Information
-
Patent Grant
-
6396207
-
Patent Number
6,396,207
-
Date Filed
Monday, October 18, 199925 years ago
-
Date Issued
Tuesday, May 28, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Fitzpatrick, Cella, Harper & Scinto
-
CPC
-
US Classifications
Field of Search
US
- 313 553
- 313 561
- 313 563
- 313 551
- 313 481
- 313 422
- 313 495
-
International Classifications
-
Abstract
An image display apparatus is provided with an external housing constituted by members including first and second substrates positioned with a gap therebetween, an electron source positioned on the first substrate in the external housing, and a fluorescent film and an accelerating electrode provided on the second substrate. A first getter is positioned in the image display area in the external housing. And a second getter is so provided as to be insulated from the electron source and the accelerating electrode and as to surround the first getter.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image display apparatus provided with an electron source, and a method for producing the same.
2. Related Background Art
In an apparatus for displaying an image by irradiating a fluorescent member, constituting an image displaying member, with an electron beam from an electron source thereby causing the fluorescent member to emit light, it is necessary to maintain the interior of a vacuum chamber, containing the electron beam and the image displaying member, at high vacuum. If the pressure in the vacuum chamber is elevated by gas generation therein, such gas detrimentally influences the electron source to lower the amount of electron emission, thereby disabling the display of bright image, though the level of such influence depends on the kind of the gas. Also such generated gas is ionized by the electron beam and the generated ions are accelerated by the electric field for accelerating the electrons and may collide with the electron source to generate a damage thereon. There may also be generated a discharge in the vacuum chamber, eventually leading to the destruction of the apparatus.
The vacuum chamber of the image display apparatus is usually formed by combining glass members and adhering the joints thereof for example with flit glass, and, once the adhesion is completed, the pressure in the vacuum chamber is maintained by a getter provided in the vacuum chamber. In the ordinary cathode ray tube, an alloy principally composed of barium is heated by an electric current or a high frequency radio wave in the vacuum chamber to form an evaporation film therein, and the high vacuum in the vacuum chamber is maintained by absorbing the gas, generated therein, by such evaporation film.
However, in the recently developed flat panel display utilizing the electron source consisting of a plurality of electron emitting elements provided on a flat substrate, a specific drawback is that the gas generated from the image displaying member reaches the electron source before reaching the getter, thereby inducing local increase of the pressure and deterioration of the electron source resulting therefrom.
In order to resolve this drawback, in the plat panel image display of a certain structure, there is proposed a configuration of providing getter in the image display area, in order to immediately absorb the generated gas.
For example, Japanese Patent Application Laid-open No. 4-12436 discloses, in an electron source having a gate electrode for extracting the electron beam, a method of forming such a gate electrode with a getter material, and shows, as an example, an electron source of an electric field emission type utilizing a conical projection as the cathode and a semiconductor electron source having a projection. Also, Japanese Patent Application Laid-open No. 63-181248 discloses, in a flat panel display having an electrode (such as a grid) for controlling the electron beam between a group of cathodes and a face plate of the vacuum chamber, a method of forming a film of a getter material of such a controlling electrode.
Also the U.S. Pat. No. 5,453,659 “Anode plate for flat panel display having integrated getter”, issued Sep. 26, 1995 to Wallace et al. discloses a getter member formed in the gap between the striped fluorescent material on the image display member (anode plate). In this example, the getter is electrically isolated from the fluorescent member and the conductive member electrically connected thereto, and is activated by irradiation with the electron from the electron source, under the application of a suitable potential to the getter.
Also the Japanese Patent Application Laid-open No. 9-82245 discloses formation of the getter member at the side of the metal back or the electron source substrate, and also discloses, for activating the getter, to provide an exclusive heater wiring and to activate such heater, or to irradiate the getter with the electron beam.
In the above-described image display apparatus, though the deterioration of the electron source caused by the gas generated in the vacuum chamber can be prevented to a certain extent by positioning a larger number of getter members in the vacuum chamber, it is difficult to efficiently absorb such generated gas thereby resulting in the deterioration of the electron source in a prolonged time or unevenness in the luminance of the displayed image in a prolonged time, unless certain particular consideration is given to the positioning of such getter members.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an image display apparatus with little deterioration in time of the electron emitting characteristics of the electron source, and a method for producing the same.
Another object of the present invention is to provide an image display apparatus with little change in time of the luminance, and a method for producing the same.
Still another object of the present invention is to provide an image display apparatus with little generation of unevenness in time in the image display area, and a method for producing the same.
The above-mentioned objects can be attained, according to the present invention, by an image display apparatus provided with an external housing composed of members including, in the external housing, a first substrate and a second substrate positioned with a gap therebetween, an electron source provided on the first substrate, and a fluorescent film and an accelerating electrode provided on the second substrate, the apparatus comprising:
a first getter positioned in the image display area in the external housing; and
a second getter insulated from the electron source and the accelerating electrode and so positioned as to surround the first getter.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A
,
1
B and
1
C are schematic views showing the configuration of an image display apparatus constituting a first embodiment of the present invention;
FIGS. 2A and 2B
are schematic views showing a surface conduction type electron emitting element;
FIGS. 3A and 3B
are views showing the pattern of arrangement of fluorescent members and a black conductive material;
FIGS. 4A and 4B
are schematic views showing an example of the electron source formed by arranging the surface conduction type electron emitting elements of the present invention in a simple matrix;
FIGS. 5A
,
5
B and
5
C are schematic views showing the configuration of an image display apparatus constituting a second embodiment of the present invention;
FIGS. 6A and 6B
are schematic views showing the configuration of an image display apparatus constituting a third embodiment of the present invention;
FIG. 7
is a schematic view showing another example of the electron source formed by arranging the surface conduction type electron emitting elements of the present invention in a simple matrix;
FIG. 8
is a cross-sectional view along a line
8
—
8
in
FIG. 7
;
FIG. 9
is a block diagram showing an example of the drawing circuit for executing display on the image display apparatus of the present invention, according to a television signal of NTSC standard;
FIG. 10
is a plan view showing an example of the electron source of simple matrix arrangement formed according to the present invention;
FIGS. 11A and 11B
are cross-sectional views respectively along lines
11
A—
11
A and
11
B—
11
B in
FIG. 10
;
FIGS. 12A
,
12
B,
12
C,
12
D,
12
E,
12
F,
12
G and
12
H,
12
X and
12
K show the process for forming an electron source substrate having a simple matrix arrangement of the surface conduction electron emitting elements of the present invention;
FIG. 13
is a schematic view showing a vacuum apparatus for executing a forming step and an activation step in the manufacturing process for the image display apparatus of the present invention;
FIG. 14
is a schematic view showing a wiring method for the forming step and the activation step in the manufacturing process for the image display apparats of the present invention;
FIGS. 15A and 15B
are charts showing a voltage wave form for the forming step and the activation step in the manufacturing process for the image display apparatus of the present invention;
FIG. 16
is a schematic view showing an image display apparatus of a second embodiment;
FIGS. 17A and 17B
are schematic views showing the configuration of a face plate of an image display apparatus of a third embodiment;
FIGS. 18A and 18B
are schematic views showing an image display apparatus of a fourth embodiment;
FIGS. 19A and 19B
are schematic views showing an image display apparatus of a fifth embodiment;
FIGS. 20A and 20B
are schematic views showing an image display apparatus of a reference example;
FIG. 21
is a schematic plan view of an electron source of simple matrix arrangement in a sixth embodiment;
FIGS. 22A and 22B
are cross-sectional views respectively along lines
22
A—
22
A and
22
B—
22
B in
FIG. 21
;
FIGS. 23A
,
23
B and
23
C are schematic views showing an image display apparatus of a seventh embodiment;
FIGS. 24A
,
24
B and
24
C are schematic views showing an image display apparatus of an eighth embodiment;
FIGS. 25A
,
25
B and
25
C are schematic views showing an image display apparatus of a ninth embodiment;
FIGS. 26A
,
26
B and
26
C are schematic views showing an image display apparatus of an eleventh embodiment;
FIGS. 27A
,
27
B,
27
C,
27
D,
27
E and
27
F are views showing the process for producing an electron source substrate of a thirteenth embodiment in which the surface conduction electron emitting elements are arranged in a simple matrix;
FIGS. 28A and 28B
are schematic views showing an image display apparatus of a thirteenth embodiment; and
FIGS. 29A and 29B
are schematic views showing an image display apparatus of a fifteenth embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the present invention, the image display area in which the first getter is provided means any of an area of the second substrate where the fluorescent film is formed, an area of the first substrate opposed to the above-mentioned area of the fluorescent film, and a spatial area sandwiched between these areas.
Also in the present invention, the second getter so positioned as to surround the first getter is positioned around the area where the first getter is provided on both sides of such area, or to surround the area where the first getter is provided so as to surround such area, or around the above-mentioned image display area so as to be on both sides of such area, or around the above-mentioned image display area so as to surround such area, and in any case electrically insulated from the electron source on the first substrate and the accelerating electrode on the second substrate.
In the present invention, the above-mentioned arrangement of the first and second getters allows the gas, generated from members constituting the external housing itself or members positioned outside the above-mentioned image display area among those provided therein, to be promptly absorbed by the second getter so positioned as to surround the first getter before reaching the first getter provided in the image display area, whereby the burden of the first getter positioned in the image display area can be alleviated. Consequently, when the electron source is activated, the gas generated more in the image display area can be efficiently absorbed by the first getter, whereby the vacuum in the external housing can be maintained in a satisfactory state and the electron emission amount from the electron emitting elements can be stabilized in time.
Also in the present invention, the first getter provided in the above-mentioned image display area is preferably provided on the wiring for the electron source. The wiring is preferably a printed wiring formed by a printing method, in order to increase the absorption rate and the total absorption amount of the getter and to prevent discharge while the electron emitting elements are driven.
