This non-provisional application claims priority under 35 U.S.C., §119(a), on Patent Application No. 2003-387269 filed in Japan on Nov. 17, 2003, and Patent Application No. 2004-332589 filed in Japan on Nov. 16, 2004, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to an image display apparatus using a hold-type display device such as, for example, a liquid crystal display device or an EL (electroluminescence) display device; an electronic apparatus, a liquid crystal TV, a liquid crystal monitoring apparatus, which use such an image display apparatus for a display section; an image display method performing image display using such an image display apparatus; a display control program for allowing a computer to execute the image display method; and a computer-readable recording medium having the display control program recorded thereon.
2. Description of the Related Art
Conventional image display apparatuses are roughly classified into impulse-type display apparatuses such as CRTs (cathode ray tubes), film projectors and the like; and hold-type display apparatuses using hold-type display devices such as liquid crystal display devices, EL display devices and the like mentioned above.
In impulse-type display apparatuses, a light-on period in which an image is displayed and a light-off period in which no image is displayed are alternately repeated. It is considered that human eyes perceive, as the brightness, a luminance obtained by time integration of a luminance change of an image which is actually displayed on the screen during a period of about several frames. Therefore, human eyes can observe, with no unnatural feeling, an image displayed by an image display apparatus, such an impulse-type image display apparatus, in which the luminance changes within a short period of one frame or less.
In
Regarding the display state of one horizontal line, a display portion A of the moving object is sandwiched between display portions B of the still background. Each time the image is updated frame by frame, the display portion A moves rightward.
The observer's eye paying attention to the display portion A follows the display portion A and thus moves in the direction represented by the oblique thick arrow. A value obtained by time integration of a luminance change in the direction of the movement of the object is perceived as the brightness by the human eye.
In the case of the impulse-type image display apparatus, the period from an image update to the next image update is mostly a light-off period T103. The luminance in the light-off period T103, which is sufficiently low, does not contribute to the time-integrated luminance (value of the vertical axis). As a result, the observer's eye clearly views the difference in brightness at the border between the still background and the moving object. Therefore, the observer's eye can clearly distinguish the object from the background.
It is considered that hold-type image display apparatuses are inferior to the impulse-type image display apparatuses in the quality of moving images. This will be described in detail below.
In
Since the one-frame period T101 is entirely a light-on period T102, the object is displayed as remaining at the same position from an image update until the next image update. As a result, the value obtained by time integration of a luminance change in the direction of the movement of the object does not reflect the difference in brightness at the border between the still background and the moving object. Therefore, the observers eye views the border as a movement blur. This is one cause of the poor image quality of general conventional hold-type image display apparatuses.
One solution to this problem of the hold-type image display apparatuses is to reduce the duration of the light-on period to about half and provide a period in which image display is performed at the minimum luminance level (minimum luminance period). Hereinafter, this system will be referred to as the “minimum (luminance) insertion system”.
In
However, in the conventional hold-type image display apparatus which adopts the minimum (luminance) insertion system, each one-frame period includes a minimum luminance period (or a minimum (luminance) insertion period or a light-off period) even when the image display is performed at the maximum gradation level. Therefore, the maximum luminance perceived by the observer's eye is half of that in the general conventional hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system.
Especially when a display device, such as an EL display device, which spontaneously emits light, is used for such a hold-type image display apparatus, the reduction in the maximum luminance is inevitable as compared with the general conventional hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system.
Another solution to the problem of movement blur has been proposed for transmissive display devices such as transmissive liquid crystal display devices and the like. According to the proposed solution, the luminance of the backlight is increased in order to guarantee approximately the same level of maximum luminance as that of the general conventional hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system.
This proposed solution has the following drawbacks. First, the power consumption of the backlight is raised. Second, even while the image display is performed at the minimum luminance (black period), the light from the backlight can be transmitted through the display device. Therefore, the minimum luminance level cannot be approximately the same as that of the hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system. As a result, the contrast is reduced.
