confidence levels may be used to further enhance the quality of virtual views generated by effectively determining which subview(s) should be used to render each region of the virtual view.


For regions of different subviews that have the same or similar confidence levels, the region with the higher resolution may preferentially be used to render the corresponding region of the virtual view. Regions with high confidence levels may be prioritized over regions with lower confidence levels for rendering the corresponding region of the virtual view.


In one embodiment, where the video data is captured with a tiered camera array, during creation of virtual views (for example, using an approach like depth image based rendering), ray data from the highest resolution cameras may preferentially be used, as long as the associated confidence and/or influence values are sufficiently high. In regions of the virtual view where insufficient information from the high resolution cameras may be available (for example, due to low confidence in the estimated world properties and/or occlusions in the originally captured data), ray bundle data from the lower resolution camera(s) may be used.


Once all desired virtual views have been rendered, the method 100 may end 190. This may represent the end of the VR or AR experience.



FIG. 2 is a block diagram processing flow, depicting a method 200 from image and/or video capture to virtual view reconstruction, according to another embodiment. The method 200 may start 210 with the step 120 in which video data is captured as in the method 100. Then, in a step 220, depth maps may be generated.


A depth map may be a grayscale image depicting the estimated depth of objects in the captured environment, from the camera that captured the corresponding subview. As in estimation of the world properties, depth maps may be generated via analysis of the video data and/or use of other data, such as known locations of objects within the environment and/or sensor data from other sensors such as LiDAR sensors.


Pursuant to the step 220, depth maps may be directly calculated for each of one or more subviews. Then, in the step 150, a confidence and/or influence map may be generated for each subview. As in the method 100, the confidence and/or influence map generated in the step 150 may be indicative of the confidence level in world properties such as the depth information contained in the depth maps estimated in the step 220. In the step 160, the virtual views may be generated using the captured image and/or video data, the estimated world properties, and the confidence/influence data associated with each captured ray bundle, as in the method 100. The method 200 may then end 190.


Tiled Camera Arrays


In some embodiments, the step 120 may be carried out with a tiled camera array. A tiled camera array is one type of light-field camera, which operates based on the use of multiple objective lenses, rather than a single objective lens with a microlens array, as in a plenoptic light-field camera.



FIGS. 3A and 3B depict an illustrative tiled camera array 300, as viewed from the front and the side, respectively, according to one embodiment. The tiled camera array 300 may have cameras 310 that are arranged in a hexagonal lattice on a planar surface 320 with overlapping fields-of-view 330.



FIG. 4 depicts an illustrative tiled camera array 400, as viewed from above, according to another embodiment, with cameras 410 arranged on a convex surface 420. The fields-of-view 430 of the cameras 410 overlap, but are oriented differently from each other to provide a more wide-angled combined field-of-view. FIG. 5 depicts the Lytro Immerge, as described above, which may be a tiled camera array of the type depicted in FIGS. 3A and 3B.


Tiered Camera Array


In some embodiments, the capture system used to carry out the step 120 is a tiled camera array that includes two or more tiers of camera types, and may thus be a tiered camera array. The cameras of each type may capture images and/or video at different resolutions. In some embodiments, the tiers may include a sparse set of cameras with high quality and resolution, and a more densely packed set of cameras with significantly lower resolution. Comparative examples will be shown and described below.



FIG. 6 is an illustrative example of a tiled camera array 600 including a plurality of discrete cameras 610, according to one embodiment, in which all cameras are of the same type and have the same resolution. The tiled camera array 600 may have, for example, thirteen high resolution cameras, each of which captures images with 4000×4000 pixels, covering a capture surface 620 with an area of A m2 (for example, if the spacing between cameras is 0.2 m2, A is approximately 0.25 m2). Each camera may have a field-of-view equal to F degrees (for example, 90 degrees). The total resolution is 208 MP.



FIG. 7 is an illustrative example of a tiered camera array 700 including two tiers of camera types, according to one embodiment. The cameras 610 of Tier 1 may have relatively higher resolution and lower density than the cameras 710 of Tier 2. As shown, the cameras 610 may be arranged in a hexagonal lattice, and the cameras 710 may also be arranged in a hexagonal lattice with voids that accommodate the cameras 610.


Specifically, the tiered camera array 700 may include five high resolution (Tier 1) cameras 610, each of which has a resolution of 4000×4000 pixels, and thirty-four lower resolution (Tier 2) cameras 710, each of which has a resolution of 1000×1000 pixels. The cameras 610 and the cameras 710 may cooperate to cover a capture surface 720 with an area of A m2 (for example, the same area as covered in 600). Each of the cameras 610 and the cameras 710 may have a field-of-view equal to F degrees (for example, 90 degrees). The total resolution is 114 MP, and camera density is quadrupled relative to the configuration of FIG. 6, as depicted in FIG. 7.



FIG. 8 is an illustrative example of a tiered camera array 800 including three tiers of camera types, according to one embodiment. The cameras 610 of Tier 1 may have relatively higher resolution and lower density than the cameras 710 of Tier 2, which may have relatively higher resolution and lower density than the cameras 810 of Tier 3. As shown, the cameras 610 may be arranged in a hexagonal lattice, and the cameras 710 may also be arranged in a hexagonal lattice with voids that accommodate the cameras 610. The cameras 810 may be arranged in a hexagonal lattice with voids that accommodate the cameras 710 and the cameras 610.


Specifically, the tiered camera array 800 may have five high-resolution cameras 610 (Tier 1), each of which has a resolution of 4000×4000 pixels, ten lower resolution cameras 710 (Tier 2), each of which has a resolution of 1000×1000 pixels, and 118 very low resolution cameras 810 (Tier 3), each of which has a resolution of 500×500 pixels. The cameras 610, the cameras 710, and the cameras 810 may cooperate to cover a capture surface 820 with an area of A meters sq. Each of the cameras 610, the cameras 710, and the cameras 810 may have a field-of-view equal to F degrees. The total resolution is 119.5 MP, and camera density is raised by a factor of 16 relative to the configuration of FIG. 6, as depicted in FIG. 8.


In the exemplary tiered camera arrays 700 and 800 shown in FIGS. 7 and 8, respectively, the camera density is significantly higher while the aggregate pixel count is significantly lower when compared to the tiled camera array 600 shown in FIG. 6. Thus, the tiered camera arrays 700 and 800 may serve to reduce computation, storage, and data transmission requirements while enhancing the accuracy of interpolations needed to render virtual views. The presence of the high-resolution cameras 610 may enable the virtual views to also have high resolution, at least in regions where confidence in the world properties is relatively high.


Notably, the term “resolution” in cameras may often be used to describe the pixel count of the captured images. When comparing cameras with similar or identical fields-of-view, the pixel count may be adequate information to determine which camera may better resolve a specific object. However, in the case that the fields-of-view of the cameras are not comparable, pixel count may not be the most important factor. In this disclosure, resolution may be considered to correspond with the angular field-of-view covered by single pixel in a camera. For example, a camera that contains a field-of-view of 50° and a 100×100 pixel array may be considered to have approximately double the resolution of a camera that contains a field-of-view of 100° and the same 100×100 pixel array.


Notably, all the examples of tiered camera arrays described above contain cameras arranged in a regular pattern (for example, a hexagonal lattice). However, such an arrangement is merely illustrative, and any camera layout, including irregular patterns, may be used.


In various embodiments, other configurations can be used. By providing tiers of cameras of different resolutions, high camera densities can be achieved while potentially decreasing overall pixel counts.


Resource usage can scale differently depending on pixel count. Storage and bandwidth may generally scale linearly with pixel counts. Data processing requirements may scale according to a more complicated relationship; however, in general, more pixels increases processing time and complexity. In addition, costs for higher resolution cameras may be dramatically higher than costs for low resolution cameras. Accordingly, the techniques described herein can significantly decrease capital and/or operating costs involved in manufacturing and/or using the capture system.


Estimation of World Properties


Pursuant to the step 130 and/or the step 220, various aspects of the world may be estimated, some better than others. In at least one embodiment, the system estimates any or all of the following world properties, in any suitable combination:

    • The 3D shapes and/or positions of objects appearing in the video data. Estimation of such geometric information is related to depth estimation and disparity estimation. See, for example, Furukawa et al., “Accurate, Dense and Robust Multi-View Stereopsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 32, Issue: 8, August 2010) for one method of estimating 3D properties from many camera views.
    • Surface reflectance for objects appearing in the video data. See, for example, Yoon et al., “Joint Estimation of Shape and Reflectance using Multiple Images with Known Illumination Conditions”, International Journal of Computer Vision, Springer Verlag, 2010, 86 (2-3), pp. 192-210.
    • Semi-reflective elements (like glass windows) of objects appearing in the video data. See, for example, Xue et al., “A Computational Approach for Obstruction-Free Photography”, available at https://sites.google.com/site/obstructionfreephotography/
    • Other properties of objects appearing in the video data, such as translucency, index of refraction, and/or the like.
    • Volumetric effects appearing in the video data, such as smoke, fire, and/or the like.
    • Integration of estimated world properties from other sources. For example, such other sources may include LiDAR sensors, structured light sensors, and/or 3D models of the scene.


In some embodiments, in the step 130 and/or the step 220, depth maps are estimated for all subviews. See, for example, the Middlebury Multi-View Stereo benchmark (http://vision.middlebury.edu/mview/), a dataset and benchmark that evaluates a variety of methods and contains numerous publications and sets of sample code.


Evaluation of Confidence in World Estimates


In at least one embodiment, the system creates a world model and then, pursuant to the step 140, based on the world model, makes a determination as to a quality metric and/or confidence value of interpolations based on that world model. The quality metric and/or confidence value may later be used to decide which ray bundle data to use in rendering virtual views.


In at least one embodiment, when world properties are estimated, the estimated properties also include an error metric and/or confidence value corresponding to the estimated property. For example, such an error metric may be a measure of the photometric consistency of an estimated 3D patch in the world. If all the subviews in which the patch appears have a high degree of agreement regarding the characteristics of the patch, relative to other possibilities, there may be high confidence in the accuracy of the estimate. If the characteristics of the patch differ significantly between the subviews, as may occur with many visually complex objects and instances in which the world estimate is incorrect, then the confidence value may be low.