Also in the present invention, the getters are provided on the first or second substrate prior to an adhesion step for adhering plural member constituting the external housing and such getters is activated prior to the completion of the above-mentioned adhesion step, whereby the gas generated from the adhesive for adhering the plural members constituting the external housing at a sealing step can be absorbed by the getters to minimize the deterioration of the electron emitting characteristics of the electron source by the above-mentioned generated gas at the sealing step. Also until the end of the sealing step, among the getters, the second getter provided so as to surround the first getter is in particular activated to minimize the deterioration of the absorbing ability of the first getter by the above-mentioned generated gas, whereby, when the electron source is driven, the gas generated more in the image display area can be efficiently absorbed by the first getter, to maintain the vacuum in the external housing in a satisfactory state and to stabilize the electron emission amount from the electron emitting elements in time. In the present invention, it is preferable to activate the getters again after the sealing step, in order that the getters provided in the external housing have a sufficient absorbing ability for the gas generated when the electron source is driven.
The basic configuration in which the present invention is applicable will be explained in the following by certain preferred embodiments.
FIGS. 1A
to
1
C are schematic views of a first embodiment of the image display apparatus of the present invention, wherein an electron source substrate
1
bears an electron source consisting of plural electron emitting elements
110
, wired in a matrix by plural row wirings (upper wirings)
102
and plural column wirings (lower wirings)
103
. The electron emitting element
110
is provided with a pair of electrodes and a conductive film positioned between the paired electrodes and having an electron emitting portion. In the present embodiment, there is employed, as shown in
FIGS. 2A and 2B
, an electron emitting element of surface conduction type, provided with a pair of conductive films
108
formed with a gap
116
therebetween and a pair of electrodes
105
,
106
electrically connected respectively to the paired conductive films
108
.
FIG. 2A
is a plan view while
FIG. 2B
is a cross-sectional view thereof. The surface conductive electron emitting element shown in
FIG. 2A and 2B
preferably has a configuration having a carbon film on the conductive films
108
.
Referring to
FIGS. 1A
to
1
C, there are also shown a rear plate
2
on which the electron source substrate
1
is fixed, a supporting frame
3
, and a face plate
4
, which are mutually adhered for example with frit glass to constitute an external housing
5
.
In the external housing
5
, there are provided a non-evaporating getter (NEG)
9
constituting the first getter, and a container
14
supporting a getter constituting the second getter.
The fact plate
4
is provided, on a transparent substrate
6
for example of glass, with a fluorescent film
7
and a metal back
8
. In case of the black-and-white image, the fluorescent film
7
is composed solely of a fluorescent substance, but, in case of displaying a color image, each pixel is constituted by fluorescent substances of three primary colors of red, green and blue which are mutually separated by a black conductive material. The black conductive material is called, depending on the shape thereof, black stripe or black matrix, as will be explained in more details later.
The metal back
8
is composed of a thin conductive film such as of aluminum. It serves to reflect a light component proceeding toward the electron source substrate
1
, among the light generated by the fluorescent member, toward the transparent substrate
6
of the face plate
4
thereby increasing the luminance, and to protect the fluorescent member from the damage caused by ions generated by ionization with the electron beam of the gas remaining in the external housing. It also serves to give electroconductivity to the image display area of the face plate
4
, thereby functioning as an anode for the electron source.
In the following there will be given an explanation on the fluorescent film
7
.
FIG. 3A
shows a case where the fluorescent material
13
is formed in stripes, in succession in three primary colors of red (R), green (G) and blue (B), which are mutually separated by a black conductive material
12
constituting a black member. In such configuration, the portion of the black conductive material
12
is called a black stripe.
FIG. 3B
shows a configuration in which dots of the fluorescent material are arranged in a lattice pattern, and are mutually separated by the black conductive material
12
. In this case, the portion of the black conductive material
12
is called a black matrix. The fluorescent materials
13
of different colors can be arranged in several manners, and the arrangement of the dots can be, for example, a square lattice in addition to the triangular lattice shown in FIG.
3
B.
The black conductive material
12
and the fluorescent member
13
can be patterned on the transparent substrate
6
for example by the slurry method or the printing method. After the fluorescent film
7
is formed, a metal film such as of aluminum is formed to constitute the metal back
8
.
FIGS. 4A and 4B
are schematic views showing a part of the electron source constituted by the surface conduction electron emitting elements arranged two-dimensionally and connected by the matrix wirings.
FIG. 4A
is a plan view while
FIG. 4B
is a cross-sectional view along a line
4
B—
4
B in FIG.
4
A.
There are shown an insulating substrate
1
such as of glass, row wirings (upper wirings)
102
, and column wirings (lower wirings)
103
. The row wirings
102
and the column wirings
103
are respectively connected to the electrodes
106
,
105
of each surface conduction electron emitting element.
The column wirings
103
are formed on the substrate
1
, and an insulation layer
104
is formed thereon. Then the row wirings
102
, the element electrodes
105
,
106
and the conductive films
108
are formed thereon, and the column wiring
103
and the element electrode
105
are connected through a contact hole
107
.
The wirings mentioned above can be formed by the combination of the thin film deposition method such as sputtering, vacuum evaporation or plating and the photolithographic technology, or by the printing method.
In the present embodiment, a non-evaporating getter
9
constituting the first getter is provided on the row wiring
102
within an area (image display area x) of the substrate
1
, opposed to the area of the above-mentioned fluorescent film
7
.
In the present embodiment, the non-evaporating getter
9
may be provided, instead of the row wiring
102
, on the column wiring
103
in the image display area x, or in the area of the metal back
8
corresponding to the area of the fluorescent film
7
on the face plate
4
, or in the area corresponding to the area of the black conductive material
12
on the metal back
8
.
The non-evaporating getter
9
may be provided in one of the locations mentioned above or in plurality thereof.
The non-evaporating getter
9
is preferably provided in uniform distribution over the entire image display area.
The non-evaporating getter can be composed of at least one of the metals Ti, Zr, Cr, Al, V, Nb, Ta, W, Mo, Th, Ni, Fe and Mn or an alloy thereof and can be produced by vacuum evaporation or sputtering with a suitable mask.
Also in the present embodiment, a container
14
supporting a getter
15
a
as the second getter is supported in hollow state in a position outside the image display area and around the non-evaporating getter
9
constituting the first getter so as to surround the same. The container
14
can have a linear form or an annular form, and the getter
15
a
supported therein can be composed of the non-evaporating getter material mentioned above or of an evaporating getter material principally composed of Ba. The effects of the present embodiment, to be explained later, can be attained also in case the second getter mentioned above is so positioned outside the image display area as to on both sides thereof. However, the second getter is preferably provided outside the image display area so as to surround the first getter as shown in
FIGS. 1A and 1B
, because the effect of the second getter is larger in such configuration.
A rear plate
2
supporting the substrate
1
, a supporting frame
3
and the face plate
4
are mutually adhered by attaching frit glass on the jointing portions and heating the members to a temperature of 400 to 450° C. In practice, in order to eliminate a component contained as the binder in the frit glass, there is executed a sintering step as a low temperature (called pre-firing) in an oxygen-containing atmosphere. In this step it is desirable to lower the oxygen concentration and the temperature as far as possible. The actual conditions are dependent on the kind of the frit, but preferably the temperature does not exceed 250° C. Thereafter heating is conducted at 400 to 450° C. in inert gas such as Ar, thereby jointing the members by fusion (sealing step).
Subsequently the interior of the external housing
5
is evacuated (vacuum formation step), and there are executed necessary processes such as the activation of the electron source on the substrate
1
(electron source activation step). Then executed are evacuation and thermal degassing of the interior of the external housing
5
(backing step) to secure sufficient vacuum in the interior of the external housing
5
, and an unrepresented evacuation tube, provided on the external housing, is sealed off with a burner (sealing step). The above-mentioned backing step executes activation of the non-evaporating first getter
9
.
Then executed is the activation of the second getter. In case the getter
15
a
(represented as a wire in
FIGS. 1A and 1B
) supported in the container
14
provided in the external housing
5
is a non-evaporating getter, it is activated together with the first getter in the foregoing baking step. In case it is an evaporating getter such as of Ba, the getter
15
a
is heated after the sealing step to form a film of the getter material by evaporation onto the internal wall of the external housing
5
(called getter flushing). The getter film
15
b
formed in this operation (cf.
FIG. 1C
) is so formed across the insulation layer
101
as to be positioned outside the image display area of the external housing
5
and to be insulated from the electron source on the substrate
1
and from the metal back
8
constituting the electron accelerating electrode.
Finally, if necessary, the non-evaporating getter
9
and the getter
15
a
if it is the non-evaporating type are subjected to a heat treatment at 250 to 450° C. for re-activation.
In thus prepared image display apparatus, the gas generated from the members constituting the external housing itself and those provided therein but positioned outside the image display area can be promptly absorbed, before reaching and being absorbed by the first getter in the image display area, by the line-shaped second getter positioned outside the image display area so as to surround the first getter, whereby the burden of the first getter provided in the image display area can be alleviated. Consequently, the gas generated more in the image display area when the electron source is driven can be efficiently and promptly absorbed by the first getter whereby the internal vacuum of the external housing can be maintained at a satisfactory level and the electron emission amount from the electron emitting elements is stabilized in time.
FIGS. 5A
to
5
C schematically show a second embodiment of the image display apparatus of the present invention. An electron source substrate
1
is provided with an electron source, consisting of plural electron emitting elements
110
which are matrix wired with plural row wirings (upper wirings)
102
and plural column wirings (lower wirings)
103
. The electron emitting element
110
is of the surface conduction type described in the first embodiment.