Japanese Laid-Open Publication No. 2001-296841 proposes the following image display method by claims 27 through 41 in order to improve the quality of moving images by, for example, solving the problem of movement blur while guaranteeing approximately the same level of maximum luminance as that of the general conventional hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system. A specific method for driving the display device and providing an image signal of a certain gradation level is described in example 7 of Japanese Laid-Open Publication No. 2001-296841 in detail. Japanese Laid-Open Publication No. 2001-296841 is entirely incorporated herein for reference.
According to the image display method proposed by Japanese Laid-Open Publication No. 2001-296841, one frame of image display is performed using two sub frame periods, i.e., the first sub frame period and the second sub frame period. When the gradation level of an input image signal is 0% or greater and less than 50%, an image signal of a gradation level of 0% to 100% is supplied in the first sub frame period, and an image signal of a gradation level of 0% is supplied in the second sub frame period. When the gradation level of the input image signal is 50% or greater and less than 100%, an image signal of a gradation level of 0% to 100% is supplied in the first sub frame period, and an image signal of a gradation level of 100% is supplied in the second sub frame period.
In
This will be described in more detail. As shown in
Such an image display method can guarantee approximately the same level of maximum luminance and contrast as those of the conventional hold-type image display apparatuses which do not adopt the minimum (luminance) insertion system, and also can improve the quality of moving images where the gradation level of the input image signal is sufficiently low.
Japanese Laid-Open Publication No. 2002-23707 discloses another method for suppressing the reduction in luminance of the hold-type image display apparatuses which adopt the minimum (luminance) insertion system. According to the method disclosed by Japanese Laid-Open Publication No. 2002-23707, a one-frame period includes a plurality of sub frame periods, and the luminance of one of the latter frames is attenuated at a prescribed ratio in accordance with the luminance of an input image signal. Therefore, the movement blur which is visually perceived in the general conventional hold-type image display apparatuses can be prevented. Since the luminance of one of the latter sub frame periods is attenuated as described above and thus is not 0%, the reduction in luminance can be suppressed as compared with the conventional hold-type image display apparatuses which adopt the minimum (luminance) insertion system as shown in
For displaying an image of an object moving horizontally with a still background, the conventional image display apparatus disclosed by Japanese Laid-Open Publication No. 2001-296841 can provide substantially the same effect as that of the conventional hold-type image display apparatus which adopts the minimum (luminance) insertion system shown in
As shown in
The reason why such abnormally bright and abnormally dark portions are viewed is that the time-wise center of gravity of the light-on period is significantly different between when the gradation level of the input image signal is less than 50% and when the gradation level of the input image signal is 50% or greater. For example, when the gradation level of the input image signal is less than 50%, the time-wise center of gravity of luminance in the light-on period is the first sub frame period T201 since an image signal of a gradation level of 0% is supplied in the second sub frame period T202. When the gradation level of the input image signal is 50% or greater, the time-wise center of gravity of the light-on period (display luminance) is the second sub frame period T202 since an image signal of a gradation level of 100% is supplied in the second sub frame period T202. For this reason, abnormally bright and abnormally dark portions are viewed at the leading end or the trailing end of the moving object, in terms of the value obtained by time integration of a luminance change in the direction of the movement of the object.
Current general image signals, for example, TV broadcast signals, video reproduction signals, and PC (personal computer) image signals, are mostly generated and output in consideration of the gamma luminance characteristic of CRTs (cathode ray tubes). Display panels which use the hold-type display devices such as, for example, liquid crystal display devices and EL display devices generally have substantially the same gamma luminance characteristic as that of CRTs in order to be compatible with the general image signals.
In example 7 of Japanese Laid-Open Publication No. 2001-296841, when the gradation level of the input image signal is 50% or greater, an image signal is supplied in two sub frame periods (the first and second sub frame periods). By contrast, when the gradation level of the input image signal is less than 50%, an image signal is supplied in only one sub frame period (only in the first sub frame period). Therefore, the luminance characteristic curve has two concaves at the point of luminance of 50% in the center thereof. With such a luminance characteristic curve, an appropriate color reproducibility to a general input image signal cannot be realized.
