The present invention relates to an image capturing element which captures a stereoscopic moving image and a planar moving image, and an image capturing apparatus equipped with the image capturing element.
There is an image capturing apparatus which captures a stereoscopic image (hereinafter, also referred to as a 3D image) described in, for example, the following Patent Literature 1. The image capturing apparatus is adapted to include two cameras to photograph the same subject with the left and right cameras to reproduce a stereoscopic image of a subject. However, the stereoscopic image capturing apparatus has a problem in that it needs two cameras and thus, cost increases and a size of the apparatus increases.
Accordingly, there has been proposed a technology described in the following Patent Literature 2 as an image capturing apparatus which is capable of photographing a stereoscopic image of a subject with a single camera. The stereoscopic image capturing apparatus is adapted to divide a plurality of pixels (photoelectric conversion element: photodiode) two-dimensionally arranged on a surface of a solid-state image capturing element into two groups such that light coming from a direction when the subject is viewed from a right side enters into one group and light coming from a direction when the subject is viewed from a left side enters into the other group.
According to the technology, there is a problem in that although the stereoscopic image of the subject may be captured with a single camera (image capturing element), two dimensional image of the subject (planar image, hereinafter, also referred to as a 2D image) may not be photographed.
Recently, the demand for the image capturing apparatus is increasing and thus, a moving image photographing function, which is difficult for the technology described in the Patent Literatures 1 and 2 to implement, capable of photographing the 3D moving image and 2D moving image simultaneously as well as low cost and miniaturization are being demanded.
Patent Literature 1: JP-A-11-341522
Patent Literature 2: JP-A-2003-7994
An object of the present invention is to provide an image capturing element which is capable of appropriately processing both the 3D moving image photographing and the 2D moving image photographing, and an image capturing apparatus equipped with the image capturing element.
An image capturing element of the present invention is characterized in that a plurality of pixels are arranged in a square lattice form, the color filters are arranged in a Bayer arrangement, a pair of a first phase difference detection pixel which acquires one of the captured image signals for a right eye and a left eye and a second phase difference detection pixel which acquires the other of the captured image signals for the right eye and the left eye is provided on discrete and periodic positions in the square lattice form, the first phase difference detection pixel is provided among the respective pixels of the square lattice form at 2n+1-pixel (n=1, 2, . . . ) intervals both in a horizontal direction and a vertical direction, and the second phase difference detection pixel of the pair is provided on a pixel having the same color filter and spaced apart with respect to the first phase difference detection pixel by two pixels. Accordingly, the color filter arrangement of the phase difference detection pixel pair may be arranged in the Bayer arrangement.
An image capturing apparatus of the present invention is characterized by including an image capturing element driving unit which reads the captured image signal of the phase difference detection pixel when capturing the stereoscopic moving image. The image capturing apparatus is characterized in that when capturing the planar moving image, the captured image signal of the pixel other than the phase difference detection pixel is read.
According to the present invention, it becomes possible to capture both the high quality stereoscopic moving image and planar moving image with a single image capturing element.
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The solid-state image capturing element 21 is a CMOS type image sensor in the present embodiment, but may be a CCD type or other type of solid-state image capturing element.
The image capturing apparatus 10 of the present embodiment further includes a digital signal processing unit 26 which acquires a captured digital image signal to perform an interpolation processing, a white balance correction and a RGB/YC conversion processing, a compression/decompression processing unit 27 which compresses the captured image signal to the image data in JPEG format or the like, or decompresses the image data 27, a display unit 28 which displays a menu or the like, a through image or a captured image, a system control unit (CPU) 29 which comprehensively controls the entire digital camera, an internal memory 30 such as a frame memory, a media interface (I/F) unit 31 which interfaces with a recording media 32 storing the JPEG image data or the like, and a bus 40 which connects these components with each other.
Further, a manipulation unit 33 for inputting instructions from the user and a flash 25 emitting a light by instructions from the system control unit 29 are connected to the system control unit 29.
The image capturing apparatus 10 photographs a high definition 2D still image of a subject, a 2D moving image or a 3D moving image having a lower resolution as compared to a high definition still image based on the selection instruction from the manipulation unit 33 by the user, and performs a driving control of the solid-state image capturing element 21 or an image processing based on these selection instruction.