Referring to
FIGS. 5A
to
5
C, a rear plate
2
, a supporting frame
3
, and a face plate
4
are mutually adhered for example with frit glass to constitute an external housing
5
.
In the external housing
5
, there are provided a non-evaporating first getter (NEG)
9
, and a second getter
14
which is also of the non-evaporating type.
The face plate
4
is provided, on a transparent substrate
6
for example of glass, with a fluorescent film
7
and a metal back
8
, and can be same as that in the first embodiment.
Also in the present embodiment, the electron source consisting of the surface conduction electron emitting elements arranged two-dimensionally and connected in a matrix is similar to that in the first embodiment schematically illustrated in
FIGS. 4A and 4B
.
Also in the present embodiment, a non-evaporating getter
9
constituting the first getter is provided on the row wiring
102
within an area (image display area x) of the substrate
1
, opposed to the area of the above-mentioned fluorescent film
7
.
Also in the present embodiment, the non-evaporating getter
9
may be provided, instead of the row wiring
102
, on the column wiring
103
in the image display area x, or in the area of the metal back
8
corresponding to the area of the fluorescent film
7
on the face plate
4
, or in the area corresponding to the area of the black conductive material
12
on the metal back
8
, and may be provided in one of the locations mentioned above or in plurality thereof. The non-evaporating getter
9
is preferably provided in uniform distribution over the entire image display area.
Also in the present embodiment, a second getter is provided outside the image display area.
In the present embodiment, the second getter is a non-evaporating getter
14
, and is positioned on the substrate
1
across an insulating member
115
, outside the image display area so as to be on both sides of the non-evaporating first getter
9
. The non-evaporating second getter
14
may also be provided on the electron source substrate
1
, or on the rear plate
2
fixing the electron source substrate
1
, or around the first getter so as to be on both sides thereof or to surround the same, as long as it is insulated from the metal back
8
constituting the electron accelerating electrode or from the electron source on the substrate
1
. As explained in the first embodiment, the second getter is preferably so positioned outside the image display area as to surround the first getter, because the effects of the present embodiment to be explained later become more conspicuous.
The first and second getters explained above can be similar to those described in the first embodiment, with similar methods of preparation.
A rear plate
2
supporting the substrate
1
, a supporting frame
3
and the face plate
4
are mutually adhered by attaching frit glass on the jointing portions and heating the members to a temperature of 400 to 450° C. In practice, in order to eliminate a component contained as the binder in the frit glass, there is executed a sintering step as a low temperature (called pre-firing) in an oxygen-containing atmosphere. In this step it is desirable to lower the oxygen concentration and the temperature as far as possible. The actual conditions are dependent on the kind of the frit, but preferably the temperature does not exceed 250° C. Thereafter heating is conducted at 400 to 450° C. in inert gas such as Ar, thereby jointing the members by fusion (sealing step). Before the sealing step is completed, there is executed an activation step for the non-evaporating getter
14
outside the image display area. This activation step is to cause the non-evaporating getter
14
outside the image display area to absorb the gas generated from the frit in the above-mentioned sealing step, thereby preventing the deterioration in the electron emitting characteristics of the electron source in the image display area and the deterioration of the non-evaporating getter. In the present embodiment, the non-evaporating getter is activated by irradiation with a laser beam.
Subsequently the interior of the external housing
5
is evacuated (vacuum formation step), and there are executed necessary processes such as the activation of the electron source on the substrate
1
(electron source activation step). Then executed are evacuation and thermal degassing of the interior of the external housing
5
(backing step) to secure sufficient vacuum in the interior of the external housing
5
, and an unrepresented evacuation tube, provided on the external housing, is sealed off with a burner (sealing step).
Finally, if necessary, there is executed activation of the getters. The non-evaporating getters
9
,
14
are subjected to a heat treatment preferably at 250 to 450° C., more preferably at 300 to 400° C. Since the getters are composed solely of the non-evaporating getters, the activation can be achieved by thermal treatment with a satisfactory yield, without requiring the step of incorporating the evaporating getter and the getter flushing step.
In thus prepared image display apparatus, the gas generated from the members constituting the external housing itself and those provided therein but positioned outside the image display area can be promptly absorbed, before reaching and being absorbed by the first getter in the image display area, by the line-shaped second getter positioned outside the image display area so as to be on at least two sides of the first getter, whereby the burden of the first getter provided in the image display area can be alleviated. Consequently, the gas generated more in the image display area when the electron source is driven can be efficiently and promptly absorbed by the first getter whereby the internal vacuum of the external housing can be maintained at a satisfactory level and the electron emission amount from the electron emitting elements is stabilized in time. The second getter in the present embodiment is preferably a line-shaped getter surrounding the first getter in the four sides thereof as explained in the foregoing first embodiment, in consideration of the aforementioned effects.
FIGS. 6A and 6B
are schematic views showing a third embodiment of the image display apparatus of the present invention. An electron source substrate
1
is provided with an electron source, consisting of plural electron emitting elements
110
which are matrix wired with plural row wirings (upper wirings)
102
and plural column wirings (lower wirings)
103
. The electron emitting element
110
is of the surface conduction type described in the first and second embodiments.
Referring to
FIGS. 6A
to
6
C, a rear plate
2
, a supporting frame
3
, and a face plate
4
are mutually adhered for example with frit glass to constitute an external housing
5
.
In the external housing
5
, there are provided non-evaporating getters (NEG)
109
a
,
109
b.
The face plate
4
is provided, on a transparent substrate
6
for example of glass, with a fluorescent film
7
and a metal back
8
, and can be same as that in the first embodiment.
FIGS. 7 and 8
are schematic views showing a part of the electron source substrate
1
of the present embodiment, constituted by the surface conduction electron emitting elements arranged two-dimensionally and connected by the matrix wirings.
FIG. 7
is a plan view while
FIG. 8
is a cross-sectional view along a line
8
—
8
, in FIG.
7
.
There are shown an insulating substrate
1
such as of glass, row wirings (upper wirings)
102
, and column wirings (lower wirings)
103
. The row wirings
102
and the column wirings
103
are respectively connected to the electrodes
106
,
105
of each surface conduction electron emitting element.
At the crossing point of the column wiring
103
and the row wiring
102
, an insulation layer
104
is formed on the column wiring
103
and the row wiring
102
is formed thereon.
The row wirings
102
and the column wirings
103
can be formed by the printing method such as offset printing or screen printing, and the element electrodes
105
,
106
and the conductive films
108
can be formed by the combination of the photolithographic process and the vacuum evaporation, by plating, printing or by a method of dissolving a metal in a solvent, depositing and firing the obtained solution.
The non-evaporating getters (NEG)
109
a
,
109
b
are formed on the wirings on the electron source substrate
1
. In the present embodiment, the non-evaporating getters are formed on both the row wirings
102
and the column wirings
103
, but they may also be formed on either. In such case, the getters are preferably formed on the scanning wirings in the simple matrix drive. This is because, in the simple matrix drive, a larger current capacity is desired in the scanning wirings rather than in the signal wirings, so that the scanning wirings are formed with a larger width to increase the area of the non-evaporating getters. The non-evaporating getters are preferably provided in uniform distribution over the entire image display area.
Also in the present embodiment, as in the foregoing first and second embodiments, the second getter is provided outside the image display area in order to attain the effects explained in the foregoing first and second embodiments.
The above-mentioned non-evaporating getters to be formed on the wirings can be composed of materials similar to those in the foregoing first embodiment, with a similar method of preparation.
In the present embodiment, the wiring is formed by the printing method as described above, and therefore has surface irregularity larger than that of the evaporated or sputtered film. Consequently the non-evaporating formed thereon has a larger surface area, thus increasing the absorption rate and the total absorption amount of the non-evaporating getter. Such surface irregularity also improves the adhesion of the non-evaporating getter, thus preventing the dropping of the non-evaporating getter to the vicinity of the electron emitting element, constituting a cause of discharge while the electron emitting element is driven.
Consequently there is preferred a wiring with relatively large surface irregularity, and also effective is a process of intentionally forming the irregularity for example by sand blasting after the wiring is formed by printing. Also in the manufacture, the printing method is less expensive in comparison with the photolithographic process in combination with the vacuum evaporation, and can be more easily adaptable to a large-sized substrate.
The rear plate
2
supporting the substrate
1
, the supporting frame
3
and the face plate
4
are mutually adhered by attaching frit glass on the jointing portions and heating the members to a temperature of 400 to 450° C. In practice, in order to eliminate a component contained as the binder in the frit glass, there is executed a sintering step as a low temperature (called pre-friting) in an oxygen-containing atmosphere. In this step it is desirable to lower the oxygen concentration and the temperature as far as possible. The actual conditions are dependent on the kind of the frit, but preferably the temperature does not exceed 250° C. Thereafter heating is conducted at 400 to 450° C. in inert gas such as Ar, thereby jointing the members by fusion (sealing step).
Subsequently the interior of the external housing
5
is evacuated (vacuum formation step), and there are executed necessary processes such as the activation of the electron source on the substrate
1
(electron source activation step). Then executed are evacuation and thermal degassing of the interior of the external housing
5
(backing step) to secure sufficient vacuum in the interior of the external housing
5
, and an unrepresented evacuation tube, provided on the external housing, is sealed off with a burner (sealing step). There is then executed an activation step for the getters, preferably by heating the non-evaporating getters
109
a
,
109
b
at 250 to 450° C. The activation of the non-evaporating getters
109
a
,
109
b
may be executed at least once after the sealing step, and may be achieved in the above-mentioned backing step.
In the following there will be explained, with reference to
FIG. 9
, an example of the configuration of the driving circuit for television display based on the NTSC television signal, utilizing the above-described image display apparatus. In
FIG. 9
, there are shown an image display apparatus
81
, a scanning circuit
82
, a control circuit
83
, a shift register
84
, a line memory
85
, a synchronization signal separation circuit
86
, a modulation signal generator
87
, and DC voltage sources Vx, Va.