In at least one embodiment, the confidence value of a patch may be calculated by comparing the photometric consistency cost with the estimated properties (for example, the 3D location and orientation of the patch) against other possible positions and/or orientations. In one embodiment, the set of possible positions for a patch of pixels may be generated by sampling along the ray bundles corresponding to the pixels in the patch from the perspective of a reference camera. Each pixel in the patch contains light from a specific direction relative to the camera, which may be specified by a geometric ray equation. The patch locations may be generated by sampling at different distances along the ray from the reference camera origin. In one embodiment, a confidence score is computed that is a relative comparison of the photometric consistency cost at the estimated location relative to the lowest local cost minima of the other considered locations, as follows:

confidence=(other_minima-photo_cost)/other_minima


In the case where the current cost is the lowest for the patch of the considered possibilities, the patch location may be considered to be the estimated 3D position. Confidence scores may have a value between 0 and 1, where 1 may represent high confidence. Other value scales for confidence may be used.



FIG. 9 is a plot 900 depicting exemplary data for a calculated high confidence score for a patch of an environment captured in the light-field data, as viewed from a subview of the video data, according to one embodiment. The plot 900 displays photometric consistency costs on the vertical axis 910 and distance on the horizontal axis 920. Each dot 930 marks the photometric consistency score for a possible distance (and hence location) of the patch. The global minimum 940 of a plurality of candidate locations is marked; this may represent the position used as an estimate of the 3D location of the patch. The second minimum 950 is also marked. When values are entered into the equation above, a confidence score near 1 may be produced.


In contrast, FIG. 10 is a plot 1000 depicting exemplary data for a calculated low confidence score for a patch of an environment captured in the light-field data, as viewed from a subview of the video data, according to one embodiment. A global minimum 1040 and second minimum 1050 are marked, and the confidence score in this case would be near 0. Low confidence values may be generated when photometric consistency metrics have difficulty determining the proper location of the patch (for example, due to low contrast surfaces or view-dependent lighting).


Notably, for clarity, FIGS. 9 and 10 depict graphs in 2 dimensions, including distance and cost. In many instances, the dimensionality of the data considered in the confidence calculation may be higher (including, for example, distance, orientation, and cost), but the method may remain substantially the same.


In at least one embodiment, one measure of quality and/or confidence is photometric consistency, as described in Furukawa et al., “Accurate, Dense and Robust Multi-View Stereopsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 32, Issue: 8, August 2010). Patches having higher photometric consistency can be considered to have higher quality and/or confidence value.


In at least one embodiment, once a model has been generated, the system evaluates the quality of the model. Quality/confidence evaluation may additionally or alternatively be performed during model estimation.


In at least one embodiment, the following algorithm can be used for evaluating quality and/or confidence in a model, by projecting the color data from one subview onto another using the estimated world properties and then comparing the color values in projected virtual view to the capture subview:

    • Start with the image_GROUNDTRUTH from a reference camera, camera_REFERENCE. This is a subview from a camera at a particular location and orientation, and is treated as “ground truth” for the following comparison.
    • Then, for other cameras with overlapping fields-of-view:
    • Perform image-based rendering, using the estimated world properties, to virtually render the data from the other camera, camera_OTHER as viewed from camera_REFERENCE
      • image_RENDER=render(image_OTHER, worldProperties, transform_REFERENCE_from_OTHER)
      • transform_REFERENCE_from_OTHER maps the pose and camera properties of one camera to another. This can be calculated, for example, as part of system calibration or determined via known methods like “bundle adjustment,” and may be part of the capture system calibration data.
      • The “render” function may be identical or substantially identical to the render function used for interpolation in the system during playback. Any known mechanism for 3D rendering can be used to cover the basic case where world estimation is limited to 3D properties.
    • Compare pixels between image_GROUNDTRUTH and image_RENDER. Confidence/quality is proportional to the similarity of pixel values in areas of overlap.
      • Some areas may not have overlap, due to mismatched field-of-view and/or occluding objects. No confidence values are generated for those regions.
    • In at least one embodiment, confidence/quality is tracked back to the estimated world properties and accumulated from numerous comparisons. For example, for an estimated 3D model, each atomic unit of the model (such as a point, triangle in a mesh, or the like) can receive a confidence/quality score.


Examples are shown in FIGS. 11A to 13. FIG. 11A shows an exemplary subview 1100 from a camera in an array light-field capture system, according to one embodiment. Relative to the description above, the subview 1100 in FIG. 11A may be considered from camera_OTHER.



FIG. 11B is a depth map 1150 generated from the viewpoint of the camera used to capture the image in FIG. 11A, according to one embodiment. In the visual representation, darker colors represent nearer distances, while lighter colors represent further distances. Notably, the depth map may be considered a specific instance of estimated world properties that contains 3D positional estimates for individual ray bundles. Accordingly, FIG. 11B may be a visual representation of a depth map generated from the viewpoint of camera_OTHER.



FIG. 12A is an exemplary projection 1200 of the color image shown in FIG. 11A, using the depth map shown in FIG. 11B and the capture system calibration data, to a virtual viewpoint, according to one embodiment. Notably, there are clearly visible errors in the projection of the head a shoulders area. Accordingly, FIG. 12A may be an exemplary image_RENDER, and may be the result of rendering the subview from camera_OTHER, based on the transform_REFERENCE_from_OTHER and the estimated world properties (in this case, the depth map).



FIG. 12B shows an exemplary subview 1250 from a camera in an array light-field capture system, according to one embodiment. The location of this subview may be nearly identical with the virtual viewpoint used to compute FIG. 12A. Accordingly, FIG. 12B may contain the subview from camera REFERENCE, and may be an example of image_GROUNDTRUTH. Notably, if image_RENDER and image_GROUNDTRUTH are compared, some areas may match very well, while some areas may match very poorly.



FIG. 13 shows an exemplary confidence map 1300, projected identically to the image in FIG. 11A, according to one embodiment. Accordingly, FIG. 13 may contain the confidence map generated by comparing image_RENDER to image_GROUNDTRUTH. White areas represent high confidence values, while dark areas represent low confidence values.


Notably, the examples provided above use only two cameras for clarity. In practice, every camera may be compared against a plurality of other cameras. The final confidence and/or quality scores may be computed as any function of all the inputs (for example, the minimum, mean, or median values may be used).


Virtual View Generation


Pursuant to the step 160, virtual views may be generated (i.e., “reconstructed”) in various ways. In at least one embodiment, virtual camera images may be generated using depth image based rendering (DIBR). In this approach, virtual views may be reconstructed at any virtual camera position and/or orientation within the light-field volume. Color image data from the subviews may be warped and/or projected into the virtual camera view using the estimated world properties (for example, including depth), and the capture system calibration data.


In at least one embodiment, where a tiered camera array is used, generation of the virtual view may proceed with reference to the confidence value for each ray bundle. For example, for each ray bundle in the high quality camera set (i.e., a pixel value from a single capture camera), if the confidence value is high (i.e., estimated world properties associated with that ray are of high quality and/or confidence), then the system may use the ray bundle with a high influence value. Conversely, if the confidence value is low, either the ray is not used, or it is assigned a low influence value. For example, ray influence may be assigned in the following manner to the high quality camera set:

    • if (confidence>High_C)
      • influence=1
    • else if (confidence>Low_C
      • influence=(confidence-Low_C)/(High_C-Low_C)
    • else
      • in-Fluence=θ


In one embodiment, High_C may be equal to 0.5 and Low_C may be equal to 0.3. Of course, this assignment of influence is exemplary, and many other assignment functions may be used.


In at least one embodiment, depth image based rendering may be performed using the data corresponding to the Tier 1 cameras. The reconstruction may be performed according to any existing methods, and may further include the influence channel in the reconstructed image. In one embodiment, the output may be a four-channel image with red, green, blue, and influence. Further, depth image based rendering may be separately performed on the other tiers of cameras.


The reconstructed images may then be combined by treating the influence channel as a typical alpha channel, and successively performing the SRC_OVER operation, where the lowest tier camera data may be considered the source. After combination, if any pixels remain with influence values below 1, the system may fill those pixels with data from the highest tier reconstructed image (lowest resolution), using any existing hallucination or fill algorithm, or any other approach.


For example, as mentioned previously, FIG. 12A is an exemplary projection 1200 of the color image shown in FIG. 11A, using the depth map shown in FIG. 11B and the capture system calibration data, to a virtual viewpoint. Notably, there are clearly visible errors in the projection of the head a shoulders area. FIG. 13 shows an exemplary confidence map 1300, projected identically to the exemplary projection 1200 in FIG. 12A. For the purposes of this example, FIG. 13 may also represent the influence map where the influence of a region of a subview is directly proportional to the confidence level in the associated world properties. In some embodiments, this may not be the case, as influence may have a nonlinear relationship with confidence; thus, the influence map may be based on the confidence map, but may not have the same appearance.



FIG. 14A shows the projected image 1400 from FIG. 12A, using the confidence data from FIG. 13 to assign a per-pixel influence value to use in image reconstruction, according to one embodiment. For exemplary purposes, the color values have been pre-multiplied by the influence values to illustrate which data may be used and which may be ignored as part of image reconstruction.



FIG. 14B shows the projected image 1450 from another subview, according to one embodiment. This subview may be a camera from a tier consisting of relatively lower resolution and higher density (for example, a Tier 2 or Tier 3 camera in the exemplary camera systems of FIGS. 7 and 8). The projection, compared to FIG. 12A, is of significantly lower resolution, but also contains significantly less projection error.



FIG. 15 shows a merged projected image 1500, based on the color data shown in FIGS. 14A and 14B, according to one embodiment. The color data from FIG. 14A has been preferentially selected, using color data from FIG. 14B to fill in regions of that are missing information and/or have information with low confidence (due to low confidence and/or occlusion). The color data shown in FIGS. 14A and 14B may be combined using the SRC_OVER operation, where FIG. 14A is the SRC image, FIG. 13 represents the source alpha channel, and FIG. 12B is the DST image. Notably, while this example uses only two subviews from two tiers for clarity, the approach may be used on an arbitrary number of subviews from an arbitrary number of tiers.


In at least one embodiment, during reconstruction, the system uses rays requiring the least interpolation (which will generally be from lower quality but more densely packed cameras) to fill in areas of the virtual view with low confidence/high error in the estimated world properties. In at least one embodiment, a tiered approach may be used, in which more than two types of camera are used. Using such an approach, high confidence is associated with highest resolution, midconfidence is associated with mid-level resolution, and low or no confidence is associated with low resolution. Additional tiers may also be provided, if appropriate.


