1. Field of the Invention
The invention relates to an image device and a data processing system.
2. Description of the Related Art
Referring to
Referring to
U.S. Pat. No. 6,239,783 and U.S. Pat. No. 6,219,025 map samples of the image data to individual pixel sub-samples, including mapping two or more samples to at least one of the pixel sub-component.
U.S. Pat. No. 6,282,327 adjusts the width of the character to create a non-uniformity of gaps between characters. Non-uniformity in the weight of character lines may be minimized by adjusting the black body width of each character.
U.S. Pat. No. 6,225,973 exploits the separately-controllable nature of individual RGB pixel sub-components to effectively increase a screen's resolution in the dimension perpendicular to the dimension in which the screen is striped.
U.S. Pat. No. 6,234,070 reduces color artifacts by comparing the different between the luminous intensity value, performing a gray scaling operation on pixels having an overall luminance that is less than the luminance associated with a background color and adjusting the luminous intensity values if a pixel has a color that falls outside a selected range of acceptable mixes of the foreground and background colors.
U.S. Pat. No. 6,624,828 improves the perceived quality of displayed images involves the use of information relating to a specific user's ability to perceive image characteristics such as color.
U.S. Pat. No. 6,421,054 and U.S. Pat. No. 6,307,566 take advantage of the ability to control individual RGB pixel sub-elements to effectively increase a screen's resolution in the dimension perpendicular to the dimension in which the screen is striped.
U.S. Pat. No. 6,393,145 filters the color are filtered in order to generate an oversampled color scan line and filtered again with box filter to generate color values associated with sub-pixel components. Gamma correct ion is applied on the output color.
U.S. Pat. No. 7,342,585 adjusts the number of subpixels to turn on in the direction of emboldening taking into account contractual information regarding surrounding subpixels.
U.S. Pat. No. 7,190,367 uses the progressive cache to determine a cached element most representing a display image satisfying the rendering request.
U.S. Pat. No. 7,129,948 transfers the hints by modifying values in a control value table. The control value table is modified so that they now constrain corresponding control points in the target character.
U.S. Pat. No. 7,095,412 and U.S. Pat. No. 7,095,411 define the hints by one or more statements that contain multiple values that define constraints the glyph.
U.S. Pat. No. 7,068,276, hint is discarded where it appears inappropriate for a character of the second True Type™ font. The system maintains indicant of a discarded hint to indicate where a hint has been discarded.
All the above patents were dealing with data processing and in particular font data processing for mapping text into a conventional RGB image device. Thus RGB subpixel rendered data are embedded in the RGB data stream with determined positions and orders of RGBRGB . . . RGB.
The present invention is to provide an image device. The image device includes a plurality of pixel groups. Each pixel group includes a plurality of dots arranged in a predetermined identical matrix form, and each pixel group has at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot. The first color dot and the third color dot are disposed on a first column position of the pixel group, and the second color dot and the fourth color dot are disposed on a second column position of the pixel group. At least one of the first color dot and the third color dot is a green dot, and at least one of the second color dot and the fourth color dot is a red dot.
In a white balance status, the component of green dot has the biggest share of around 60 percent, follow up by red dot with around 30 percent and blue dot with around 10 percent, therefore it is critical to best match the position of green dot and red dot of the conventional RGB data stream, rendered specially to the RGB stripe display, into the 2×2 matrix of AB×CD pixel display where One of the first color dot (A) and the third color dot (C) is a green dot, and one of the second color dot (B) and the fourth color dot (D) is a red dot.
Furthermore, the present invention is to provide a data processing system. The data processing system includes a receiving device and a selecting device. The receiving device is used for receiving a first color data string. The first color data string includes a plurality of first color data group. Each first color data group includes a plurality of first color data. The first color data represents color information in color dots of a first pixel group. The selecting device is used for obtaining a second color data string from the first color data string. The second color data string includes a plurality of second color data group. Each second color data group includes a plurality of second color data. At least one of the second color data represents color information in a neighboring color dot of a neighboring first pixel group next to the first pixel group.
Therefore, the second color data string of the data processing system of the invention can be used to meet the subpixel rendered text quality on non-stripe multi-color displays to get best performance in text quality.
Further advantageous measures are described in the dependent claims. The invention is shown in the attached drawings and is described hereinafter in greater detail.
Referring to
The selecting device 52 is used for obtaining a second color data string from the first color data string. In the embodiment of the invention, the second color data string is G0B0R1G1G1R2G2B2 . . . Rn. The second color data string includes a plurality of second color data groups, for example, the second color data group is G0B0R1, or G1G1R2. Each second color data group includes a plurality of second color data, for example, G0, B0 and R1. At least one of the second color data represents color information in a neighboring color dot of a neighboring first pixel group next to the first pixel group. In the embodiment of the invention, the second color data G0 represents color information in a green color dot of the first pixel group (conventional RGB pixel group); the second color data B0 represents color information in a blue color dot of the first pixel group (conventional RGB pixel group); the second color data R1 represents color information in a red color dot of a neighboring first pixel group next to the first pixel group (conventional RGB pixel group). Therefore, in the embodiment of the invention, the second color data represent sequentially color information in the order of green dot and blue dot of the first pixel group and color information in red dot of the neighboring first pixel group.