The image display apparatus
81
is connected with external circuits through terminals Dox
1
to Doxm, Doy
1
to Doyn and a high voltage terminal Hv.
The terminals Dox
1
to Doxm receive a scanning signal for driving the electron source provided in the image display apparatus
81
, namely the surface conduction electron emitting elements connected in a matrix of m row and n columns, in succession by a row (consisting of n elements).
The terminals Doy
1
to Doyn receive modulation signals for controlling the output electron beams of the surface conduction electron emitting elements of a row selected by the above-mentioned scanning signal.
The high voltage terminal Hv receives, from a DC high voltage source Va, a DC voltage for example of 10 kV as the accelerating voltage for providing the electron beam, emitted from the surface conduction electron emitting element, with a sufficient energy for exciting the fluorescent member.
The scanning circuit
82
is provided therein with m switching elements (schematically represented by S
1
to Sm), each of which selects the output voltage of a DC voltage source Vx or 0 V (ground level) and which are electrically connected respectively with the terminals Dox
1
to Doxm of the image display apparatus
81
. The switching elements S
1
to Sm function based on control signals Tscan released from the control circuit
83
and can be composed by the combination of switching elements such as FET's.
The DC voltage source Vx in the present embodiment is so designed as to output such a constant voltage that the driving voltage applied to an element not in the scanning operation becomes lower than the electron emitting threshold voltage.
The control circuit
83
so functions as to match the operations of various units in order to execute suitable display based on the external entered image signal. It generates control signals Tscan, Tsft and Tmry based on a synchronization signal Tsync supplied from the sync signal separation circuit
86
.
The sync signal separation circuit
86
serves to separate a synchronization signal component and a luminance signal component from the externally entered NTSC television signal and can be composed for example of general frequency separation (filter) circuits. The synchronization signal separated by the sync signal separation circuit
86
is composed of a vertical synchronization signal and a horizontal synchronization signal, but is illustrated as the Tsync signal for the purpose of brevity. The luminance signal component separated from the television signal is represented as a signal DATA for the purpose of simplicity. The DATA signal is entered into the shift register
84
.
The shift register
84
is used for executing serial/parallel conversion on the time-sequentially entered serial DATA signal for each line of the image, and functions according to the control signal Tsft supplied from the control circuit
83
. Thus the control signal Tsft can be regarded as the shift clock signal for the shift register
84
. The serial/parallel converted data of a line of the image (corresponding to the driving data for the n electron emitting elements) are outputted as parallel signals Id
1
to Idn from the shift register
84
.
The line memory
85
serves to store the data of a line of the image for a necessary time and suitably stores the signals Id
1
to Idn according to the control signal Tmry supplied from the control circuit
83
. The stored content is outputted as Id′
1
to Id′n and supplied to the modulation signal generator
87
.
The modulation signal generator
87
is a signal source for appropriately modulating the electron emitting elements respectively corresponding to the image data Id′
1
to Id′n, and applies such image data to the surface conduction electron emitting elements in the image display apparatus
81
through the terminals Doy
1
-Doyn.
The electron emitting element in which the present invention is applicable has the following basic characteristics with respect to the emission current Ie. For the electron emission there exists a distinct threshold voltage Vth, and the electron emission occurs only when a voltage at least equal to such threshold voltage Vth is applied. For the voltage equal to or larger than the electron emitting threshold voltage, the emission current also varies according to the variation of the voltage applied to the element. Based on these characteristics, when a pulse-shaped voltage is supplied to the element, the electron emission does not occur by the application of a voltage lower than the threshold value, but the electron beam is emitted by the application of a voltage at least equal to the threshold value. In such operation, the intensity of the output electron beam can be controlled by varying the wave height Vm of the pulse. It is also possible to control the total charge of the output electron beam by varying the duration Pw of the pulse.
Consequently, for modulating the electron emitting element according to the input signal, there can be adopted a voltage modulation method and a pulse width modulation method. In case of the voltage modulation method, the modulation signal generator
87
may be composed of a circuit of voltage modulation system capable of generating a voltage pulse of a constant length and modulating the wave height of the voltage pulse according to the input data.
In case of the pulse width modulation method, the modulation signal generator
87
may be composed of a circuit of pulse width modulation system capable of generating a voltage pulse of a constant wave height and modulating the duration of the voltage pulse according to the input data.
The shift register
84
and the line memory
85
can be of digital signal type or analog signal type, since they are only required to execute the serial/parallel conversion of the image signal and the storage thereof at a desired speed.
In case of the digital signal type, the output signal DATA of the sync signal separation circuit
86
need to be digitized, but this can be achieved by providing an A/D converter at the output of the sync signal separation circuit
86
. In this connection, the circuit employed in the modulation signal generator
87
somewhat varies according to whether the output of the line memory
85
is a digital signal or an analog signal. More specifically, in case of the voltage modulation system employing the digital signal, the modulation signal generator
87
is composed for example of a D/A conversion circuit, eventually with an amplifying circuit. In case of the pulse width modulation system, the modulation signal generator
87
is composed for example of a high-speed oscillator, a counter for counting the number of waves outputted from the oscillator, and a comparator for comparing the output of the counter and that of the memory. If necessary, there may be added a voltage amplifier for amplifying the pulse width modulated signal from the comparator to the driving voltage for the electron emitting element.
In case of the voltage modulation system employing the analog signal, the modulation signal generator
87
can be composed for example of an amplifier utilizing an operational amplifier or the like, eventually with a level shifting circuit. In case of the pulse width modulation system, there can be employed a voltage-controlled oscillator (VCO), eventually with an amplifier for executing voltage amplification to the driving voltage of the surface conductio electron emitting element.
In the image display apparatus of the present invention of any of the above-described configurations, the electron emission is induced by the application of voltages to the electron emitting elements through the terminals Dox
1
to Doxm, Doy
1
to Doyn. The electron beams are accelerated by applying a high voltage through the high voltage terminal Hv to the metal back
8
or a transparent electrode (not shown). The accelerated electrons collide with the fluorescent film
7
to cause light emission, thereby displaying the image.
The above-described configuration of the image display apparatus is an example of the image display apparatus in which the present invention is applicable, and is subject to various modifications based on the technical concept of the present invention. There has been explained the input signal of NTSC system, but such input signal is not restrictive and there may be employed other input signals such as of PAL or SECAM or a TV signal utilizing a larger number of scanning lines (for example high definition TV such as MUSE system).
The image display apparatus of the present invention can be utilized as the display apparatus for the television broadcasting, that for the television conference system or for the computers, and as the image display apparatus in a photo printer composed for example with a photosensitive drum.
In the following the present invention will be further clarified by preferred embodiments, but the present invention is not limited by such embodiments and is subject to replacement of the components or change in the design thereof within an extent that the objects of the present invention can be attained.
Embodiment 1
The image display apparatus of the present embodiment is constructed similarly to the apparatus schematically illustrated in
FIGS. 1A
to
1
C, and the non-evaporating getters (NEG)
9
are positioned on the substantially entire surface of the row wirings (upper wirings)
102
within the image display area.
The image display apparatus of the present embodiment is provided, on the substrate
1
, with an electron source consisting of plural surface conduction electron emitting elements wired in a simple matrix structure (100 rows×100 columns).
FIG. 10
is a partial plan view of the electron source substrate
1
, while
FIGS. 11A and 11B
are cross-sectional views respectively along lines
11
A—
11
A and
11
B—
11
B in
FIG. 10. A
same component is represented by a same number in
FIGS. 10
,
11
A and
11
B. There are shown an electron source substrate
1
, row wirings (upper wirings)
102
, column wirings (lower wirings)
103
, conductive films
108
including the electron emitting portions, element electrodes
105
,
106
, an interlayer insulation film
104
, contact holes
107
for electrical connection between the element electrodes
105
and the lower wirings
103
, and an insulation layer
115
formed on the lower wirings
103
.
In the following there will be explained, with reference to
FIGS. 12A
to
12
H,
12
X and
12
K a method for producing the image display apparatus of the present invention.
Step a
The glass substrate
1
was sufficiently cleaned with a washing agent, deionized water and organic solvent. On the glass substrate
1
, a silicon oxide film of a thickness of 0.5 μm was formed by sputtering. Then, on the substrate
1
, photoresist (AZ1370/Hoechst Co.) was spin coated with a spinner, then baked, exposed to the image of a photomask and developed to form a resist pattern of the lower wirings
103
. Then Cr of a thickness of 5 nm and Au of a thickness of 600 nm were deposited in succession by vacuum evaporation, and the unnecessary portion of the Au/Cr deposition film was removed by lift off to form the lower wirings
103
of the desired form (FIG.
12
A).
Step b
Then the interlayer insulation film
104
, consisting of a silicon oxide film of a thickness of 1.0 μm, was deposited by RF sputtering (FIG.
12
B).
Step c
A photoresist pattern for forming the contact hole
107
was formed on the silicon oxide film deposited in the step b, and was used as a mask for etching the interlayer insulation film
104
to form the contact hole
107
(FIG.
12
C). The etching was conducted by RIE (reactive ion etching) utilizing CF
4
and H
2
gas.
Step d
A photoresist pattern was formed in the area excluding the contact hole
107
, and Ti of a thickness of 5 nm and Au of a thickness of 500 nm were deposited in succession by vacuum evaporation. The contact hole
107
was filled in by eliminating the unnecessary portion by lift-off (FIG.
12
D).
Step e
A pattern of the element electrodes
105
,
106
was formed with photoresist (RD-2000N-41/Hitachi Chemical Co.), and Ti of a thickness of 5 nm and Ni of a thickness of 100 nm were deposited in succession by vacuum evaporation. The photoresist pattern was dissolved with organic solvent to lift off the Ni/Ti deposition film to obtain the element electrodes
105
,
106
with a gap G therebetween of 3 μm and a width of the electrode of 300 μm (FIG.