In at least one embodiment, the system blends regions of low confidence with those of high confidence, so as not to introduce undesirable artifacts. For example, small amounts of local filtering and/or blending can be used in the final rendering of images. As a specific example, a five-pixel blending zone may be used to smooth the change from one resolution level to another.


Using the above-described techniques, most areas of the scene may be fully reconstructed from the high resolution data with excellent results. Difficult areas, like specular reflections, transparent objects, and textureless surfaces, may be reconstructed generally using the lower resolution data. While the captured resolution is lower, the overall quality in those regions may be significantly higher because minimal (incorrect) interpolation is performed.


The above description and referenced drawings set forth particular details with respect to possible embodiments. Those of skill in the art will appreciate that the techniques described herein may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the techniques described herein may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.


Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some embodiments may include a system or a method for performing the above-described techniques, either singly or in any combination. Other embodiments may include a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.


Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of described herein can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.


Some embodiments relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), and/or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the techniques set forth herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the techniques described herein, and any references above to specific languages are provided for illustrative purposes only.


Accordingly, in various embodiments, the techniques described herein can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the techniques described herein include: a mobile phone, personal digital assistant, smartphone, kiosk, server computer, enterprise computing device, desktop computer, laptop computer, tablet computer, consumer electronic device, television, set-top box, or the like. An electronic device for implementing the techniques described herein may use any operating system such as, for example: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.


In various embodiments, the techniques described herein can be implemented in a distributed processing environment, networked computing environment, or web-based computing environment. Elements can be implemented on client computing devices, servers, routers, and/or other network or non-network components. In some embodiments, the techniques described herein are implemented using a client/server architecture, wherein some components are implemented on one or more client computing devices and other components are implemented on one or more servers. In one embodiment, in the course of implementing the techniques of the present disclosure, client(s) request content from server(s), and server(s) return content in response to the requests. A browser may be installed at the client computing device for enabling such requests and responses, and for providing a user interface by which the user can initiate and control such interactions and view the presented content.


Any or all of the network components for implementing the described technology may, in some embodiments, be communicatively coupled with one another using any suitable electronic network, whether wired or wireless or any combination thereof, and using any suitable protocols for enabling such communication. One example of such a network is the Internet, although the techniques described herein can be implemented using other networks as well.


While a limited number of embodiments has been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the claims. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting.

Claims
  • 1. A method for generating a virtual view of an environment, the method comprising: with a light-field camera system, capturing video data depicting the environment, the video data comprising a plurality of subviews that provide a plurality of views of the environment;computing estimated world properties of the environment;for each of the subviews, generating a confidence map indicative of a level of confidence in the estimated world properties of each of a plurality of regions within the subview, wherein generating the confidence map comprises generating a tertiary confidence map for a tertiary subview; andusing the subviews and the confidence maps to generate the virtual view, wherein using the subviews and the confidence maps comprises selecting, for inclusion in the virtual view, one or more regions of the tertiary subview having higher confidence in the tertiary confidence map than corresponding regions of a secondary confidence map.
  • 2. The method of claim 1, wherein computing the estimated world properties comprises ascertaining one or more shapes of one or more objects appearing in the environment.
  • 3. The method of claim 2, wherein computing the estimated world properties further comprises, for each of the subviews, generating a depth map indicative of distance between one or more objects appearing in the subview, and the one of a plurality of cameras of the light-field cameras system, to which the subview pertains.
  • 4. The method of claim 1, wherein computing the estimated world properties comprises ascertaining a reflectance of at least part of one or more objects appearing in the environment.
  • 5. The method of claim 1, wherein computing the estimated world properties comprises ascertaining a specularity of at least part of one or more objects appearing in the environment.
  • 6. The method of claim 1, wherein computing the estimated world properties comprises ascertaining at least one of a translucency of at least part of one or more objects appearing in the environment.
  • 7. The method of claim 1, further comprising, for each of the subviews, prior to generating the confidence map, calculating a confidence level for each of the plurality of regions of the subview.
  • 8. The method of claim 7, wherein calculating the confidence level for each of the plurality of regions comprises, for each region, comparing a first subset of the video data corresponding to the region with one or more other subsets of the video data from other subviews that depict a portion of the environment similar to that depicted in the region.
  • 9. The method of claim 1, wherein: the light-field camera system comprises a tiled camera array comprising a plurality of cameras; andcapturing the video data comprises capturing one of the subviews with each of the cameras.
  • 10. The method of claim 9, wherein: generating the confidence map for each of the plurality of subviews comprises:generating a primary confidence map for a primary subview of the plurality of subviews; andgenerating the secondary confidence map for a secondary subview of the plurality of subviews; andusing the confidence maps and the subviews to generate the virtual view comprises: selecting, for inclusion in the virtual view, one or more regions of the primary subview having high confidence in the primary confidence map; andselecting, for inclusion in the virtual view, one or more regions of the secondary subview having higher confidence in the secondary confidence map than corresponding regions of the primary confidence map.
  • 11. The method of claim 10, wherein: the plurality of cameras comprises: a first plurality of cameras, each of which has a first resolution; anda second plurality of cameras, each of which has a second resolution lower than the first resolution; andcapturing the video data comprises: capturing the primary subview with one of the first plurality of cameras; andcapturing the secondary subview with one of the second plurality of cameras.
  • 12. The method of claim 11, wherein: the plurality of cameras further comprises a third plurality of cameras, each of which has a third resolution lower than the second resolution;capturing the video data comprises capturing the tertiary subview with one of the third plurality of cameras.
  • 13. A non-transitory computer-readable medium for generating a virtual view of an environment, the non-transitory computer-readable medium comprising instructions stored thereon, that when executed by a processor, perform the steps of: receiving video data depicting the environment after capture of the video data by a light-field camera system, the video data comprising a plurality of subviews that provide a plurality of views of the environment;computing estimated world properties of the environment;for each of the subviews, generating a confidence map indicative of a level of confidence in the estimated world properties of each of a plurality of regions within the subview, wherein generating the confidence map comprises generating a tertiary confidence map for a tertiary subview; andusing the subviews and the confidence maps to generate the virtual view, wherein using the subviews and the confidence maps comprises selecting, for inclusion in the virtual view, one or more regions of the tertiary subview having higher confidence in the tertiary confidence map than corresponding regions of a secondary confidence map.
  • 14. The non-transitory computer-readable medium of claim 13, wherein computing the estimated world properties comprises ascertaining one or more shapes of one or more objects appearing in the environment.
  • 15. The non-transitory computer-readable medium of claim 13, wherein computing the estimated world properties further comprises, for each of the subviews, generating a depth map indicative of distance between one or more objects appearing in the subview, and the one of a plurality of cameras of the light-field camera system, to which the subview pertains.
  • 16. The non-transitory computer-readable medium of claim 13, wherein computing the estimated world properties comprises at least one of: ascertaining a reflectance of at least part of one or more objects appearing in the environment;ascertaining a specularity of at least part of one or more objects appearing in the environment; andascertaining at least one of a translucency of at least part of one or more objects appearing in the environment.
  • 17. The non-transitory computer-readable medium of claim 13, further comprising instructions stored thereon, that when executed by a processor, for each of the subviews, prior to generating the confidence map, calculate a confidence level for each of the plurality of regions of the subview by, for each region, comparing a first subset of the video data corresponding to the region with one or more other subsets of the video data from other subviews that depict a portion of the environment similar to that depicted in the region.
  • 18. The non-transitory computer-readable medium of claim 13, wherein: the light-field camera system comprises a tiled camera array comprising a plurality of cameras; andthe non-transitory computer-readable medium further comprises instructions stored thereon, that when executed by a processor, cause the light-field camera system to capture the video data by capturing one of the subviews with each of the cameras.
  • 19. The non-transitory computer-readable medium of claim 18, wherein: generating the confidence map for each of the plurality of subviews comprises: generating a primary confidence map for a primary subview of the plurality of subviews; andgenerating the secondary confidence map for a secondary subview of the plurality of subviews; andusing the confidence maps and the subviews to generate the virtual view comprises: selecting, for inclusion in the virtual view, one or more regions of the primary subview having high confidence in the primary confidence map; andselecting, for inclusion in the virtual view, one or more regions of the secondary subview having higher confidence in the secondary confidence map than corresponding regions of the primary confidence map.
  • 20. The non-transitory computer-readable medium of claim 19, wherein: the plurality of cameras comprises: a first plurality of cameras, each of which has a first resolution; anda second plurality of cameras, each of which has a second resolution lower than the first resolution; andcapturing the video data comprises: capturing the primary subview with one of the first plurality of cameras; andcapturing the secondary subview with one of the second plurality of cameras.
  • 21. The non-transitory computer-readable medium of claim 20, wherein: the plurality of cameras further comprises a third plurality of cameras, each of which has a third resolution lower than the second resolution;capturing the video data comprises capturing the tertiary subview with one of the third plurality of cameras.
  • 22. A system for generating a virtual view of an environment, the system comprising: a light-field camera system configured to capture video data depicting the environment, the video data comprising a plurality of subviews that provide a plurality of views of the environment; anda processor configured to: compute estimated world properties of the environment;for each of the subviews, generate a confidence map indicative of a level of confidence in the estimated world properties of each of a plurality of regions within the subview, wherein the processor is further configured to generate the confidence map for each of the plurality of subviews by generating a tertiary confidence map for a tertiary subview;use the subviews and the confidence maps to generate the virtual view, wherein the processor is further configured to use the confidence maps and the subviews to generate the virtual view by selecting, for inclusion in the virtual view, one or more regions of the tertiary subview having higher confidence in the tertiary confidence map than corresponding regions of a secondary confidence map.
  • 23. The system of claim 22, wherein the processor is further configured to compute the estimated world properties by ascertaining one or more shapes of one or more objects appearing in the environment.
  • 24. The system of claim 23, wherein the processor is further configured to compute the estimated world properties by, for each of the subviews, generating a depth map indicative of distance between one or more objects appearing in the subview, and the one of a plurality of cameras of the light-field camera system, to which the subview pertains.
  • 25. The system of claim 22, wherein the processor is further configured to compute the estimated world properties by performing at least one of: ascertaining a reflectance of at least part of one or more objects appearing in the environment;ascertaining a specularity of at least part of one or more objects appearing in the environment; andascertaining at least one of a translucency of at least part of one or more objects appearing in the environment.
  • 26. The system of claim 22, wherein the processor is further configured, for each of the subviews, prior to generating the confidence map, to calculate a confidence level for each of the plurality of regions of the subview by, for each region, comparing a first subset of the video data corresponding to the region with one or more other subsets of the video data from other subviews that depict a portion of the environment similar to that depicted in the region.
  • 27. The system of claim 22, wherein: the light-field camera system comprises a tiled camera array comprising a plurality of cameras; andthe light-field camera system is configured to capture the video data by capturing one of the subviews with each of the cameras.
  • 28. The system of claim 27, wherein: the processor is further configured to generate the confidence map for each of the plurality of subviews by: generating a primary confidence map for a primary subview of the plurality of subviews; andgenerating the secondary confidence map for a secondary subview of the plurality of subviews; andthe processor is further configured to use the confidence maps and the subviews to generate the virtual view by: selecting, for inclusion in the virtual view, one or more regions of the primary subview having high confidence in the primary confidence map; andselecting, for inclusion in the virtual view, one or more regions of the secondary subview having higher confidence in the secondary confidence map than corresponding regions of the primary confidence map.
  • 29. The system of claim 28, wherein: the plurality of cameras comprises: a first plurality of cameras, each of which has a first resolution; anda second plurality of cameras, each of which has a second resolution lower than the first resolution; andthe light-field camera system is further configured to capture the video data by: capturing the primary subview with one of the first plurality of cameras; andcapturing the secondary subview with one of the second plurality of cameras.
  • 30. The system of claim 29, wherein: the plurality of cameras further comprises a third plurality of cameras, each of which has a third resolution lower than the second resolution;the light-field camera system is further configured to capture the video data by capturing the tertiary subview with one of the third plurality of cameras.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application Ser. No. 62/333,637 for “Image Capture for Virtual Reality Displays”, filed May 9, 2016, the disclosure of which is incorporated herein by reference in its entirety. The present application also claims priority as a continuation-in-part of U.S. patent application Ser. No. 15/084,326 for “Capturing Light-Field Volume Images and Video Data Using Tiled Light-Field Cameras”, filed Mar. 29, 2016, the disclosure of which is incorporate herein by reference in its entirety. U.S. patent application Ser. No. 15/084,326 claims the benefit of U.S. Provisional Application Ser. No. 62/148,055 for “Light Guided Image Plane Tiled Arrays with Dense Fiber Optic Bundles for Light-Field and High Resolution Image Acquisition”, filed Apr. 15, 2015, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/084,326 also claims the benefit of U.S. Provisional Application Ser. No. 62/148,460 for “Capturing Light-Field Volume Image and Video Data Using Tiled Light-Field Cameras”, filed Apr. 16, 2015, the disclosure of which is incorporated herein by reference in its entirety The present application is also related to U.S. patent application Ser. No. 14/302,826 for “Depth Determination for Light-Field Images”, filed Jun. 12, 2014 and issued as U.S. Pat. No. 8,988,317 on Mar. 24, 2015, the disclosure of which is incorporated herein by reference.

