IMAGE DEVICE

Information

  • Patent Application
  • 20120092237
  • Publication Number
    20120092237
  • Date Filed
    October 18, 2010
    14 years ago
  • Date Published
    April 19, 2012
    12 years ago
Abstract
An image device includes a plurality of pixel groups. Each pixel group includes a plurality of dots arranged in a predetermined identical matrix form, and each pixel group has at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot. Any repeated sequence of consecutive color dots in a row direction and in a column direction comprise at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot. The advantage of the invention is to provide all multi-primary colors in a single row or column so that by using subpixel rendering method, black and white lines can be formed in rows or columns, thus reducing the number of columns in a multi-primary colors display.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to an image device, and particularly to an image device with repeated sequence of consecutive color dots in a row direction and in a column direction.


2. Description of the Related Art


Referring to FIG. 1, it shows a conventional RGB stripe display. The conventional RGB stripe display 10 comprises a plurality of RGB pixel groups 11 and 12. The RGB pixel group 11 includes a red dot (R1) 111, a green dot (G1) 112 and a blue dot (B1) 113 arranged in a row direction, and the RGB pixel group 12 includes a red dot (R2) 121, a green dot (G2) 122 and a blue dot (B2) 123 arranged next to the RGB pixel group 11 in the row direction. In a column direction, the same color dots, for example red dot 111, are arranged in the same column, therefore one column alone does not have all the colors needed for creating a white color column.


U.S. Pat. No. 7,583,279 teaches different non conventional multicolor displays wherein black and white line can be formed in rows or columns. The deficiency is that such display uses stripe subpixels which need at least 2 columns to contain all the multi color for forming a white column since one column alone does not have all the colors needed for creating a white color.


Therefore, there is a need for an image display to solve the above problems.


SUMMARY OF THE INVENTION

The present invention is to provide an image device. The image device includes a plurality of pixel groups. Each pixel group includes a plurality of dots arranged in a predetermined identical matrix form, and each pixel group has at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot. Any repeated sequence of consecutive color dots in a row direction and in a column direction comprise at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot.


The advantage of the invention is to provide all multi-primary colors in a single row or column so that by using subpixel rendering method, black and white lines can be formed in rows or columns, thus reducing the number of columns in a multi-primary colors display.





BRIEF DESCRIPTION OF THE DRAWING

Further advantageous measures are described in the dependent claims. The invention is shown in the attached drawing and is described hereinafter in greater detail.



FIG. 1 shows a conventional RGB stripe display;



FIG. 2 shows the image device according to a first embodiment of the invention;



FIG. 3 shows the image device according to a second embodiment of the invention;



FIG. 4 shows the image device according to a third embodiment of the invention;



FIG. 5 shows the image device according to a fourth embodiment of the invention; and



FIG. 6 shows the image device according to a fifth embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 2, it shows the image device according to a first embodiment of the invention. The image device 20 includes a plurality of pixel groups 21, 22, 23. Each pixel group includes a plurality of dots arranged in a predetermined identical matrix form, and each pixel group has at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot. For example, the first pixel group 21 has at least one first color dot 211 (A), at least one second color dot 212 (B), at least one third color dot 213 (C) and at least one fourth color dot 214 (D). The first color dot 211 (A), the second color dot 212 (B), the third color dot 213 (C) and the fourth color dot 214 (D) do not be limited to any color.


In this embodiment, the pixel group comprises four color dots arranged in a 2×2 matrix. An initial 2×2 pixel group, for example the first pixel group 21, in the upper left corner of the image device 21 comprises at least one first color dot 211 (A), at least one second color dot 212 (B), at least one third color dot 213 (C) and at least one fourth color dot 214 (D).


Any repeated sequence of consecutive color dots in a row direction and in a column direction comprise at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot. In this embodiment, the repeated sequence of consecutive color dots in the row direction comprises for example the first color dot 211 (A) of the first pixel group 21, the second color dot 212 (B) of the first pixel group 21, the third color dot 231 (C) of the third pixel group 23, the fourth color dot 232 (D) of the third pixel group 23, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the row direction.


The repeated sequence of consecutive color dots in the column direction comprises for example the first color dot 211 (A) of the first pixel group 21, the third color dot 213 (C) of the first pixel group 21, the fourth color dot 221 (D) of the second pixel group 22, the second color dot 223 (B) of the second pixel group 22, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the column direction.


Referring to FIG. 3, it shows the image device according to a second embodiment of the invention. The image device 30 includes a plurality of pixel groups 31, 32, 33. Each pixel group includes a plurality of dots arranged in a predetermined identical matrix form, and each pixel group has at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot. For example, the first pixel group 31 has at least one red color dot 311 (R), at least one green color dot 312 (G), at least one white color dot 313 (W) and at least one blue color dot 314 (B). In this embodiment, each pixel group comprises at least one white color dot, and each pixel group comprises at least one red color dot, one green color dot and one blue color dot. Preferably, red color dot (R) and blue color dot (B) are disposed on diagonal positions of the predetermined identical matrix of the pixel group. Furthermore, same color dots do not share common edge line.


Any repeated sequence of consecutive color dots in a row direction and in a column direction comprise at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot. In this embodiment, the repeated sequence of consecutive color dots in the row direction comprises for example the red color dot 311 (R) of the first pixel group 31, the green color dot 312 (G) of the first pixel group 31, the blue color dot 331 (B) of the third pixel group 33, the white color dot 332 (W) of the third pixel group 33, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the row direction.