12
E).
Step f
A photoresist pattern of the upper wirings
102
was formed on the element electrodes
105
,
106
, and Ti of a thickness of 5 nm and Au of a thickness of 500 nm were deposited in succession by vacuum evaporation. The unnecessary portions were eliminated by lift-off to form the upper wirings
102
of the desired form (FIG.
12
F).
Step g
A Cr film of a thickness of 100 nm (not shown) was deposited by vacuum evaporation and patterned. Then an amine complex solution (ccp4230/Okuno Pharmaceutical Co.) was spin coated thereon and was heat treated for 10 minutes at 300° C. The conductive film
108
, principally consisting of fine Pd powder for forming the electron emitting portions, had a film thickness of 8.5 nm and a sheet resistance of 3.9×10
4
Ω/□ (FIG.
12
G).
Step h
The Cr film and the conductive film
108
for forming the electron emitting portions, after sintering, were wet etched with an acid etchant to form the conductive films
108
of the desired pattern (FIG.
12
H).
Through the foregoing steps, there were obtained, on the substrate
1
, the conductive films
108
for forming the plural electron emitting portions and the plural upper wirings
102
and the plural lower wirings
103
connecting such conductive films
108
in the simple matrix.
Step x
Then the non-evaporating getter layer
9
consisting of a Zr—V—Fe alloy was formed by sputtering on each upper wiring
102
, utilizing a metal mask. The thickness of the getter layer
9
was adjusted to 2 μm. The sputtering target employed had a composition of Zr 70%, V 25% and Fe 5% (in weight ratio) (FIG.
12
X).
Step i
Then the fact plate
4
shown in
FIGS. 1A
to
1
C was prepared in the following manner.
The glass substrate
6
was sufficiently cleaned with a washing agent, deionized water and organic solvent. On the glass substrate
6
, ITO of a thickness of 0.1 μm was formed by sputtering to obtain a transparent electrode (not shown). Then, the fluorescent film
7
was coating by printing method and the surface smoothing (usually called “filming”) to obtain the fluorescent member portion. The fluorescent film
7
had a configuration shown in
FIG. 7A
, in which the striped fluorescent members (R, G, B) and the black conductive material (black stripe) were alternately arranged. Then, on the fluorescent film
7
, the metal back
8
consisting of an Al film was formed with a thickness of 0.1 μm by sputtering.
Step j
Then the external housing
5
shown in
FIGS. 1A
to
1
C was formed in the following manner.
The substrate
1
, prepared in the foregoing steps, was fixed on the rear plate
2
, and the supporting frame
3
and the face plate
4
were combined therewith. The lower wirings
103
and the upper wirings
102
of the substrate
1
were respectively connected to the row selecting terminals
10
and the signal input terminals
11
. Then the substrate
1
and the face plate
4
were precisely adjusted in position and were sealed to form the external housing
5
. The sealing was executed by applying frit glass on the jointing portions and heating for 30 minutes at 450° C. in Ar gas. The substrate
1
and the rear plate
2
were fixed in a similar manner. In positioning the rear plate
2
and the face plate
4
, the wire-shaped evaporating getter (container)
14
, principally composed of Ba, was simultaneously arranged on four sides of the image display area, so as to surround the non-evaporating getters
9
on the upper wirings
102
in the image display area.
The subsequent steps were executed with a vacuum apparatus shown in FIG.
13
.
The external housing
5
, prepared in the above-described manner, was connected to a vacuum chamber
123
through an evacuating tube
122
as shown in FIG.
13
. The vacuum chamber
123
is connected to a vacuum apparatus
125
with a gate valve
124
. The vacuum chamber
123
is provided with a pressure gauge
126
and a quadrapole mass spectrometer (Q-pass)
127
monitoring the internal pressure and the partial pressures of the remaining gasses. Since the internal pressure and the partial pressures in the external housing
5
are difficult to measure directly, those in the vacuum chamber
123
are measured and regarded as those in the external housing
5
.
The vacuum apparatus
125
is an ultra high vacuum apparatus consisting of a sorption pump and an ion pump. The vacuum chamber
123
is connected to plural gas introducing apparatus for introducing materials stored in material sources
129
. The material to be introduced is contained in an ampoule or a bomb according to the kind of the material and the amount of introduction can be controlled by a gas introduction amount control device
128
, which is composed for example of a needle valve or a mass flow controller, according to the kind and flow rate of the material and the required precision of control. In the present embodiment, the material source
129
was benzonitrile contained in a glass ampoule, and the gas introduction amount control means
128
was composed of a slow leak valve.
In the following there will be explained step executed with the above-described vacuum apparatus.
Step k
At first the interior of the external housing
5
was evacuated to a pressure of 1×10
−3
Pa or lower, and the following forming process was executed for forming a gap
116
in each of the aforementioned plural conductive films
108
arranged on the substrate
1
.
As shown in
FIG. 14
, the row wirings
103
were commonly connected to the ground. A control device
131
controlled a pulse generator
132
and a line selector
134
provided with an ammeter
133
. A pulse voltage was applied to one of the row wirings
102
selected by the line selector
134
. The forming process was executed for each row including
300
elements. The applied pulse signal was a triangular pulse signal as shown in FIG.
15
A, with gradual increase of the wave height, and with a pulse width Ti=1 msec and a pulse interval T
2
=10 msec. Between the triangular pulses, there was inserted a rectangular pulse of a wave height of 0.1 V and the current was measured to determine the resistance of each row. The forming process for a row was terminated when the resistance exceeded 3.3 kΩ (1 MΩ per element) and was shifted to a next row. The process was repeated for all the rows to execute the forming on all the conductive films (conductive films
108
for forming the electron emitting portions), thereby forming a gap
116
in each conductive film
108
(FIG.
12
K).
Step l
Then, benzonitrile was introduced into the vacuum chamber
123
shown in
FIG. 13
with a pressure of 1.3×10
−3
Pa, and a pulse signal was applied to the substrate
1
with the measurement of the current If to activate all the conductive films having the gaps
116
. The pulse signal generated by the pulse generator (
FIG. 14
) was a rectangular pulse signal shown in
FIG. 15B
, with a wave height of 14 V, a pulse width T
1
=100 μsec and a pulse interval of 167 μsec. The selected line was shifted in succession from D×
1
to D×
100
by the line selector
134
for every 167 μsec, whereby each row received the rectangular wave of T
1
=100 μsec and T
2
=16.7 msec, with successive shifts in the phase between the rows.
The ammeter
133
was used in a mode of detecting the average current when the rectangular pulse was turned on (with a voltage of 14 V), and the activation was terminated when the measured current reached 600 mA (2 mA per element). Such activation process formed a carbon film in the gap
106
in each of the conductive films
108
.
Step m
The external housing
5
and the vacuum chamber
123
were maintained at 300° C. for 10 hours by an unrepresented heating apparatus, under the continued evacuation of the interior of the external housing
5
. This process removed benzonitrile and decomposed products thereof, supposedly absorbed on the internal walls of the external housing
5
and the vacuum chamber
123
. The removal was confirmed by the observation with the Q-mass
127
. This step executes, by the heating and evacuation of the external housing
5
, not only the gas removal from the interior thereof but also the activation of the non-evaporating getter
9
.
Step n
The evacuating tube was sealed off by heating with a burner, after the pressure reached 1.3×10
−5
Pa or lower. Subsequently, the evaporating getters
15
a
, supported by the four containers
14
a
positioned outside the image display area so as to surround the non-evaporating getters
9
on the upper wirings
102
in the image display area, is subjected to resistance heating to form a flush getter film
15
b
on the insulating member
115
, in such a manner as to be electrically insulated from the electron source
1
and the metal back
8
.
In this manner there was prepared the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the evaporating second getters outside the image display area and around the first getters.
Second Embodiment
FIG. 16
shows the image display apparatus of this embodiment.
In the present embodiment, the step x in the foregoing first embodiment was omitted, and the following step y was executed after the steps a to i were executed in the same manner as in the first embodiment.
Step y
The non-evaporating getter layer
9
consisting of a Ti—Al alloy was formed by sputtering on the entire surface of the metal back
8
of the face plate
4
. The Ti—Al alloy getter layer
9
had a thickness of 50 nm, and the sputtering target used had a composition of Ti 85% and Al 15% (ratio by weight).
Thereafter the steps j to n were executed in the same manner as in the first embodiment to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the evaporating getters outside the image display area and around the first getters.
Third Embodiment
FIG. 17A and 17B
show the configuration of the face plate of the image display apparatus of the present embodiment, and are respectively a plan view and a cross-sectional view along a line
17
B—
17
B in FIG.
17
A.
In the present embodiment, the step x in the foregoing first embodiment was omitted, and the following step z was executed after the steps a to i were executed in the same manner as in the first embodiment.
Step z
The non-evaporating getter layer
9
consisting of a Ti—Al alloy was formed by sputtering on the black layer
12
of the face plate
4
. The Ti—Al alloy getter layer
9
had a thickness of 1 μm, and the sputtering target used had a composition of Ti 85% and Al 15% (ratio by weight).
Thereafter the steps j to n were executed in the same manner as in the first embodiment to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the evaporating second getters outside the image display area and around the first getters.
Fourth Embodiment
FIGS. 18A and 18B
show the image display apparatus of the present embodiment.
The present embodiment was executed in the same manner as the foregoing first embodiment, except that the container
14
for the evaporating getter in the step j of the first embodiment was of an annular type as shown in
FIGS. 18A and 18B
, and that the getter flushing in the step n of the first embodiment was executed by high frequency heating, to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the line-shaped evaporating second getters outside the image display area and around the four sides of the first getters.