US Referenced Citations (546)
Number Name Date Kind
725567 Ives Apr 1903 A
4383170 Takagi et al. May 1983 A
4661986 Adelson Apr 1987 A
4694185 Weiss Sep 1987 A
4920419 Easterly Apr 1990 A
5076687 Adelson Dec 1991 A
5077810 D'Luna Dec 1991 A
5251019 Moorman et al. Oct 1993 A
5282045 Mimura et al. Jan 1994 A
5499069 Griffith Mar 1996 A
5572034 Karellas Nov 1996 A
5610390 Miyano Mar 1997 A
5729471 Jain et al. Mar 1998 A
5748371 Cathey, Jr. et al. May 1998 A
5757423 Tanaka et al. May 1998 A
5818525 Elabd Oct 1998 A
5835267 Mason et al. Nov 1998 A
5907619 Davis May 1999 A
5949433 Klotz Sep 1999 A
5974215 Bilbro et al. Oct 1999 A
6005936 Shimizu et al. Dec 1999 A
6021241 Bilbro et al. Feb 2000 A
6023523 Cohen et al. Feb 2000 A
6028606 Kolb et al. Feb 2000 A
6034690 Gallery et al. Mar 2000 A
6061083 Aritake et al. May 2000 A
6061400 Pearlstein et al. May 2000 A
6069565 Stern et al. May 2000 A
6075889 Hamilton, Jr. et al. Jun 2000 A
6084979 Kanade et al. Jul 2000 A
6091860 Dimitri Jul 2000 A
6097394 Levoy et al. Aug 2000 A
6115556 Reddington Sep 2000 A
6137100 Fossum et al. Oct 2000 A
6169285 Pertrillo et al. Jan 2001 B1
6201899 Bergen Mar 2001 B1
6221687 Abramovich Apr 2001 B1
6320979 Melen Nov 2001 B1
6424351 Bishop et al. Jul 2002 B1
6448544 Stanton et al. Sep 2002 B1
6466207 Gortler et al. Oct 2002 B1
6476805 Shum et al. Nov 2002 B1
6479827 Hamamoto et al. Nov 2002 B1
6483535 Tamburrino et al. Nov 2002 B1
6529265 Henningsen Mar 2003 B1
6577342 Webster Jun 2003 B1
6587147 Li Jul 2003 B1
6597859 Leinhardt et al. Jul 2003 B1
6606099 Yamada Aug 2003 B2
6658168 Kim Dec 2003 B1
6674430 Kaufman et al. Jan 2004 B1
6680976 Chen et al. Jan 2004 B1
6687419 Atkin Feb 2004 B1
6697062 Cabral Feb 2004 B1
6768980 Meyer et al. Jul 2004 B1
6785667 Orbanes et al. Aug 2004 B2
6833865 Fuller et al. Dec 2004 B1
6842297 Dowski, Jr. et al. Jan 2005 B2
6900841 Mihara May 2005 B1
6924841 Jones Aug 2005 B2
6927922 George et al. Aug 2005 B2
7015954 Foote et al. Mar 2006 B1
7025515 Woods Apr 2006 B2
7034866 Colmenarez et al. Apr 2006 B1
7079698 Kobayashi Jul 2006 B2
7102666 Kanade et al. Sep 2006 B2
7164807 Morton Jan 2007 B2
7206022 Miller et al. Apr 2007 B2
7239345 Rogina Jul 2007 B1
7286295 Sweatt et al. Oct 2007 B1
7304670 Hussey et al. Dec 2007 B1
7329856 Ma et al. Feb 2008 B2
7336430 George Feb 2008 B2
7417670 Linzer et al. Aug 2008 B1
7469381 Ording Dec 2008 B2
7477304 Hu Jan 2009 B2
7587109 Reininger Sep 2009 B1
7620309 Georgiev Nov 2009 B2
7623726 Georgiev Nov 2009 B1
7633513 Kondo et al. Dec 2009 B2
7683951 Aotsuka Mar 2010 B2
7687757 Tseng et al. Mar 2010 B1
7723662 Levoy et al. May 2010 B2
7724952 Shum et al. May 2010 B2
7748022 Frazier Jun 2010 B1
7847825 Aoki et al. Dec 2010 B2
7936377 Friedhoff et al. May 2011 B2
7936392 Ng et al. May 2011 B2
7941634 Georgi May 2011 B2
7945653 Zuckerberg et al. May 2011 B2
7949252 Georgiev May 2011 B1
7982776 Dunki-Jacobs et al. Jul 2011 B2
8013904 Tan et al. Sep 2011 B2
8085391 Machida et al. Dec 2011 B2
8106856 Matas et al. Jan 2012 B2
8115814 Iwase et al. Feb 2012 B2
8155456 Babacan Apr 2012 B2
8155478 Vitsnudel et al. Apr 2012 B2
8189089 Georgiev et al. May 2012 B1
8228417 Georgiev et al. Jul 2012 B1
8248515 Ng et al. Aug 2012 B2
8259198 Cote et al. Sep 2012 B2
8264546 Witt Sep 2012 B2
8279325 Pitts et al. Oct 2012 B2
8289440 Knight et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8310554 Aggarwal et al. Nov 2012 B2
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8400533 Szedo Mar 2013 B1
8400555 Georgiev et al. Mar 2013 B1
8427548 Lim et al. Apr 2013 B2
8442397 Kang et al. May 2013 B2
8446516 Pitts et al. May 2013 B2
8494304 Venable et al. Jul 2013 B2
8531581 Shroff Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8559705 Ng Oct 2013 B2
8570426 Pitts et al. Oct 2013 B2
8577216 Li et al. Nov 2013 B2
8581998 Ohno Nov 2013 B2
8589374 Chaudhri Nov 2013 B2
8593564 Border et al. Nov 2013 B2
8605199 Imai Dec 2013 B2
8614764 Pitts et al. Dec 2013 B2
8619082 Ciurea Dec 2013 B1
8629930 Brueckner et al. Jan 2014 B2
8665440 Kompaniets et al. Mar 2014 B1
8675073 Aagaard et al. Mar 2014 B2
8724014 Ng et al. May 2014 B2
8736710 Spielberg May 2014 B2
8736751 Yun May 2014 B2
8749620 Pitts et al. Jun 2014 B1
8750509 Renkis Jun 2014 B2
8754829 Lapstun Jun 2014 B2
8760566 Pitts et al. Jun 2014 B2
8768102 Ng et al. Jul 2014 B1
8797321 Bertolami et al. Aug 2014 B1
8811769 Pitts et al. Aug 2014 B1
8831377 Pitts et al. Sep 2014 B2
8848970 Aller et al. Sep 2014 B2
8860856 Wetsztein et al. Oct 2014 B2
8879901 Caldwell et al. Nov 2014 B2
8903232 Caldwell Dec 2014 B1
8908058 Akeley et al. Dec 2014 B2
8948545 Akeley et al. Feb 2015 B2
8953882 Lim et al. Feb 2015 B2
8971625 Pitts et al. Mar 2015 B2
8976288 Ng et al. Mar 2015 B2
8988317 Liang Mar 2015 B1
8995785 Knight et al. Mar 2015 B2
8997021 Liang et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9013611 Szedo Apr 2015 B1
9106914 Doser Aug 2015 B2
9184199 Pitts et al. Nov 2015 B2
9201142 Antao Dec 2015 B2
9201193 Smith Dec 2015 B1
9210391 Mills Dec 2015 B1
9214013 Venkataraman et al. Dec 2015 B2
9262067 Bell et al. Feb 2016 B1
9294662 Vondran, Jr. et al. Mar 2016 B2
9300932 Knight et al. Mar 2016 B2
9305375 Akeley Apr 2016 B2
9305956 Pittes et al. Apr 2016 B2
9386288 Akeley et al. Jul 2016 B2
9392153 Myhre et al. Jul 2016 B2
9419049 Pitts et al. Aug 2016 B2
9467607 Ng et al. Oct 2016 B2
9497380 Jannard et al. Nov 2016 B1
9607424 Ng et al. Mar 2017 B2
9628684 Liang et al. Apr 2017 B2
9635332 Carroll et al. Apr 2017 B2
9639945 Oberheu et al. May 2017 B2
9647150 Blasco Claret May 2017 B2
9681069 El-Ghoroury et al. Jun 2017 B2
9774800 El-Ghoroury et al. Sep 2017 B2
9858649 Liang et al. Jan 2018 B2
9866810 Knight et al. Jan 2018 B2
9900510 Karafin et al. Feb 2018 B1
9979909 Kuang et al. May 2018 B2
10244266 Wu Mar 2019 B1
20010048968 Cox et al. Dec 2001 A1
20010053202 Mazess et al. Dec 2001 A1
20020001395 Davis et al. Jan 2002 A1
20020015048 Mister Feb 2002 A1
20020061131 Sawhney May 2002 A1
20020109783 Hayashi et al. Aug 2002 A1
20020159030 Frey et al. Oct 2002 A1
20020199106 Hayashi Dec 2002 A1
20030043270 Rafey Mar 2003 A1
20030081145 Seaman et al. May 2003 A1
20030103670 Schoelkopf et al. Jun 2003 A1
20030117511 Belz et al. Jun 2003 A1
20030123700 Wakao Jul 2003 A1
20030133018 Ziemkowski Jul 2003 A1
20030147252 Fioravanti Aug 2003 A1
20030156077 Balogh Aug 2003 A1
20030172131 Ao Sep 2003 A1
20040002179 Barton et al. Jan 2004 A1
20040012688 Tinnerino Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040101166 Williams et al. May 2004 A1
20040114176 Bodin et al. Jun 2004 A1
20040135780 Mims Jul 2004 A1
20040189686 Tanguay et al. Sep 2004 A1
20040212725 Raskar Oct 2004 A1
20040257360 Sieckmann Dec 2004 A1
20050031203 Fukuda Feb 2005 A1
20050049500 Babu et al. Mar 2005 A1
20050052543 Li et al. Mar 2005 A1
20050080602 Snyder et al. Apr 2005 A1
20050141881 Taira et al. Jun 2005 A1
20050162540 Yata Jul 2005 A1
20050212918 Serra et al. Sep 2005 A1
20050253728 Chen et al. Nov 2005 A1
20050276441 Debevec Dec 2005 A1
20060023066 Li et al. Feb 2006 A1
20060050170 Tanaka Mar 2006 A1
20060056040 Lan Mar 2006 A1
20060056604 Sylthe et al. Mar 2006 A1
20060072175 Oshino Apr 2006 A1
20060078052 Dang Apr 2006 A1
20060082879 Miyoshi et al. Apr 2006 A1
20060130017 Cohen et al. Jun 2006 A1
20060208259 Jeon Sep 2006 A1
20060248348 Wakao et al. Nov 2006 A1
20060250322 Hall et al. Nov 2006 A1
20060256226 Alon et al. Nov 2006 A1
20060274210 Kim Dec 2006 A1
20060285741 Subbarao Dec 2006 A1
20070008317 Lundstrom Jan 2007 A1
20070019883 Wong et al. Jan 2007 A1
20070030357 Levien et al. Feb 2007 A1
20070033588 Landsman Feb 2007 A1
20070052810 Monroe Mar 2007 A1
20070071316 Kubo Mar 2007 A1
20070081081 Cheng Apr 2007 A1
20070097206 Houvener May 2007 A1