The second color data string of the data processing system of the invention can be used to meet the subpixel rendered text quality on non-stripe multi color displays. The data processing system 50 further includes a converting device 53 for converting the second color data string to a third color data string. In the embodiment of the invention, the third color data string is r0g0b0w0r1g1b1w1r2g2b2w2 . . . rngnbnwn. The third color data string includes a plurality of third color data groups, for example, the third color data group is r0g0b0w0, or r1g1b1w1. Each third color data group includes a plurality of third color data, for example, r0, g0, b0 and w0. The third color data represent color information in color dots of a second pixel group. In the embodiment of the invention, the third color data TO represents color information in a red color dot of the second pixel group, for example, RGBW pixel group; the third color data g0 represents color information in a green color dot of the second pixel group (RGBW pixel group); the third color data b0 represents color information in a blue color dot of the second pixel group (RGBW pixel group); the third color data w0 represents color information in a white color dot of the second pixel group (RGBW pixel group). Therefore, in the embodiment of the invention, the second pixel group includes four color dots, the four color dots are red dot, green dot, blue dot and white dot.
The data processing system 50 further includes an image device 54 comprising a plurality of second pixel groups for displaying the third color data string.
According to the embodiment of the invention, it is assumed that the texts are already rendered by the font engine in the computer system before sending to the display device. The rendered texts into Clear Type™ are then overlaid with the background image to form the RGB frame buffer to be sent from the computer system to the corresponding RGB display. Since the conventional RGB subpixel rendered data such as Clear Type™ font are embedded in the RGB data stream with determined positions and orders of R0G0B0R1G1G1R2G2B2 . . . RnGnBn sent from the computer system to the display, how to map correctly the first color data string into a 2×2 quad pixel display such as a 2×2 matrix RGBW quad pixel display or a 2×2 matrix RGBB quad pixel display is to be determined. From the first color data string R0G0B0R1G1B1R2G2B2 . . . RnGnBn, we know that in a white balance, the component of G has the biggest share of around 60 percent, follow up by R with around 30 percent and B with around 10 percent, therefore it is critical to best match the position of G and R of the first color data string R0G0B0R1G1B1R2G2B2 . . . RnGnBn, rendered specially to the RGB stripe display, into the 2×2 matrix of AB×CD quad pixel display where at least one of A or C has to be Green and at least one of B or D has to be Red as shown in
From the first color data string R0G0B0R1G1B1R2G2B2 . . . RnGnBn, we can extract a multiple of 3 triplets of RGB or GBR (by shifting one subpixel) or BRG (by shifting 2 subpixels). Since B component of around 10 percent contribution to white balance carries the least information, the best triplet data to match with the 2×2 quad pixel display has to be the second color data string G0B0R1G1B1R2G2B2 . . . Rn from the first color data string R0G0B0RG1B1R2G2B2 . . . RnGnBn, where the B is in the middle of the triplet data as shown in
Referring to
In the first embodiment of the invention, the first color dot, the second color dot, the third color dot and the fourth color dot are quadrate shape. In the first type of the first embodiment, the first color dot (A) is a green dot, the second color dot (B) is a white dot, the third color dot (C) is a blue dot and the fourth color dot (D) is a red dot. In the second type of the first embodiment, the first color dot (A) is a green dot, the second color dot (B) is a red dot, the third color dot (C) is a blue dot and the fourth color dot (D) is a white dot. In the third type of the first embodiment, the first color dot (A) is a white dot the second color dot (B) is a red dot, the third color dot (C) is a green dot and the fourth color dot (D) is a blue dot. In the fourth type of the first embodiment, the first color dot (A) is a blue dot, the second color dot (B) is a white dot, the third color dot (C) is a green dot and the fourth color dot (D) is a red dot.
Referring to
Referring to
Referring to
Referring to
In a white balance status, the component of green dot has the biggest share of around 60 percent, follow up by red dot with around 30 percent and blue dot with around 10 percent, therefore it is critical to best match the position of green dot and red dot of the conventional RGB data stream, rendered specially to the RGB stripe display, into the 2×2 matrix of AB×CD pixel display where One of the first color dot (A) and the third color dot (C) is a green dot, and one of the second color dot (B) and the fourth color dot (D) is a red dot.
While embodiments of the present invention has been illustrated and described, various modifications and improvements can be made by those skilled in the art. The embodiments of the present invention are therefore described in an illustrative, but not restrictive, sense. It is intended that the present invention may not be limited to the particular forms as illustrated, and that all modifications which maintain the spirit and scope of the present invention are within the scope as defined in the appended claims.
The present application is a Continuation Application under 35 USC 120 of U.S. patent application Ser. No. 12/273,341 filed on Nov. 18, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12273341 | Nov 2008 | US |
Child | 14703615 | US |