Fifth Embodiment
FIGS. 19A and 19B
show the image display apparatus of the present embodiment.
The present embodiment was executed in the same manner as the foregoing fourth embodiment, except that, among the hollow containers
14
of the four sides, the mutually opposed two sides were composed of wire-shaped non-evaporating getters
14
′ consisting of ST
122
(supplied by Saesu Co.) and that the activation thereof was executed for 2 hours at 450° C. after the flushing of the annular evaporating getters
14
, to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the line-shaped evaporating and non-evaporating second getters outside the image display area and around the first getters.
Reference example
In this reference example, an image display apparatus was prepared in the same manner as in the first embodiment, except that an evaporating getter was positioned on only one side outside the image display area.
In this reference example, the evaporating getter
14
was provided on one side outside the image display area as shown in
FIGS. 20A and 20B
, and the getter film was formed by flushing the evaporating getter
14
with a heating wire
15
after the sealing.
Each of the image display apparatus of the foregoing embodiments first to fifth and the reference example was subjected to simple matrix drive to effect continuous light emission over the entire surface and the luminance variation in time was measured.
As a result, though there was difference in the initial luminance, the image display apparatus of the embodiments first to fifth showed scarce decrease of the luminance and scarce fluctuation in the luminance among the pixels even after a prolonged drive, in comparison with the apparatus of the reference example.
Sixth Embodiment
The image display apparatus of this embodiment is similar in configuration to that shown in
FIGS. 5A
to
5
C, wherein the non-evaporating getters
9
are provided on the substantially entire surface of the row wirings (upper wirigns)
102
in the image display area and the non-evaporating getters
14
are provided on the insulation layer
115
covering the column wirings (lower wirings)
103
outside the image display area on the electron source substrate
1
.
The image display apparatus of the present embodiment is provided, on the substrate
1
, with an electron source consisting of plural surface conduction electron emitting elements wired in a simple matrix structure (100 rows×100 columns).
FIG. 21
is a partial plan view of the electron source substrate
1
, while
FIGS. 22A and 22B
are cross-sectional views respectively along lines
22
A—
22
A and
22
B—
22
B in
FIG. 21. A
same component is represented by a same number in
FIGS. 21
,
22
A and
22
B. There are shown an electron source substrate
1
, row wirings (upper wirings)
102
, column wirings (lower wirings)
103
, conductive films
108
including the electron emitting portions, element electrodes
105
,
106
, an interlayer insulation film
104
, contact holes
107
for electrical connection between the element electrodes
105
and the lower wirings
103
, and an insulation layer
115
formed on the lower wirings
103
.
In the following there will be explained, with reference to
FIG. 12
, a method for producing the image display apparatus of the present embodiment.
Step a
The glass substrate
1
was sufficiently cleaned with a washing agent, deionized water and organic solvent. On the glass substrate
1
, a silicon oxide film of a thickness of 0.5 μm was formed by sputtering. Then, on the substrate
1
, photoresist (AZ1370/Hoechst Co.) was spin coated with a spinner, then baked, exposed to the image of a photomask and developed to forma resist pattern of the lower wirings
103
. Then Cr of a thickness of 5 nm and Au of a thickness of 600 nm were deposited in succession by vacuum evaporation, and the unnecessary portion of the Au/Cr deposition film was removed by lift-off to form the lower wirings
103
of the desired form (FIG.
12
A).
Step b
Then the interlayer insulation film
104
, consisting of a silicon oxide film of a thickness of 1.0 μm, was deposited by RF sputtering (FIG.
12
B). At the same time, the insulation film
115
was deposited on the lower wirings
103
outside the image display area.
Step c
A photoresist pattern for forming the contact hole
107
was formed on the silicon oxide film deposited in the step b, and was used as a mask for etching the interlayer insulation film
104
to form the contact hole
107
(FIG.
12
C). The etching was conducted by RIE (reactive ion etching) utilizing CF
4
and H
2
gas.
Step d
A photoresist pattern was formed in the area excluding the contact hole
107
, and Ti of a thickness of 5 nm and Au of a thickness of 500 nm were deposited in succession by vacuum evaporation. The contact hole
107
was filled in by eliminating the unnecessary portion by lift-off (FIG.
12
D).
Step e
A pattern of the element electrodes
105
,
106
was formed with photoresist (RD-2000N-41/Hitachi Chemical Co.), and Ti of a thickness of 5 nm and Ni of a thickness of 100 nm were deposited in succession by vacuum evaporation. The photoresist pattern was dissolved with organic solvent to lift off the Ni/Ti deposition film to obtain the element electrodes
105
,
106
with a gap G therebetween of 3 μm and a width of the electrode of
300
μm (FIG.
12
E).
Step f
A photoresist pattern of the upper wirings
102
was formed on the element electrodes
105
,
106
, and Ti of a thickness of 5 nm and Au of a thickness of 500 nm were deposited in succession by vacuum evaporation. The unnecessary portions were eliminated by lift-off to form the upper wirings
102
of the desired form (FIG.
12
F).
Step g
A Cr film of a thickness of 100 nm (not shown) was deposited by vacuum evaporation and patterned. Then an amine complex solution (ccp4230/Okuno Pharmaceutical Co.) was spin coated thereon and was heat treated for 10 minutes at 300° C. The conductive film
108
, principally consisting of fine Pd powder for forming the electron emitting portions, had a film thickness of 8.5 nm and a sheet resistance of 3.9×10
4
Ω/□ (FIG.
12
G).
Step h
The Cr film and the conductive film
108
for forming the electron emitting portions, after sintering, were wet etched with an acid etchant to form the conductive films
108
of the desired pattern (FIG.
12
H).
Through the foregoing steps, there were obtained, on the substrate
1
, the conductive films
108
for forming the plural electron emitting portions and the plural upper wirings
102
and the plural lower wirings
103
connecting such conductive films
108
in the simple matrix.
Step x
Then the non-evaporating getter layers
9
,
14
consisting of a Zr—V—Fe alloy were formed by sputtering on each upper wiring
102
and on each lower wiring
103
outside the image display area, utilizing a metal mask. The thickness of the getter layers
9
,
14
was adjusted to 2 μm. The sputtering target employed had a composition of Zr 70%, V 25% and Fe 5% (in weight ratio) (FIG.
12
X).
Step i
Then the face plate
4
shown in
FIGS. 5A
to
5
C was prepared in the same manner as in the step i of the aforementioned first embodiment.
Step j
Then the external housing
5
shown in
FIGS. 5A
to
5
C was formed in the following manner.
The substrate
1
, prepared in the foregoing steps, was fixed on the rear plate
2
, and the supporting frame
3
and the face plate
4
were combined therewith. The lower wirings
103
and the upper wirings
102
of the substrate
1
were respectively connected to the row selecting terminals
10
and the signal input terminals
11
. Then the substrate
1
and the face plate
4
were precisely adjusted in position and were sealed to form the external housing
5
. The sealing was executed by applying frit glass on the jointing portions and heating for 30 minutes at 450° C. in Ar gas. The substrate
1
and the rear plate
2
were fixed in a similar manner.
The subsequent steps were executed with a vacuum apparatus shown in FIG.
13
.
Step k
At first the interior of the external housing
5
was evacuated to a pressure of 1×10
−3
Pa or lower, and the following forming process was executed for forming a gap
116
in each of the aforementioned plural conductive films
108
arranged on the substrate
1
.
As shown in
FIG. 14
, the row wirings
103
were commonly connected to the ground. A control device
131
controlled a pulse generator
132
and a line selector
134
provided with an ammeter
133
. A pulse voltage was applied to one of the row wirings
102
selected by the line selector
134
. The forming process was executed for each row including
300
elements. The applied pulse signal was a triangular pulse signal as shown in
FIG. 15A
, with gradual increase of the wave height, and with a pulse width T
1
=1 msec and a pulse interval T
2
=10 msec. Between the triangular pulses, there was inserted a rectangular pulse of a wave height of 0.1 V and the current was measured to determine the resistance of each row. The forming process for a row was terminated when the resistance exceeded 3.3 kΩ (1 MΩ per element) and was shifted to a next row. The process was repeated for all the rows to execute the forming on all the conductive films (conductive films
108
for forming the electron emitting portions), thereby forming a gap
116
in each conductive film
108
(FIG.
12
K).
Step I
Then, benzonitrile was introduced into the vacuum chamber
123
shown in
FIG. 13
with a pressure of 1.3×10
−3
Pa, and a pulse signal was applied to the substrate
1
with the measurement of the current If to activate all the conductive films having the gaps
116
. The pulse signal generated by the pulse generator (
FIG. 14
) was a rectangular pulse signal shown in
FIG. 15B
, with a wave height of 14 V, a pulse width T
1
=100 μsec and a pulse interval of 167 μsec. The selected line was shifted in succession from D×
1
to D×
100
by the line selector
134
for every 167 μsec, whereby each row received the rectangular wave of T
1
=100 μsec and T
2
=16.7 msec, with successive shifts in the phase between the rows.
The ammeter
133
was used in a mode of detecting the average current when the rectangular pulse was turned on (with a voltage of 14 V), and the activation was terminated when the measured current reached 600 mA (2 mA per element). Such activation process formed a carbon film in the gap
106
in each of the conductive films
108
.
Step m
The external housing
5
and the vacuum chamber
123
were maintained at 300° C. for 10 hours by an unrepresented heating apparatus, under the continued evacuation of the interior of the external housing
5
. This process removed benzonitrile and decomposed products thereof, supposedly absorbed on the internal walls of the external housing
5
and the vacuum chamber
123
. The removal was confirmed by the observation with the Q-mass
127
. This step executes, by the heating and evacuation of the external housing
5
, not only the gas removal from the interior thereof but also the activation of the non-evaporating getters
9
,
14
.