20070103558 Cai et al. May 2007 A1
20070113198 Robertson et al. May 2007 A1
20070140676 Nakahara Jun 2007 A1
20070188613 Norbori et al. Aug 2007 A1
20070201853 Petschnigg Aug 2007 A1
20070229653 Matusik et al. Oct 2007 A1
20070230944 Georgiev Oct 2007 A1
20070269108 Steinberg et al. Nov 2007 A1
20070273795 Jaynes Nov 2007 A1
20080007626 Wernersson Jan 2008 A1
20080012988 Baharav et al. Jan 2008 A1
20080018668 Yamauchi Jan 2008 A1
20080031537 Gutkowicz-Krusin et al. Feb 2008 A1
20080049113 Hirai Feb 2008 A1
20080056569 Williams et al. Mar 2008 A1
20080122940 Mori May 2008 A1
20080129728 Satoshi Jun 2008 A1
20080144952 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080168404 Ording Jul 2008 A1
20080180792 Georgiev Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080205871 Utagawa Aug 2008 A1
20080226274 Spielberg Sep 2008 A1
20080232680 Berestov et al. Sep 2008 A1
20080253652 Gupta et al. Oct 2008 A1
20080260291 Alakarhu et al. Oct 2008 A1
20080266688 Errando Smet et al. Oct 2008 A1
20080277566 Utagawa Nov 2008 A1
20080309813 Watanabe Dec 2008 A1
20080316301 Givon Dec 2008 A1
20090027542 Yamamoto et al. Jan 2009 A1
20090041381 Georgiev et al. Feb 2009 A1
20090041448 Georgiev et al. Feb 2009 A1
20090070710 Kagaya Mar 2009 A1
20090102956 Georgiev Apr 2009 A1
20090109280 Gotsman Apr 2009 A1
20090128658 Hayasaka et al. May 2009 A1
20090128669 Ng et al. May 2009 A1
20090135258 Nozaki May 2009 A1
20090140131 Utagawa Jun 2009 A1
20090167909 Imagawa et al. Jul 2009 A1
20090185051 Sano Jul 2009 A1
20090185801 Georgiev et al. Jul 2009 A1
20090190022 Ichimura Jul 2009 A1
20090190024 Hayasaka et al. Jul 2009 A1
20090195689 Hwang et al. Aug 2009 A1
20090202235 Li et al. Aug 2009 A1
20090204813 Kwan Aug 2009 A1
20090207233 Mauchly et al. Aug 2009 A1
20090273843 Raskar et al. Nov 2009 A1
20090290848 Brown Nov 2009 A1
20090295829 Georgiev et al. Dec 2009 A1
20090309973 Kogane Dec 2009 A1
20090309975 Gordon Dec 2009 A1
20090310885 Tamaru Dec 2009 A1
20090321861 Oliver et al. Dec 2009 A1
20100003024 Agrawal et al. Jan 2010 A1
20100011117 Hristodorescu et al. Jan 2010 A1
20100021001 Honsinger et al. Jan 2010 A1
20100026852 Ng et al. Feb 2010 A1
20100050120 Ohazama et al. Feb 2010 A1
20100060727 Steinberg et al. Mar 2010 A1
20100097444 Lablans Apr 2010 A1
20100103311 Makii Apr 2010 A1
20100107068 Butcher et al. Apr 2010 A1
20100111489 Presler May 2010 A1
20100123784 Ding et al. May 2010 A1
20100141780 Tan et al. Jun 2010 A1
20100141802 Knight Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100201789 Yahagi Aug 2010 A1
20100253782 Elazary Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100277629 Tanaka Nov 2010 A1
20100303288 Malone Dec 2010 A1
20100328485 Imamura et al. Dec 2010 A1
20110018903 Lapstun et al. Jan 2011 A1
20110019056 Hirsch et al. Jan 2011 A1
20110025827 Shpunt et al. Feb 2011 A1
20110032338 Raveendran et al. Feb 2011 A1
20110050864 Bond Mar 2011 A1
20110050909 Ellenby Mar 2011 A1
20110063414 Chen et al. Mar 2011 A1
20110069175 Mistretta et al. Mar 2011 A1
20110075729 Dane et al. Mar 2011 A1
20110090255 Wilson et al. Apr 2011 A1
20110123183 Adelsberger et al. May 2011 A1
20110129120 Chan Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110148764 Gao Jun 2011 A1
20110149074 Lee et al. Jun 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110194617 Kumar et al. Aug 2011 A1
20110205384 Zamowski et al. Aug 2011 A1
20110221947 Awazu Sep 2011 A1
20110242334 Wilburn et al. Oct 2011 A1
20110242352 Hikosaka Oct 2011 A1
20110261164 Olesen et al. Oct 2011 A1
20110261205 Sun Oct 2011 A1
20110267263 Hinckley Nov 2011 A1
20110273466 Imai et al. Nov 2011 A1
20110279479 Rodriguez Nov 2011 A1
20110133649 Bales et al. Dec 2011 A1
20110292258 Adler et al. Dec 2011 A1
20110298960 Tan et al. Dec 2011 A1
20110304745 Wang et al. Dec 2011 A1
20110311046 Oka Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20120014837 Fehr et al. Jan 2012 A1
20120044330 Watanabe Feb 2012 A1
20120050562 Perwass et al. Mar 2012 A1
20120056889 Carter et al. Mar 2012 A1
20120056982 Katz Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120057806 Backlund et al. Mar 2012 A1
20120062755 Takahashi et al. Mar 2012 A1
20120120240 Muramatsu et al. May 2012 A1
20120132803 Hirato et al. May 2012 A1
20120133746 Bigioi et al. May 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120183055 Hong et al. Jul 2012 A1
20120188344 Imai Jul 2012 A1
20120201475 Carmel et al. Aug 2012 A1
20120206574 Shikata et al. Aug 2012 A1
20120218463 Benezra et al. Aug 2012 A1
20120224787 Imai Sep 2012 A1
20120229691 Hiasa et al. Sep 2012 A1
20120249529 Matsumoto et al. Oct 2012 A1
20120249550 Akeley Oct 2012 A1
20120249819 Imai Oct 2012 A1
20120251131 Henderson et al. Oct 2012 A1
20120257065 Velarde et al. Oct 2012 A1
20120257795 Kim et al. Oct 2012 A1
20120268367 Vertegaal et al. Oct 2012 A1
20120269274 Kim et al. Oct 2012 A1
20120272271 Nishizawa et al. Oct 2012 A1
20120287246 Katayama Nov 2012 A1
20120287296 Fukui Nov 2012 A1
20120287329 Yahata Nov 2012 A1
20120293075 Engelen et al. Nov 2012 A1
20120300091 Shroff et al. Nov 2012 A1
20120237222 Ng et al. Dec 2012 A9
20120321172 Jachalsky Dec 2012 A1
20130002902 Ito Jan 2013 A1
20130002936 Hirama et al. Jan 2013 A1
20130021486 Richardson Jan 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130041215 McDowall Feb 2013 A1
20130044290 Kawamura Feb 2013 A1
20130050546 Kano Feb 2013 A1
20130064453 Nagasaka et al. Mar 2013 A1
20130064532 Caldwell et al. Mar 2013 A1
20130070059 Kushida Mar 2013 A1
20130070060 Chatterjee et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130082905 Ranieri et al. Apr 2013 A1
20130088616 Ingrassia, Jr. Apr 2013 A1
20130093844 Shuto Apr 2013 A1
20130093859 Nakamura Apr 2013 A1
20130094101 Oguchi Apr 2013 A1
20130107085 Ng et al. May 2013 A1
20130113981 Knight et al. May 2013 A1
20130120356 Georgiev et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130120636 Baer May 2013 A1
20130127901 Georgiev et al. May 2013 A1
20130128052 Catrein et al. May 2013 A1
20130128081 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130135448 Nagumo et al. May 2013 A1
20130176481 Holmes et al. Jul 2013 A1
20130188068 Said Jul 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215226 Chauvier et al. Aug 2013 A1
20130222656 Kaneko Aug 2013 A1
20130234935 Griffith Sep 2013 A1
20130242137 Kirkland Sep 2013 A1
20130243391 Park et al. Sep 2013 A1
20130258451 Ei-Ghoroury et al. Oct 2013 A1
20130262511 Kuffner et al. Oct 2013 A1
20130286236 Mankowski Oct 2013 A1
20130321574 Zhang et al. Dec 2013 A1
20130321581 Ei-Ghoroury Dec 2013 A1
20130321677 Cote et al. Dec 2013 A1
20130329107 Burley et al. Dec 2013 A1
20130329132 Tico et al. Dec 2013 A1
20130335596 Demandoix et al. Dec 2013 A1
20130342700 Kass Dec 2013 A1
20140002502 Han Jan 2014 A1
20140002699 Guan Jan 2014 A1
20140003719 Bai et al. Jan 2014 A1
20140013273 Ng Jan 2014 A1
20140035959 Lapstun Feb 2014 A1
20140037280 Shirakawa Feb 2014 A1
20140049663 Ng et al. Feb 2014 A1
20140059462 Wernersson Feb 2014 A1
20140085282 Luebke et al. Mar 2014 A1
20140092424 Grosz Apr 2014 A1
20140098191 Rime et al. Apr 2014 A1
20140132741 Aagaard et al. May 2014 A1
20140133749 Kuo et al. May 2014 A1
20140139538 Barber et al. May 2014 A1
20140167196 Heimgartner et al. Jun 2014 A1
20140176540 Tosio et al. Jun 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140176710 Brady et al. Jun 2014 A1
20140177905 Grefalda Jun 2014 A1
20140184885 Tanaka et al. Jul 2014 A1
20140192208 Okincha Jul 2014 A1
20140193047 Grosz Jul 2014 A1
20140195921 Grosz Jul 2014 A1
20140204111 Vaidyanathan et al. Jul 2014 A1
20140211077 Ng et al. Jul 2014 A1
20140218540 Geiss et al. Aug 2014 A1
20140226038 Kimura Aug 2014 A1
20140240463 Pitts et al. Aug 2014 A1