Each pixel 2 is arranged in a square lattice form and the RGB color filters are arranged thereon in a Bayer arrangement in the solid-state image capturing element 21 of the present embodiment. A micro lens (not illustrated) is laminated on the RGB color filters to be corresponded with each pixel. The pixel 2 existed in a discrete and periodic position is set as a phase difference detection pixel in the solid-state image capturing element 21. In the present embodiment, two pixels spaced apart by two-pixel in the vertical direction are set as a pixel pair and the openings 2a and 2b of the light shielding film of one pixel and the other pixel of the pixel pair are formed eccentrically with respect to the center of each pixel in a direction opposite to each other, respectively, to configure the phase difference detection pixel.
In a normal pixel (pixel other than the phase difference detection pixel), as described with a dotted rectangular frame in an upper and left side of
The opening center position of the opening 2a of the light shielding film is provided to be eccentric leftwardly with respect to the center of the pixel and the opening center position of the opening 2b of the light shielding film is provided to be eccentric rightwardly with respect to the center of the pixel. As illustrated in
That is, among each pixel pair constituting the phase difference detection pixels, the captured image signal of a pixel having the opening 2a of the light shielding film becomes an image when viewing the subject with the left eye and the captured image signal of a pixel having the opening 2b of the light shielding film is an image when viewing the subject with the right eye. Therefore, it is possible to reproduce the stereoscopic image of the subject by combining both the captured image signals.
One pixel 3 (first pixel, for example, a pixel having the opening 2a of the light shielding film) constituting the pixel pair of the phase difference detection pixels of the present embodiment is adopted such that a pixel is set as the phase difference detection pixel every three-pixel both in the vertical direction and the horizontal direction, and the other pixel 4 (second pixel, for example, a pixel having the opening 2b of the light shielding film) of the pixel pair is provided below the first pixel 3 by two-pixel in the vertical direction (otherwise, also in the horizontal direction). However, in general, the first pixel 3 may be provided at every 2n+1-pixel both in the horizontal direction and the vertical direction. As such, a disposition position of the phase difference detection pixel pair is determined and thus, the color filter arrangement of the phase difference detection pixel pair also become a Bayer arrangement having the RGB primary colors.
Further, hereinafter, it is assumed that a first pixel and a second pixel constituting the pixel pair of the phase difference detection pixels are denoted by reference numerals 3 and 4, respectively, and the normal pixel having the opening 1 of the light shielding film other than the phase difference detection pixel is denoted by reference numeral 2.
The photographing is performed by, for example, a rolling shutter drive, and when the captured image signal is read from the solid-state image capturing element 21, the reading is performed in an order of the horizontal line from only the horizontal lines where the phase difference detection pixels 3, 4 are provided.
Also, the image processing is performed for the captured image signal of the first pixel 3 (pixel on which the opening 2a of the light shielding film is equipped) as the image data when viewing the subject with the left eye and the image processing is performed for the captured image signal of the second pixel 4 (pixel on which the opening 2b of the light shielding film is equipped) as the image data when viewing the subject with the right eye to associate the subject images after the image processing with each other to record the captured image data for each frame in the memory, such that the stereoscopic moving image of the subject may be recorded. Alternatively, it may be recorded as a stereoscopic still image as well.
Since the captured image signal for the left eye or the captured image signal for the right eye read from the solid-state image capturing element 21 becomes a signal read from a pixel of the Bayer arrangement, respectively, an image processing engine for the existing Bayer arrangement may be used for the image processing and thus, low cost may be implemented.
The signal f(x) and signal g(x) are obtained by receiving light coming from the same subject on the same horizontal line and become the same waveform shifted from each other in the horizontal direction, such that a deviation amount between both the signals becomes an amount of phase difference. The amount of phase difference is parallax according to a distance to the subject, and the captured image signal for the right eye and the captured image signal for the left eye having the amount of phase difference are read from the solid-state image capturing element 21 and thus, it becomes possible to generate the stereoscopic image of the subject.
Next, a case of photographing the 2D moving image using the image capturing apparatus 10 will be described. As described above, the 3D moving image may be photographed using the image capturing apparatus 10, but there may be a case where some user prefers a 2D moving image. Further, there is also a case where a monitor or a television receiver for reproducing the 3D image is not present and the monitor or the television receiver is adapted to only reproduce the 2D image. Alternatively, there is a case where both the 3D moving image and the 2D moving image are required to be photographed simultaneously. Therefore, the image capturing apparatus 10 of the present embodiment is equipped with a photographing function for the 3D image as well as the 2D moving image.