The repeated sequence of consecutive color dots in the column direction comprises for example the red color dot 311 (R) of the first pixel group 31, the white color dot 313 (W) of the first pixel group 31, the blue color dot 321 (B) of the second pixel group 32, the green color dot 323 (G) of the second pixel group 32, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the column direction. Furthermore, in this embodiment, the area of 2×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display (as shown in FIG. 1).


Referring to FIG. 4, it shows the image device according to a third embodiment of the invention. The image device 40 includes a plurality of pixel groups 41, 42, 43. The pixel group comprises four color dots arranged in a 2×2 matrix. In this embodiment, the repeated sequence of consecutive color dots in the row direction comprises for example the red color dot 411 (R) of the first pixel group 41, the green color dot 412 (G) of the first pixel group 41, the blue color dot 431 (B) of the third pixel group 43, the white color dot 432 (W) of the third pixel group 43, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the row direction.


The repeated sequence of consecutive color dots in the column direction comprises for example the red color dot 411 (R) of the first pixel group 41, the white color dot 413 (W) of the first pixel group 41, the blue color dot 421 (B) of the second pixel group 42, the green color dot 423 (G) of the second pixel group 42, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the column direction. The difference between the second embodiment and the third embodiment is that, in this embodiment, the area of 3×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display (as shown in FIG. 1).


Referring to FIG. 5, it shows the image device according to a fourth embodiment of the invention. The image device 50 includes a plurality of pixel groups 51, 52, 53. The pixel group comprises four color dots arranged in a 2×2 matrix. In this embodiment, the repeated sequence of consecutive color dots in the row direction comprises for example the red color dot 511 (R) of the first pixel group 51, the green color dot 512 (G) of the first pixel group 51, the blue color dot 531 (B) of the third pixel group 53, the white color dot 532 (W) of the third pixel group 53, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the row direction.


The repeated sequence of consecutive color dots in the column direction comprises for example the red color dot 511 (R) of the first pixel group 51, the white color dot 513 (W) of the first pixel group 51, the blue color dot 521 (B) of the second pixel group 52, the green color dot 523 (G) of the second pixel group 52, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the column direction. The difference between the second embodiment and the fourth embodiment is that, in this embodiment, the area of 3×3 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display (as shown in FIG. 1).


Referring to FIG. 6, it shows the image device according to a fifth embodiment of the invention. The image device 60 includes a plurality of pixel groups 61, 62, 63. The pixel group comprises four color dots arranged in a 2×2 matrix. In this embodiment, the repeated sequence of consecutive color dots in the row direction comprises for example the red color dot 611 (R) of the first pixel group 61, the green color dot 612 (G) of the first pixel group 61, the blue color dot 631 (B) of the third pixel group 63, the white color dot 632 (W) of the third pixel group 63, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the row direction.


The repeated sequence of consecutive color dots in the column direction comprises for example the red color dot 611 (R) of the first pixel group 61, the white color dot 613 (W) of the first pixel group 61, the blue color dot 621 (B) of the second pixel group 62, the green color dot 623 (G) of the second pixel group 62, and the same repeated sequence of consecutive color dots are arranged sequentially and repeatedly in the column direction. The difference between the second embodiment and the fourth embodiment is that, in this embodiment, the area of 4×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display (as shown in FIG. 1).


The advantage of the invention is to provide all multi-primary colors in a single row or column so that by using subpixel rendering method, black and white lines can be formed in rows or columns, thus reducing the number of columns in a multi-primary colors display.


While embodiments of the present invention has been illustrated and described, various modifications and improvements can be made by those skilled in the art. The embodiments of the present invention are therefore described in an illustrative, but not restrictive, sense. It is intended that the present invention may not be limited to the particular forms as illustrated, and that all modifications which maintain the spirit and scope of the present invention are within the scope as defined in the appended claims.

Claims
  • 1. An image device, comprising: a plurality of pixel groups, each pixel group comprising a plurality of dots arranged in a predetermined identical matrix form, each pixel group having at least one first color dot, at least one second color dot, at least one third color dot and at least one fourth color dot, wherein any repeated sequence of consecutive color dots in a row direction and in a column direction comprise at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot.
  • 2. The image device according to claim 1, wherein each pixel group comprises at least one white color dot.
  • 3. The image device according to claim 1, wherein each pixel group comprises at least one red color dot, one green color dot and one blue color dot.
  • 4. The image device according to claim 3, wherein red color dot and blue color dot are disposed on diagonal positions of the predetermined identical matrix of the pixel group.
  • 5. The image device according to claim 1, wherein the area of 2×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display.
  • 6. The image device according to claim 1, wherein the area of 3×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display.
  • 7. The image device according to claim 1, wherein the area of 3×3 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display.
  • 8. The image device according to claim 1, wherein the area of 4×2 color dots is equal to the corresponding area of 2×2 RGB pixel groups of a conventional RGB stripe display.
  • 9. The image device according to claim 1, wherein same color dots do not share common edge line.
  • 10. The image device according to claim 1, wherein the pixel group comprises four color dots arranged in a 2×2 matrix.
  • 11. The image device according to claim 10, wherein an initial 2×2 pixel group in the upper left corner of the image device comprises at least one first color dot, at least one second color dot, at least one third color dot, at least one fourth color dot.
  • 12. The image device according to claim 1, wherein the repeated sequence of consecutive color dots in the row direction comprises red color dot, green color dot, blue color dot and white color dot arranged sequentially and repeatedly, and the repeated sequence of consecutive color dots in the column direction comprises red color dot, white color dot, blue color dot and green color dot arranged sequentially and repeatedly.