20140240578 Fishman et al. Aug 2014 A1
20140245367 Sasaki Aug 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267639 Tatsuta Sep 2014 A1
20140300753 Yin Oct 2014 A1
20140313350 Keelan Oct 2014 A1
20140313375 Milnar Oct 2014 A1
20140333787 Venkataraman Nov 2014 A1
20140340390 Lanman et al. Nov 2014 A1
20140347540 Kang Nov 2014 A1
20140354863 Ahn et al. Dec 2014 A1
20140368494 Sakharnykh et al. Dec 2014 A1
20140368640 Strandemar et al. Dec 2014 A1
20150029386 Pitts et al. Jan 2015 A1
20150042767 Ciurea Feb 2015 A1
20150049915 Ciurea Feb 2015 A1
20150062178 Matas et al. Mar 2015 A1
20150062386 Sugawara Mar 2015 A1
20150092071 Meng et al. Apr 2015 A1
20150097985 Akeley Apr 2015 A1
20150161798 Venkataraman Jun 2015 A1
20150193937 Georgiev et al. Jul 2015 A1
20150206340 Munkberg et al. Jul 2015 A1
20150207990 Ford et al. Jul 2015 A1
20150223731 Sahin Aug 2015 A1
20150237273 Sawadaishi Aug 2015 A1
20150264337 Venkataraman Sep 2015 A1
20150104101 Bryant et al. Oct 2015 A1
20150304667 Suehring et al. Oct 2015 A1
20150310592 Kano Oct 2015 A1
20150312553 Ng et al. Oct 2015 A1
20150312593 Akeley et al. Oct 2015 A1
20150334420 De Vieeschauwer et al. Nov 2015 A1
20150346832 Cole et al. Dec 2015 A1
20150370011 Ishihara Dec 2015 A1
20150370012 Ishihara Dec 2015 A1
20150373279 Osborne Dec 2015 A1
20160029002 Balko Jan 2016 A1
20160029017 Liang Jan 2016 A1
20160037178 Lee et al. Feb 2016 A1
20160065931 Konieczny Mar 2016 A1
20160065947 Cole et al. Mar 2016 A1
20160142615 Liang May 2016 A1
20160155215 Suzuki Jun 2016 A1
20160165206 Huang et al. Jun 2016 A1
20160173844 Knight et al. Jun 2016 A1
20160182893 Wan Jun 2016 A1
20160191823 El-Ghoroury Jun 2016 A1
20160227244 Rosewarne Aug 2016 A1
20160247324 Mullins et al. Aug 2016 A1
20160253837 Zhu et al. Sep 2016 A1
20160269620 Romanenko et al. Sep 2016 A1
20160307368 Akeley Oct 2016 A1
20160307372 Pitts et al. Oct 2016 A1
20160309065 Karafin et al. Oct 2016 A1
20160337635 Nisenzon Nov 2016 A1
20160353026 Blonde et al. Dec 2016 A1
20160381348 Hayasaka et al. Dec 2016 A1
20170059305 Nonn et al. Mar 2017 A1
20170067832 Ferrara, Jr. et al. Mar 2017 A1
20170094906 Liang et al. Mar 2017 A1
20170134639 Pitts et al. May 2017 A1
20170139131 Karafin et al. May 2017 A1
20170221226 Shen Aug 2017 A1
20170237971 Pitts et al. Aug 2017 A1
20170243373 Bevensee et al. Aug 2017 A1
20170244948 Pang et al. Aug 2017 A1
20170256036 Song et al. Sep 2017 A1
20170263012 Sabater et al. Sep 2017 A1
20170302903 Ng et al. Oct 2017 A1
20170316602 Smirnov Nov 2017 A1
20170358092 Bleibel et al. Dec 2017 A1
20170365068 Tan et al. Dec 2017 A1
20170374411 Lederer et al. Dec 2017 A1
20180012397 Carothers Jan 2018 A1
20180020204 Pang et al. Jan 2018 A1
20180024753 Gewickey et al. Jan 2018 A1
20180033209 Akeley et al. Feb 2018 A1
20180034134 Pang et al. Feb 2018 A1
20180070066 Knight et al. Mar 2018 A1
20180070067 Knight et al. Mar 2018 A1
20180082405 Liang Mar 2018 A1
20180089903 Pang et al. Mar 2018 A1
20180097867 Pang et al. Apr 2018 A1
20180124371 Kamal May 2018 A1
20180139436 Yucer May 2018 A1
20180158198 Kamad Jun 2018 A1
20180199039 Trepte Jul 2018 A1
Foreign Referenced Citations (13)
Number Date Country
101226292 Jul 2008 CN
101309359 Nov 2008 CN
19624421 Jan 1997 DE
2010020100 Jan 2010 JP
2011135170 Jul 2011 JP
10-2011-0074984 Jul 2011 KR
2003052465 Jun 2003 WO
2006039486 Apr 2006 WO
2007092545 Aug 2007 WO
2007092581 Aug 2007 WO
2011010234 Mar 2011 WO
2011029209 Mar 2011 WO
2011081187 Jul 2011 WO
Non-Patent Literature Citations (171)
Entry
Nimeroff, J., et al., “Efficient rendering of naturally illuminatied environments” in Fifth Eurographics Workshop on Rendering, 359-373, 1994.
Nokia, “City Lens”, May 2012.
Ogden, J., “Pyramid-Based Computer Graphics”, 1985.
Okano et al., “Three-dimensional video system based on integral photography” Optical Engineering, Jun. 1999. vol. 38, No. 6, pp. 1072-1077.
Orzan, Alexandrina, et al., “Diffusion Curves: A Vector Representation for Smooth-Shaded Images,” ACM Transactions on Graphics—Proceedings of SIGGRAPH 2008; vol. 27; 2008.
Pain, B., “Back-Side Illumination Technology for SOI-CMOS Image Sensors”, 2009.
Perez, Patrick et al., “Poisson Image Editing,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH 2003; vol. 22, Issue 3; Jul. 2003; pp. 313-318.
Petschnigg, George, et al., “Digial Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004.
Primesense, “The Primesense 3D Awareness Sensor”, 2007.
Ramamoorthi, R., et al, “Frequency space environment map rendering” ACM Transactions on Graphics (SIGGRAPH 2002 proceedings) 21, 3, 517-526.
Ramamoorthi, R., et al., “An efficient representation for irradiance environment maps”, in Proceedings of SIGGRAPH 2001, 497-500.
Raskar, Ramesh et al., “Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH, Aug. 2008; vol. 27, Issue 3; pp. 1-10.
Raskar, Ramesh et al., “Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging”, SIGGRAPH 2004.
Raytrix, “Raytrix Lightfield Camera,” Raytrix GmbH, Germany 2012, pp. 1-35.
Scharstein, Daniel, et al., “High-Accuracy Stereo Depth Maps Using Structured Light,” CVPR'03 Proceedings of the 2003 IEEE Computer Society, pp. 195-202.
Schirmacher, H. et al., “High-Quality Interactive Lumigraph Rendering Through Warping,” May 2000, Graphics Interface 2000.
Shade, Jonathan, et al., “Layered Depth Images”, SIGGRAPH 98, pp. 1-2.
Shreiner, OpenGL Programming Guide, 7th edition, Chapter 8, 2010.
Simpleviewer, “Tiltview”, http://simpleviewer.net/tiltviewer. Retrieved Jan. 2013.
Skodras, A. et al., “The JPEG 2000 Still Image Compression Standard,” Sep. 2001, IEEE Signal Processing Magazine, pp. 36-58.
Sloan, P., et al., “Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments”, ACM Transactions on Graphics 21, 3, 527-536, 2002.
Snavely, Noah, et al., “Photo-tourism: Exploring Photo collections in 3D”, ACM Transactions on Graphics (SIGGRAPH Proceedings), 2006.
Sokolov, “Autostereoscopy and Integral Photography by Professor Lippmann's Method” , 1911, pp. 23-29.
Sony Corp, “Interchangeable Lens Digital Camera Handbook”, 2011.
Stensvold, M., “Hybrid AF: A New Approach to Autofocus is Emerging for both Still and Video”, Digital Photo Magazine, Nov. 13, 2012.
Story, D., “The Future of Photography”, Optics Electronics, Oct. 2008.
Sun, Jian, et al., “Stereo Matching Using Belief Propagation”, 2002.
Tagging photos on Flickr, Facebook and other online photo sharing sites (see, for example, http://support.gnip.com/customer/portal/articles/809309-flickr-geo-photos-tag-search). Retrieved Jan. 2013.
Takahashi, Keita, et al., “All in-focus View Synthesis from Under-Sampled Light Fields”, ICAT 2003, Tokyo, Japan.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification” Applied Optics 40, 11 (Apr. 10, 2001), pp. 1806-1813.
Tao, Michael, et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, Dec. 2013.
Techcrunch, “Coolinis”, Retrieved Jan. 2013.
Teo, P., et al., “Efficient linear rendering for interactive light design”, Tech. Rep. STAN-CS-TN-97-60, 1998, Stanford University.
Teranishi, N. “Evolution of Optical Structure in Images Sensors,” Electron Devices Meeting (IEDM) 2012 IEEE International; Dec. 10-13, 2012.
Vaish et al., “Using plane + parallax for calibrating dense camera arrays”, In Proceedings CVPR 2004, pp. 2-9.
Vaish, V., et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform,” Workshop on Advanced 3D Imaging for Safety and Security (in conjunction with CVPR 2005), 2005.
VR Playhouse, “The Surrogate,” http://www.vrplayhouse.com/the-surrogate.
Wanner, S. et al., “Globally Consistent Depth Labeling of 4D Light Fields,” IEEE Conference on Computer Vision and Pattern Recognition, 2012.