The pixels surrounded by the black bold line frame of
In a case of photographing both the 3D moving image and the 2D moving image, each captured image signal of a pixel line (horizontal line) in which the phase difference detection pixels 3, 4 exist and a pixel line in which the normal pixel pair 2 used for photographing the 2D moving image exist may be read. Accordingly, the 3D moving image and the 2D moving image may be simultaneously photographed.
When the addition mean value is used as data for generating the 2D moving image, each signal disposition position becomes an addition gravity center position of the pixel pair and becomes a position nearest to each pixel position of the 3D image. Accordingly, it is possible to obtain the 3D moving image and the 2D moving image having the same resolution with the same image.
In the embodiment of
When the 2D moving image is captured using the normal pixel 2 located at the horizontal right side or horizontal left side, the 3D moving image data and the 2D moving image data may be read from the same horizontal line from the solid-state image capturing element 21, it becomes possible to simultaneously read the 3D moving image and the 2D moving image in a short time.
In the present embodiment, brightness of the photographing scene is determined at step S1, and when the brightness is a predetermined threshold a or more, the process proceeds to step S2. The captured image signal of one pixel of the pixel pair is employed or the addition mean value of the two pixels of the pixel pair is employed and then, the process proceeds to step S4.
As a determination result of step S1, the brightness of the scene is dark with being less than the predetermined threshold a, the process proceeds to step S3 in order to implement a high sensitivity, and the captured image signals of the two pixels of the pixel pair are added and the process proceeds to step S4. The 2D moving image data is generated at step S4 and the process ends.
Further, when the 3D moving image and the 2D moving image are not simultaneously photographed but only the 2D moving image is photographed, it is possible to photograph a moving image having a wide dynamic range. A reset signal or a reading-out signal applied to a signal reading-out circuit of the pixel is adjusted to shorten the exposure time of one pixel 2 of the other pixel pair with respect to an exposure time of the other pixel 2 of the other pixel pair in the horizontal line to perform photographing, and both the captured image signals are added, such that it is possible to obtain the 2D moving image having a wide dynamic range.
The aspect ratio of the image photographed by the image capturing apparatus 10 is normally 4:3, but there is a case where people would like to appreciate the moving images with a large screen of the television receiver having the aspect ratio of 16:9. In such a case, a reading method of the following third embodiment may be desirably adopted and is selected by the menu screen of the image capturing apparatus 10.
In
In the reading method illustrated in
According to the embodiment, the 2D moving image is generated using the captured image signals of all the normal pixels 2 of the horizontal direction in the reading-out line, it becomes possible to suppress the causes for image quality deterioration such as a false color or jaggie.
Further, in the embodiment illustrated in
An addition of 2-pixel having the same color (in the modified example, 3-pixel addition) in the vertical direction is explained in
Further, in this example, descriptions will be made for pixels “5-pixel addition”, but the 2-pixel addition or the 3-pixel addition may be adopted and the addition is determined according to the resolution of the moving image intended to be obtained. The number of pixels for addition may be determined according to brightness of the photographing scene as described in
In a case where a 2D still image of HD is photographed using the solid-state image capturing element 21, the captured image signal of each of all the pixels is read. Accordingly, it is possible to obtain a high definition image proportional to the number of pixels. In this case, since the openings 2a, 2b of the light shielding films of the phase difference detection pixels 3, 4 are narrower than the opening 1 of the light shielding film (
As described above, according to the above-described embodiment, when the 3D image is captured, the image processing is performed using only the captured image signal of the phase difference detection pixel, and when the 2D image which is not a still image is captured, the image processing is performed using only the captured image signal of the normal pixel other than the phase difference detection pixel. Therefore, both the 3D image and the 2D image are photographed together and read from the solid-state image capturing element 21 and then, both the images may be distinguished by the image processing to be stored in a recording media as each image data. Further, when the 2D moving image is captured, the number of pixels for addition may be controlled according to brightness of the photographing scene and thus, it is possible to generate a moving image having required sensitivity.
Further, when the pixel addition is performed as in the above-described embodiment, the addition gravity center position is set to the position of the phase difference detection pixel such that phase difference irregularity in the screen may be eliminated, and thus it becomes possible to obtain a high quality moving image.