Step n
The evacuating tube was sealed off by heating with a burner, after the pressure reached 1.3×10
−3
Pa or lower.
In this manner there was prepared the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and also the non-evaporating second getters outside the image display area and on the sides of the area of the first getters.
Seventh Embodiment
FIGS. 23A
to
23
C show the image display apparatus of this embodiment.
In the present embodiment, the following step f-2 was executed between the steps f and g in the foregoing sixth embodiment.
Step f-2
The insulation film
115
, consisting of a silicon oxide film of a thickness of 1.0 μm, was deposited by RF sputtering also on the upper wirings
102
outside the image display area.
Also in the step x of the foregoing sixth embodiment, in forming the getters on the upper wirings
102
in the image display area and the lower wirings
103
outside the image display area, the getter layers
9
,
14
consisting of a Ar—V—Fe alloy was formed by sputtering also on the insulation film
115
of the upper wirings
102
outside the image display area. The thickness of the getter layers
9
,
14
was adjusted to 2 μm. The sputtering target used had a composition of Zr 70%, V 25% and Fe 5% (ratio by weight)
Steps other than those mentioned above were executed in the same manner as in the foregoing sixth embodiment to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the non-evaporating getters also outside the image display area and around the first getters.
Eighth Embodiment
FIGS. 24A
to
24
C show the image display apparatus of the present embodiment.
In the present embodiment, the step x in the foregoing sixth embodiment was omitted, and the following step y was executed after the steps a to i were executed in the same manner as in the sixth embodiment.
Step y
The getter layer
9
was formed on the entire surface of the metal back
8
of the face plate
4
, and the getter layer
14
was formed on four sides surrounding the image display area on the glass substrate
6
of the face plate
4
, excluding a high voltage extracting portion (not shown) so as to be insulated from the metal back
8
. More specifically, the getter layers
9
,
14
consisting of a Ti—Al alloy were formed by sputtering with a thickness of 50 nm. The sputtering target used had a composition of Ti 85% and Al 15% (ratio by weight).
Thereafter the steps j to n were executed in the same manner as in the sixth embodiment to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the non-evaporating getters outside the image display area and around the first getters.
Ninth Embodiment
FIGS. 25A
to
25
C show the image display apparatus of the present embodiment.
In the present embodiment the step x in the foregoing sixth embodiment was omitted, and the following step z was executed after the steps a to i in the same manner as the foregoing sixth embodiment.
Step z
The getter layer
9
was formed on the black stripes
12
of the face plate
4
, and the getter layer
14
was formed on the four sides surrounding the image display area on the glass substrate
6
of the face plate
4
, exclusing the high voltage extracting portion so as to be insulated from the metal back
8
. More specifically the getter layers
9
,
14
consisting of a Ti—Al alloy were formed by sputtering with a thickness of 1 μm. The sputtering target used had a composition of Ti 85% and Al 15% (ratio by weight).
Thereafter the steps j to n were executed in the same manner as in the sixth embodiment to obtain the image display apparatus of the present embodiment, having the non-evaporating first getters in the image display area and the non-evaporating second getters outside the image display area and around the first getters.
Tenth Embodiment
The present embodiment was executed in the same manner as the foregoing sixth embodiment, except that the non-evaporating getter layer
14
outside the image display area was formed with a thickness of 5 μm, thus thicker than the non-evaporating getter layer
9
in the image display area, to obtain the image display apparatus having the non-evaporating first getters in the image display area and the non-evaporating getters outside the image display area and on the sides surrounding the first getters.
Eleventh Embodiment
FIGS. 26A
to
26
C show the image display apparatus of the present embodiment.
The present embodiment was executed in the same manner as the foregoing sixth embodiment, except that the non-evaporating getter layer
14
outside the image display area was formed both on the rear plate and the face plate, on the four sides surrounding the non-evaporating getters
9
, and that the non-evaporating getters were activated by heating for 3 hours at 350° C. after the sealing step, to obtain the image display apparatus having the non-evaporating first getters in the image display area and the non-evaporating getters outside the image display area and around the first getters.
Twelfth Embodiment
The present embodiment was executed in the same manner as the foregoing sixth embodiment, except that the non-evaporating getters
14
outside the image display area were activated by the laser light irradiation during the sealing step, to obtain the image display apparatus having the non-evaporating first getters in the image display area and also the non-evaporating getters outside the image display area and on both sides of the first getters.
The image display apparatus of the foregoing embodiments sixth to twelfth and the aforementioned reference example were evaluated in comparison. The comparison was executed by conducting simple matrix drive in each of the image display apparatus of the foregoing embodiments sixth to twelfth and the aforementioned reference example to effect continuous light emission over the entire surface and measuring the variation of luminance in time.
As a result, though there was difference in the initial luminance, the image display apparatus of the embodiments sixth to twelfth, like those of the embodiments first to fifth, showed scarce decrease of the luminance and scarce fluctuation in the luminance among the pixels even after a prolonged drive, in comparison with the apparatus of the reference example.
Thirteenth Embodiment
The image display apparatus of this embodiment is similar in configuration to that shown in
FIGS. 6A and 6B
, wherein the non-evaporating getters
9
are provided on the row wirings (upper wirings)
102
and the non-evaporating getters
14
formed by printing method.
The image display apparatus of the present embodiment is provided, on the substrate
1
, with an electron source consisting of plural surface conduction electron emitting elements wired in a simple matrix structure (100 rows×100 columns).
FIG. 7
is a partial plan view of the electron source substrate
1
, while
FIG. 8
is a cross-sectional view along a line
8
—
8
in
FIG. 7. A
same component is represented by a same number in
FIGS. 7 and 8
. There are shown an electron source substrate
1
, row wirings (upper wirings or scanning wirings)
102
, column wirings (lower wirings or signal wirings)
103
, conductive films
108
including the electron emitting portions, element electrodes
105
,
106
, and an interlayer insulation film
104
.
In the following there will be explained, with reference to
FIGS. 27A
to
27
F, a method for producing the image display apparatus of the present embodiment.
Step a
The glass substrate
1
was sufficiently cleaned with a washing agent, deionized water and organic solvent. On the glass substrate
1
, a silicon oxide film of a thickness of 0.5 μm was formed by sputtering. Then, on the substrate
1
, a photoresist pattern (RD-2000N-41/Hitachi Chemical Co.) of the element electrodes
105
,
106
was formed, and Ti of a thickness of 5 nm and Ni of a thickness of 100 nm were deposited in succession by vacuum evaporation. The photoresist pattern was dissolved with organic solvent to lift off the Ni/Ti deposition film to obtain the element electrodes
105
,
106
with a gap G therebetween of 3 μm and a width of the electrode of 300 μm (FIG.
27
A).
Step b
Then the lower wirings
103
were formed by screen printing so as to be in contact with the element electrodes
105
, and were heat treated at 400° C. to obtain the lower wirings
103
of the desired form (FIG.
27
B).
Step c
Then the interlayer insulation films
104
were screen printed in the crossing areas of the upper and lower wirings and were heat treated at 400° C. (FIG.
27
C).
Step d
The upper wirings
102
were screen printed so as to be in contact with the element electrodes
106
which are not in contact with the lower wirings
103
, and were heated treated at 400° C. (FIG.
27
D).
Step e
A Cr film (not shown) of a thickness of 100 nm was deposited by vacuum evaporation and patterned. Then an amine complex solution (ccp4230/Okuno Pharmaceutical Co.) was spin coated thereon and was heat treated for 10 minutes at 300° C. The conductive films
108
, principally consisting of fine Pd powder for forming the electron emitting portions, had a film thickness of 8.5 nm and a sheet resistance of 3.9×10
4
Ω/□.
The Cr film and the conductive films
108
for forming the electron emitting portions, after sintering, were wet etched with an acid etchant to form the conductive films
108
of the desired pattern (FIG.
27
E).
Through the foregoing steps, there were obtained, on the substrate
1
, the conductive films
108
for forming the plural electron emitting portions and the plural upper wirings
102
and the plural lower wirings
103
connecting such conductive films
108
in the simple matrix.
Step f
Then photoresist (AZ1370/Hoechst Co.) was spin coated with a spinner, then baked, exposed to the image of a photomask and developed to form a resist pattern on the upper wirings
102
and on the lower wirings
103
not covered by the interlayer insulation film
104
, and non-evaporating getter layers
109
a
,
109
b
consisting of a Zr—V—Fe alloy was formed by sputtering (FIG.
27
F). The thickness of the getter layers
109
a
,
109
b
was adjusted to 2 μm. The sputtering target employed had a composition of Zr 70%, V 25% and Fe 5% (in weight ratio).
Step g
Then the face plate
4
shown in
FIGS. 6A
to
6
C was prepared in the same manner as in the step i of the aforementioned first embodiment.
Step h
Then the external housing
5
shown in
FIGS. 6A
to
6
C was formed in the following manner.
The substrate
1
, prepared in the foregoing steps, was fixed on the rear plate
2
, and the supporting frame
3
and the face plate
4
were combined therewith. The lower wirings
103
and the upper wirings
102
of the substrate
1
were respectively connected to the row selecting terminals
10
and the signal input terminals
11
. Then the substrate
1
and the face plate
4
were precisely adjusted in position and were sealed to form the external housing
5
. The sealing was executed by applying frit glass on the jointing portions and heating for 30 minutes at 450° C. in Ar gas. The substrate
1
and the rear plate
2
were fixed in a similar manner.
The subsequent steps were executed with a vacuum apparatus shown in FIG.
13
.
Step i
At first the interior of the external housing
5
was evacuated to a pressure of 1×10
−3
Pa or lower, and the following forming process was executed for forming a gap
116
in each of the aforementioned plural conductive films
108
arranged on the substrate
1
.