Wanner, S. et al., “Variational Light Field Analysis for Disparity Estimation and Super-Resolution,” IEEE Transacations on Pattern Analysis and Machine Intellegence, 2013.
Wenger, et al, “Performance Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, Institute for Creative Technologies, SIGGRAPH 2005.
Wetzstein, Gordon, et al., “Sensor Saturation in Fourier Multiplexed Imaging”, IEEE Conference on Computer Vision and Pattern Recognition (2010).
Wikipedia—Adaptive Optics: http://en.wikipedia.org/wiki/adaptive_optics. Retrieved Feb. 2014.
Wikipedia—Autofocus systems and methods: http://en.wikipedia.org/wiki/Autofocus. Retrieved Jan. 2013.
Wikipedia—Bayer Filter: http:/en.wikipedia.org/wiki/Bayer_filter. Retrieved Jun. 20, 2013.
Wikipedia—Color Image Pipeline: http://en.wikipedia.org/wiki/color_image_pipeline. Retrieved Jan. 15, 2014.
Wikipedia—Compression standard JPEG XR: http://en.wikipedia.org/wiki/JPEG_XR. Retrieved Jan. 2013.
Wikipedia—CYGM Filter: http://en.wikipedia.org/wiki/CYGM_filter. Retrieved Jun. 20, 2013.
Wikipedia—Data overlay techniques for real-time visual feed. For example, heads-up displays: http://en.wikipedia.org/wiki/Head-up_display. Retrieved Jan. 2013.
Wikipedia—Exchangeable image file format: http://en.wikipedia.org/wiki/Exchangeable_image_file_format. Retrieved Jan. 2013.
Wikipedia—Expeed: http://en.wikipedia.org/wiki/EXPEED. Retrieved Jan. 15, 2014.
Wikipedia—Extensible Metadata Platform: http://en.wikipedia.org/wiki/Extensible_Metadata_Plafform. Retrieved Jan. 2013.
Wikipedia—Key framing for video animation: http://en.wikipedia.org/wiki/Key_frame. Retrieved Jan. 2013.
Wikipedia—Lazy loading of image data: http://en.wikipedia.org/wiki/Lazy_loading. Retrieved Jan. 2013.
Wikipedia—Methods of Variable Bitrate Encoding: http://en.wikipedia.org/wiki/Variable_bitrate#Methods_of VBR_encoding. Retrieved Jan. 2013.
Wikipedia—Portable Network Graphics format: http://en.wikipedia.org/wiki/Portable_Network_Graphics. Retrieved Jan. 2013.
Wikipedia—Unsharp Mask Technique: https://en.wikipedia.org/wiki/Unsharp_masking. Retrieved May 3, 2016.
Wilburn et al., “High Performance Imaging using Large Camera Arrays”, ACM Transactions on Graphics (TOG), vol. 24, Issue 3 (Jul. 2005), Proceedings of ACM SIGGRAPH 2005, pp. 765-776.
Wilburn, Bennett, et al., “High Speed Video Using a Dense Camera Array”, 2004.
Wilburn, Bennett, et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002.
Williams, L. “Pyramidal Parametrics,” Computer Graphic (1983).
Winnemoller, H., et al., “Light Waving: Estimating Light Positions From Photographs Alone”, Eurographics 2005.
Wippermann, F. “Chirped Refractive Microlens Array,” Dissertation 2007.
Wuu, S., et al., “A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors”, 2009 International Image Sensor Workshop, Bergen, Norway.
Wuu, S., et al., “BSI Technology with Bulk Si Wafer”, 2009 International Image Sensor Workshop, Bergen, Norway.
Xiao, Z. et al., “Aliasing Detection and Reduction in Plenoptic Imaging,” IEEE Conference on Computer Vision and Pattern Recognition; 2014.
Xu, Xin et al., “Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure,” Sensors 2011; 14 pages.
Zheng, C. et al., “Parallax Photography: Creating 3D Cinematic Effects from Stills”, Proceedings of Graphic Interface, 2009.
Zitnick, L. et al., “High-Quality Video View Interpolation Using a Layered Representation,” Aug. 2004; ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2004; vol. 23, Issue 3; pp. 600-608.
Zoberbier, M., et al., “Wafer Cameras—Novel Fabrication and Packaging Technologies”, 2009 International Image Senor Workshop, Bergen, Norway, 5 pages.
U.S. Appl. No. 15/967,076, filed Apr. 30, 2018 listing Jiantao Kuang et al. as inventors, entitled “Automatic Lens Flare Detection and Correction for Light-Field Images”.
U.S. Appl. No. 15/666,298, filed Aug. 1, 2017 listing Yonggang Ha et al. as inventors, entitled “Focal Reducer With Controlled Optical Properties for Interchangeable Lens Light-Field Camera”.
U.S. Appl. No. 15/590,808, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Adaptive Control for Immersive Experience Delivery”.
U.S. Appl. No. 15/864,938, filed Jan. 8, 2018 listing Jon Karafin et al. as inventors, entitled “Motion Blur for Light-Field Images”.
U.S. Appl. No. 15/703,553, filed Sep. 13, 2017 listing Jon Karafin et al. as inventors, entitled “4D Camera Tracking and Optical Stabilization”.
U.S. Appl. No. 15/590,841, filed May 9, 2017 listing Kurt Akeley et al. as inventors, entitled “Vantage Generation and Interactive Playback”.
U.S. Appl. No. 15/590,951, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Wedge-Based Light-Field Video Capture”.
U.S. Appl. No. 15/944,551, filed Apr. 3, 2018 listing Zejing Wang et al. as inventors, entitled “Generating Dolly Zoom Effect Using Light Field Image Data”.
U.S. Appl. No. 15/874,723, filed Jan. 18, 2018 listing Mark Weir et al. as inventors, entitled “Multi-Camera Navigation Interface”.
U.S. Appl. No. 15/897,994, filed Feb. 15, 2018 listing Trevor Carothers et al. as inventors, entitled “Generation of Virtual Reality With 6 Degrees of Freesom From Limited Viewer Data”.
U.S. Appl. No. 15/605,037, filed May 25, 2017 listing Zeijing WAng et al. as inventors, entitled “Multi-View Back-Projection to a Light-Field”.
U.S. Appl. No. 15/897,836, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking”.
U.S. Appl. No. 15/897,942, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-View Contour Tracking With Grabcut”.
Adelsberger, R. et al., “Spatially Adaptive Photographic Flash,” ETH Zurich, Department of Computer Science, Technical Report 612, 2008, pp. 1-12.
Adelson et al., “Single Lens Stereo with a Plenoptic Camera” IEEE Translation on Pattern Analysis and Machine Intelligence, Feb. 1992. vol. 14, No. 2, pp. 99-106.
Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of early vision. In Computational Models of Visual Processing, edited by Michael S. Landy and J. Anthony Movshon. Cambridge, Mass.: mit Press.
Adobe Systems Inc, “XMP Specification”, Sep. 2005.
Adobe, “Photoshop CS6 / in depth: Digital Negative (DNG)”, http://www.adobe.com/products/photoshop/extend.displayTab2html. Retrieved Jan. 2013.
Agarwala, A., et al., “Interactive Digital Photomontage,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2004, vol. 32, No. 3, 2004.
Andreas Observatory, Spectrograph Manual: IV. Flat-Field Correction, Jul. 2006.
Apple, “Apple iPad: Photo Features on the iPad”, Retrieved Jan. 2013.
Bae, S., et al., “Defocus Magnification”, Computer Graphics Forum, vol. 26, Issue 3 (Proc. of Eurographics 2007), pp. 1-9.
Belhumeur, Peter et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1997, pp. 1060-1066.
Belhumeur, Peter, et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1999, pp. 33-44, revised version.
Bhat, P. et al. “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” SIGGRAPH 2010; 14 pages.
Bolles, R., et al., “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion”, International Journal of Computer Vision, 1, 7-55 (1987).
Bourke, Paul, “Image filtering in the Frequency Domain,” pp. 1-9, Jun. 1998.
Canon, Canon Speedlite wireless flash system, User manual for Model 550EX, Sep. 1998.
Chai, Jin-Xang et al., “Plenoptic Sampling”, ACM SIGGRAPH 2000, Annual Conference Series, 2000, pp. 307-318.
Chen, S. et al., “A CMOS Image Sensor with On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm,” Very Large Scalee Integration (VLSI) Systems, IEEE Transactions, vol. 19, Issue 4; Apr. 2011.
Chen, W., et al., “Light Field mapping: Efficient representation and hardware rendering of surface light fields”, ACM Transactions on Graphics 21, 3, 447-456, 2002.
Cohen, Noy et al., “Enhancing the performance of the light field microscope using wavefront coding,” Optics Express, vol. 22, issue 20; 2014.