As described above, an image capturing element of the embodiment is characterized in that a plurality of pixels are arranged in a square lattice form, the color filters are arranged in a Bayer arrangement, a pair of a first phase difference detection pixel which acquires one of the captured image signals for a right eye and a left eye and a second phase difference detection pixel which acquires the other of the captured image signals for the right eye and the left eye is provided on discrete and periodic positions in the square lattice form, the first phase difference detection pixel is provided among the respective pixels of the square lattice form at 2n+1-pixel (n=1, 2, . . . ) intervals both in a horizontal direction and a vertical direction, and the second phase difference detection pixel of the pair is provided on a pixel having the same color filter and spaced apart with respect to the first phase difference detection pixel by two pixels. Accordingly, the color filter arrangement of the phase difference detection pixel pair may be arranged in the Bayer arrangement.
Further, the image capturing element of the embodiment is characterized by the above-described image capturing element and n=2. Accordingly, it becomes possible to maximize the resolution of the stereoscopic image.
Further, an image capturing apparatus of the embodiment is characterized by including an image capturing element driving unit which reads the captured image signal of the phase difference detection pixel when capturing the stereoscopic moving image.
Further, the image capturing apparatus of the embodiment is characterized in that when capturing the planar moving image, the captured image signal of the pixel other than the phase difference detection pixel is read.
Further, the image capturing apparatus of the embodiment is characterized by further including an image processing unit which generates the planar moving image by using the captured image signal of any one of the plurality of adjacent pixels having the same color filter among the pixels other than the phase difference detection pixel or using the addition mean value of the captured image signals of the plurality pixels. Accordingly, the 2D moving image may be obtained rapidly and a 2D moving image with high SN may be obtained.
Further, the image capturing apparatus of the embodiment is characterized in that when the photographing scene is dark, the image processing unit generates the planar moving image by adding the captured image signals of the plurality of adjacent pixels having the same color filter among the pixels other than the phase difference detection pixel. Accordingly, a 2D moving image with high sensitivity may be obtained.
Further, the image capturing apparatus of the embodiment is characterized in that the planar moving image and the stereoscopic moving image are captured simultaneously. Accordingly, two types of the moving images may be obtained in a short time.
Further, the planar moving image of the image capturing apparatus of the embodiment is characterized in that only pixel interleaving of the vertical direction is performed without performing pixel interleaving for the pixels of the horizontal direction of the image capturing element to produce an image having an aspect ratio of 16:9. Accordingly, it becomes possible to obtain the 2D moving image which can be viewed with a large screen of the television receiver having the aspect ratio of 16:9.
Further, the image capturing apparatus of the embodiment is characterized in that when capturing the planar still image of high quality, the captured image signals are read from all the pixels of the image capturing element and the captured image signal of the phase difference detection pixel is corrected to generate the planar still image with high definition. Since the normal pixels are disposed around the phase difference detection pixel, the correction may be performed easily and reliably, and the high quality planar still image with high definition may be easily obtained.
According to the embodiment described above, it becomes possible to acquire the moving image that satisfies demand of the user at a low cost and in a short time.
The image capturing apparatus according to the present invention may photograph the still image as well as the 3D moving image and the 2D moving image, and may be used as, for example, a digital camera equipped with moving image photography function.
While the present invention is described in detail and with reference to a specific embodiment, it is apparent to an ordinary skilled person in the art that various changes and modification may be made without departing from a scope or spirit of the present invention. This application is based on and claims priority from Japanese Patent Application No. 2011-129618, filed on Jun. 9, 2011, with the Japanese Patent Office, the disclosure of which is incorporated herein in its entirety by reference.
1 opening of light shielding film of normal pixel
2 pixel (photoelectric conversion element)
2
a,
2
b opening of light shielding film of phase difference detection pixel
3, 4 phase difference detection pixel
10 image capturing apparatus
12 photographing lens
26 digital signal processing unit
29 system control unit
Number | Date | Country | Kind |
---|---|---|---|
2011-129618 | Jun 2011 | JP | national |
This is a continuation of International Application No. PCT/JP2012/062276 filed on May 14, 2012, and claims priority from Japanese Patent Application No. 2011-129618, filed on Jun. 9, 2011, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/062276 | May 2012 | US |
Child | 14099387 | US |