As shown in
FIG. 14
, the row wirings
103
were commonly connected to the ground. A control device
131
controlled a pulse generator
132
and a line selector
134
provided with an ammeter
133
. A pulse voltage was applied to one of the row wirings
102
selected by the line selector
134
. The forming process was executed for each row including
300
elements. The applied pulse signal was a triangular pulse signal as shown in
FIG. 15A
, with gradual increase of the wave height, and with a pulse width T
1
=1 msec and a pulse interval T
2
=10 msec. Between the triangular pulses, there was inserted a rectangular pulse of a wave height of 0.1 V and the current was measured to determine the resistance of each row. The forming process for a row was terminated when the resistance exceeded 3.3 kΩ (1 MΩ per element) and was shifted to a next row. The process was repeated for all the rows to execute the forming on all the conductive films (conductive films
108
for forming the electron emitting portions), thereby forming a gap
116
in each conductive film
108
.
Step j
Then, benzonitrile was introduced into the vacuum chamber
123
shown in
FIG. 13
with a pressure of 1.3×10
−3
Pa, and a pulse signal was applied to the substrate
1
with the measurement of the current If to activate all the conductive films having the gaps
116
. The pulse signal generated by the pulse generator
132
(
FIG. 14
) was a rectangular pulse signal shown in
FIG. 15B
, with a wave height of 14 V, a pulse width T
1
=100 μsec and a pulse interval of 167 μsec. The selected line was shifted in succession from D×
1
to D×
100
by the line selector
134
for every 167 μsec, whereby each row received the rectangular wave of T
1
=100 μsec and T
2
=16.7 msec, with successive shifts in the phase between the rows.
The ammeter
133
was used in a mode of detecting the average current when the rectangular pulse was turned on (with a voltage of 14 V), and the activation was terminated when the measured current reached 600 mA (2 mA per element). Such activation process formed a carbon film in the gap
106
in each of the conductive films
108
.
Step k
The external housing
5
and the vacuum chamber
123
were maintained at 300° C. for 10 hours by an unrepresented heating apparatus, under the continued evacuation of the interior of the external housing
5
. This process removed benzonitrile and decomposed products thereof, supposedly absorbed on the internal walls of the external housing
5
and the vacuum chamber
123
. The removal was confirmed by the observation with the Q-mass
127
. This step executes, by the heating and evacuation of the external housing
5
, not only the gas removal from the interior thereof but also the activation of the aforementioned non-evaporating getters.
The heating was executed for 10 hours at 300° C., but such conditions are not restrictive. Similar effects in removing benzonitrile and in activating the non-evaporating getters could be obtained not only by elevating the heating temperature but also by prolonging the heating time even at a lower temperature.
Step l
The evacuating tube was sealed off by heating with a burner, after the pressure reached 1.3×10
−5
Pa or lower.
In this manner there was prepared the image display apparatus of the present embodiment, having the non-evaporating getters on the printed wirings in the image display area.
The present embodiment employed the photolithographic process and the film formation by sputtering, but such methods are not restrictive. Similar effects can be obtained also by the patterning with a metal mask, or by a method of drawing the pattern of an adhesive material with a dispenser or by printing and adhering the powder of the non-evaporating getter material, or by the plating method.
Fourteenth Embodiment
FIGS. 28A and 28B
show the image display apparatus of this embodiment.
In the present embodiment, the following step f-2 was executed instead of the step f in the foregoing thirteenth embodiment after the steps a to e therein. It is different from the thirteenth embodiment in that the non-evaporating getters are formed only on the row wirings (upper wirings).
Step f-2
Photoresist (AZ1370/Hoechst Co.) was spin coated with a spinner, then baked, exposed to the image of a photomask and developed to form a resist pattern on the upper wirings
102
, and a non-evaporating getter layer
109
consisting of a Zr—V—Fe alloy was formed by sputtering. The thickness of the getter layer
109
was adjusted to 2 μm. The sputtering target employed had a composition of Zr 70%, V 25% and Fe 5% (in weight ratio).
Thereafter the steps g to l of the foregoing thirteenth embodiment were executed to obtain the image display apparatus of the present embodiment, having the non-evaporating getters on the printed wirings in the image display area.
Fifteenth Embodiment
FIGS. 29A and 29B
show the image display apparatus of this embodiment. The image display apparatus of this embodiment is same as that of the thirteenth embodiment, except that the non-evaporating getters
15
are formed also around the image display area.
In the present embodiment, the following step c-3 was executed instead of the step c in the foregoing thirteenth embodiment after the steps a and b, and the following step f-3 was executed instead of the step f in the thirteenth embodiment after the steps d and e therein.
Step c-3
Interlayer insulation layers
104
,
16
were screen printed at the crossing areas of the upper and lower wirings and around the image display area, and were sintered by heating at 400° C.
Step f-3
Photoresist (AZ1370/Hoechst Co.) was spin coated with a spinner, then baked, exposed to the image of a photomask and developed to form a predetermined pattern on the upper and lower wirings, and on the insulation layer
16
around the image display area, and a film consisting of a Zr—V—Fe alloy was formed by sputtering. Thereafter the unnecessary portion were removed by lift-off to form the latter layers
109
a
,
109
b
,
15
. The thickness of the getter layers
109
a
,
109
b
,
15
was adjusted to 2 μm. The sputtering target employed had a composition of Zr 70%, V 25% and Fe 5% (in weight ratio).
Thereafter the steps g to l of the foregoing thirteenth embodiment were executed to obtain the image display apparatus of the present embodiment, having the non-evaporating getters on the printed wirings in the image display area and outside the image display area on the insulation layer formed by printing around the image display area.
In the thirteenth, fourteenth and fifteenth embodiments, the element electrodes and the conductive films were formed by the photolithographic process or the vacuum film formation, but such methods are not restrictive. Similar effects can be obtained also by the printing method, the plating method or the drawing method with a dispenser.
In the fifteenth embodiment, the non-evaporating getters
15
were formed around the image display area, but such configuration is not restrictive and similar effects can be obtained for example by forming wire-shaped getters.
The image display apparatus of the foregoing embodiments thirteenth, fourteenth and fifteenth and and the aforementioned reference example were evaluated in comparison. The comparison was executed by conducting simple matrix drive in each of the image display apparatus of the foregoing embodiments thirteenth to fifteenth and the aforementioned reference example to effect continuous light emission over the entire surface and measuring the variation of luminance in time.
As a result, though there was difference in the initial luminance, in comparison with the apparatus of the reference example, the image display apparatus of the embodiment thirteenth showed extremely little decrease of the luminance and extremely little fluctuation in the luminance among the pixels even after a prolonged drive. Also the image display apparatus of the embodiments fourteenth and fifteenth showed scarce decrease of the luminance and scarce fluctuation in the luminance among the pixels, as in those of the embodiments first to twelfth.
As explained in the foregoing, the present invention provides an image display apparatus with little deterioration in the electron emitting characteristics of the electron source in time, and a producing method therefor.
Also the present invention provides an image display apparatus with little change in the luminance in time and a producing method therefor.
Furthermore, the present invention provide an image display apparatus with little generation of the luminance unevenness in time in the image display area, and a producing method therefor.
Claims
- 1. An image display apparatus provided with an external housing constituted by members including first and second substrates positioned with a gap therebetween, an electron source positioned on said first substrate in said external housing, and a fluorescent film and an accelerating electrode provided on said second substrate, the apparatus comprising:a first getter positioned in the image display area in said external housing; and a second getter positioned outside the image display area and so provided as to be insulated from said electron source and said accelerating electrode and as to surround said first getter.
- 2. An image display apparatus according to claim 1, wherein said first getter is a non-evaporating getter.
- 3. An image display apparatus according to claim 1, wherein said first getter is a non-evaporating getter and said second getter is an evaporating getter.
- 4. An image display apparatus according to claim 1, wherein said first and second getters are both non-evaporating getters.
- 5. An image display apparatus according to claim 1, wherein said first getter is provided on said first substrate.
- 6. An image display apparatus according to claim 1, wherein said first getter is positioned on a wiring provided by the electron source positioned on said first substrate.
- 7. An image display apparatus according to claim 1, wherein said first getter is positioned on a printed wiring provided by the electron source positioned on said first substrate.
- 8. An image display apparatus according to claim 1, wherein said first getter is provided on said second substrate.
- 9. An image display apparatus according to claim 1, wherein said first getter is positioned on the accelerating electrode positioned on said second substrate.
- 10. An image display apparatus according to claim 1, wherein said first getter is positioned on a black member provided by the fluorescent film positioned on said second substrate.
- 11. An image display apparatus according to claim 1, wherein said second getter is provided on said first substrate.
- 12. An image display apparatus according to claim 1, wherein said second getter is provided on said second substrate.
- 13. An image display apparatus according to claim 7, wherein said wiring is composed of a scanning wiring and a signal wiring, and said first getter is positioned on said scanning wiring.
- 14. An image display apparatus according to any of claims 1 to 12 and 13, wherein said electron source includes plural electron emitting elements wired in a matrix by plural wirings in the row direction and plural wirings in the column direction.
- 15. An image display apparatus according to claim 11, wherein said electron emitting element is an electron emitting element of surface conduction type.
Priority Claims (3)
Number |
Date |
Country |
Kind |
10-297782 |
Oct 1998 |
JP |
|
10-297783 |
Oct 1998 |
JP |
|
10-308328 |
Oct 1998 |
JP |
|
US Referenced Citations (9)
Foreign Referenced Citations (6)
Number |
Date |
Country |
63-181248 |
Jul 1988 |
JP |
3-254042 |
Nov 1991 |
JP |
04-012436 |
Jan 1992 |
JP |
8-167392 |
Jun 1996 |
JP |
09-082245 |
Mar 1997 |
JP |
9-320493 |
Dec 1997 |
JP |