Daly, D., “Microlens Arrays” Retrieved Jan. 2013.
Debevec, et al, “A Lighting Reproduction Approach to Live-Action Compoisting” Proceedings SIGGRAPH 2002.
Debevec, P., et al., “Acquiring the reflectance field of a human face”, SIGGRAPH 2000.
Debevec, P., et al., “Recovering high dynamic radiance maps from photographs”, SIGGRAPH 1997, 369-378.
Design of the xBox menu. Retrieved Jan. 2013.
Digital Photography Review, “Sony Announce new RGBE CCD,” Jul. 2003.
Dorsey, J., et al., “Design and simulation of opera light and projection effects”, in Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50.
Dorsey, J., et al., “Interactive design of complex time dependent lighting”, IEEE Computer Graphics and Applications 15, 2 (Mar. 1995), 26-36.
Dowski et al., “Wavefront coding: a modern method of achieving high performance and/or low cost imaging systems” SPIE Proceedings, vol. 3779, Jul. 1999, pp. 137-145.
Dowski, Jr. “Extended Depth of Field Through Wave-Front Coding,” Applied Optics, vol. 34, No. 11, Apr. 10, 1995; pp. 1859-1866.
Duparre, J. et al., “Micro-Optical Artificial Compound Eyes,” Institute of Physics Publishing, Apr. 2006.
Eisemann, Elmar, et al., “Flash Photography Enhancement via Intrinsic Relighting”, SIGGRAPH 2004.
Fattal, Raanan, et al., “Multiscale Shape and Detail Enhancement from Multi-light Image Collections”, SIGGRAPH 2007.
Fernando, Randima, “Depth of Field—A Survey of Techniques,” GPU Gems. Boston, MA; Addison-Wesley, 2004.
Fitzpatrick, Brad, “Camlistore”, Feb. 1, 2011.
Fujifilm, Super CCD EXR Sensor by Fujifilm, brochure reference No. EB-807E, 2008.
Georgiev, T. et al., “Reducing Plenoptic Camera Artifacts,” Computer Graphics Forum, vol. 29, No. 6, pp. 1955-1968; 2010.
Georgiev, T., et al., “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 2006.
Georgiev, T., et al., “Suppersolution with Plenoptic 2.0 Cameras,” Optical Society of America 2009; pp. 1-3.
Georgiev, T., et al., “Unified Frequency Domain Analysis of Lightfield Cameras” (2008).
Georgiev, T., et al., Plenoptic Camera 2.0 (2008).
Girod, B., “Mobile Visual Search”, IEEE Signal Processing Magazine, Jul. 2011.
Gortler et al., “The lumigraph” SIGGRAPH 96, pp. 43-54.
Groen et al., “A Comparison of Different Focus Functions for Use in Autofocus Algorithms,” Cytometry 6:81-91, 1985.
Haeberli, Paul “A Multifocus Method for Controlling Depth of Field” GRAPHICA Obscura, 1994, pp. 1-3.
Heide, F. et al., “High-Quality Computational Imaging Through Simple Lenses,” ACM Transactions on Graphics, SIGGRAPH 2013; pp. 1-7.
Heidelberg Collaboratory for Image Processing, “Consistent Depth Estimation in a 4D Light Field,” May 2013.
Hirigoyen, F., et al., “1.1 um Backside Imager vs. Frontside Image: an optics-dedicated FDTD approach”, IEEE 2009 International Image Sensor Workshop.
Huang, Fu-Chung et al., “Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays,” ACM Transaction on Graphics, Aug. 2014, pp. 1-12.
Isaksen, A., et al., “Dynamically Reparameterized Light Fields,” SIGGRAPH 2000, pp. 297-306.
Ives H., “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
Ives, H. “Parallax Panoramagrams Made with a Large Diameter Lens”, Journal of the Optical Society of America; 1930.
Jackson et al., “Selection of a Convolution Function for Fourier Inversion Using Gridding” IEEE Transactions on Medical Imaging, Sep. 1991, vol. 10, No. 3, pp. 473-478.
Kautz, J., et al., “Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics”, in Eurographic Rendering Workshop 2002, 291-296.
Koltun, et al., “Virtual Occluders: An Efficient Interediate PVS Representation”, Rendering Techniques 2000: Proc. 11th Eurographics Workshop Rendering, pp. 59-70, Jun. 2000.
Kopf, J., et al., Deep Photo: Model-Based Photograph Enhancement and Viewing, SIGGRAPH Asia 2008.
Lehtinen, J., et al. “Matrix radiance transfer”, in Symposium on Interactive 3D Graphics, 59-64, 2003.
Lesser, Michael, “Back-Side Illumination”, 2009.
Levin, A., et al., “Image and Depth from a Conventional Camera with a Coded Aperture”, SIGGRAPH 2007, pp. 1-9.
Levoy et al.,“Light Field Rendering” SIGGRAPH 96 Proceeding, 1996. pp. 31-42.
Levoy, “Light Fields and Computational Imaging” IEEE Computer Society, Aug. 2006, pp. 46-55.
Levoy, M. “Light Field Photography and Videography,” Oct. 18, 2005.
Levoy, M. “Stanford Light Field Microscope Project,” 2008; http://graphics.stanford.edu/projects/lfmicroscope/, 4 pages.
Levoy, M., “Autofocus: Contrast Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010.
Levoy, M., “Autofocus: Phase Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010.
Levoy, M., et al., “Light Field Microscopy,” ACM Transactions on Graphics, vol. 25, No. 3, Proceedings SIGGRAPH 2006.
Liang, Chia-Kai, et al., “Programmable Aperture Photography: Multiplexed Light Field Acquisition”, ACM SIGGRAPH, 2008.
Lippmann, “Reversible Prints”, Communication at the French Society of Physics, Journal of Physics, 7 , 4, Mar. 1908, pp. 821-825.
Lumsdaine et al., “Full Resolution Lightfield Rendering” Adobe Technical Report Jan. 2008, pp. 1-12.
Maeda, Y. et al., “A CMOS Image Sensor with Pseudorandom Pixel Placement for Clear Imaging,” 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2009.
Magnor, M. et al., “Model-Aided Coding of Multi-Viewpoint Image Data,” Proceedings IEEE Conference on Image Processing, ICIP—2000, Vancouver, Canada, Sep. 2000. https://graphics.tu-bs.de/static/people/magnor/ publications/icip00.pdf.
Mallat, Stephane, “A Wavelet Tour of Signal Processing”, Academic Press 1998.
Malzbender, et al., “Polynomial Texture Maps”, Proceedings SIGGRAPH 2001.
Marshall, Richard J. et al., “Improving Depth Estimation from a Plenoptic Camera by Patterned Illumination,” Proc. of SPIE, vol. 9528, 2015, pp. 1-6.
Masselus, Vincent, et al., “Relighting with 4D Incident Light Fields”, SIGGRAPH 2003.
Meynants, G., et al., “Pixel Binning in CMOS Image Sensors,” Frontiers in Electronic Imaging Conference, 2009.
Moreno-Noguer, F. et al., “Active Refocusing of Images and Videos,” ACM Transactions on Graphics, Aug. 2007; pp. 1-9.
Munkberg, J. et al., “Layered Reconstruction for Defocus and Motion Blur” EGSR 2014, pp. 1-12.
Naemura et al., “3-D Computer Graphics based on Integral Photography” Optics Express, Feb. 12, 2001. vol. 8, No. 2, pp. 255-262.
Nakamura, J., “Image Sensors and Signal Processing for Digital Still Cameras” (Optical Science and Engineering), 2005.
National Instruments, “Anatomy of a Camera,” pp. 1-5, Sep. 6, 2006.
Nayar, Shree, et al., “Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 8, pp. 824-831, Aug. 1994.
Ng, R., et al. “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Technical Report, CSTR 2005-2, 2005.
Ng, R., et al., “All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Transactions on Graphics,” ACM Transactions on Graphics; Proceedings of SIGGRAPH 2003.
Ng, R., et al., “Triple Product Wavelet Integrals for All-Frequency Relighting”, ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004).
Ng, Yi-Ren, “Digital Light Field Photography,” Doctoral Thesis, Standford University, Jun. 2006; 203 pages.
Ng., R., “Fourier Slice Photography,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2005, vol. 24, No. 3, 2005, pp. 735-744.
Nguyen, Hubert. “Practical Post-Process Depth of Field.” GPU Gems 3. Upper Saddle River, NJ: Addison-Wesley, 2008.
Roper Scientific Germany, “Fiber Optics”, 2012.
Sony's First Curved Sensor Photo: http://www.engadget.com. Jul. 2014.
Related Publications (1)
Number Date Country
20170237971 A1 Aug 2017 US
Provisional Applications (3)
Number Date Country
62333637 May 2016 US
62148055 Apr 2015 US
62148460 Apr 2015 US
Continuation in Parts (1)
Number Date Country
Parent 15084326 Mar 2016 US
Child 15582237 US