The method disclosed by Japanese Laid-Open Publication 2002-23707 places the image into a light-on state in one of the latter sub frame periods of each one-frame period, and thus can suppress the reduction in luminance and contrast as compared with the general hold-type image display apparatus which adopt the minimum (luminance) insertion type shown in
According to a first aspect of the present invention, an image display apparatus is provided for performing image display by dividing one frame period into a plurality of sub-frame periods, determining a gradation level of each of the sub-frame periods in accordance with a gradation level of an input image signal and supplying the determined gradation level to an image display section. The image display apparatus comprises:
In one embodiment of the first aspect of the present invention, when the gradation of the input image signal is relatively smallest, the display control section supplies a relatively smallest gradation level to all the sub-frame periods; and
In one embodiment of the first aspect of the present invention, the display control section performs image display by the image display section by controlling the gradation level supplied in each sub-frame period, such that a time-integrated value of luminance corresponding to the input image signal represents a prescribed luminance characteristic.
According to a second aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section inn sub-frame periods (where n is an integer of 2 or greater). The image display apparatus comprises:
According to a third aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in n sub-frame periods (where n is an odd number of 3 or greater). The image display apparatus comprises:
According to a fourth aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in n sub-frame periods (where n is an even number of 2 or greater). The image display apparatus comprises:
According to a fifth aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods. The image display apparatus comprises:
According to a sixth aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods. The image display apparatus comprises:
According to a seventh aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods. The image display apparatus comprises:
According to an eighth aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods. The image display apparatus comprises:
According to a ninth aspect of the present invention, an image display apparatus is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods. The image display apparatus comprises:
In one embodiment of the first aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the first aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the first aspect of the present invention, where upper limits of the gradation levels of the image signals supplied in the first, second, . . . n'th sub-frame periods are respectively referred to as L1, L2, . . . Ln; and the sub-frame period which is at the time-wise the center, or closest to the time-wise center, of one frame period is referred to as the j'th sub-frame period,
In one embodiment of the first aspect of the present invention, the image display section sets the gradation level of the image signal supplied in each sub-frame period after being increased or decreased in accordance with the gradation level of the input image signal, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of the first aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the first aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the first aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the first aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the gradation level allocated to the central sub-frame period in one frame period is higher than the gradation levels allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the first aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the luminance level of the image signal allocated to the central sub-frame period in one frame period is higher than the luminance levels of the image signal allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the first aspect of the present invention, a time-wise center of gravity of time-integrated values of luminance in the plurality of sub-frame periods moves within one sub-frame period.
In one embodiment of the first aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the first aspect of the present invention, the gradation level of the image signal allocated in an earlier sub-frame period is half or less of the gradation level of the image signal allocated in a later sub-frame period.
In one embodiment of the second aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the second aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the second aspect of the present invention, where upper limits of the gradation levels of the image signals supplied in the first, second, . . . n'th sub-frame periods are respectively referred to as L1, L2, . . . Ln; and the sub-frame period which is at the time-wise the center, or closest to the time-wise center, of one frame period is referred to as the j'th sub-frame period,
In one embodiment of the second aspect of the present invention, the image display section sets the gradation level of the image signal supplied in each sub-frame period after being increased or decreased in accordance with the gradation level of the input image signal, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of the second aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the second aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the second aspect of the present invention, the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the second aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the second aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the second aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the second aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the second aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the gradation level allocated to the central sub-frame period in one frame period is higher than the gradation levels allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the second aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the luminance level of the image signal allocated to the central sub-frame period in one frame period is higher than the luminance levels of the image signal allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the second aspect of the present invention, a time-wise center of gravity of time-integrated values of luminance in the plurality of sub-frame periods moves within one sub-frame period.
In one embodiment of the second aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the third aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the third aspect of the present invention, the m'th sub-frame period has a longer length than the other sub-frame periods.
In one embodiment of the third aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the third aspect of the present invention, where upper limits of the gradation levels of the image signals supplied in the first, second, . . . n'th sub-frame periods are respectively referred to as L1, L2, . . . Ln; and the sub-frame period which is at the time-wise the center, or closest to the time-wise center, of one frame period is referred to as the j'th sub-frame period, the display control section sets the upper limits so as to fulfill:
L[j−i]≧L[j−(i+1)];
L[j+i]≧L[j+(i+1)]
where i is an integer of 0 or greater and less than j.
In one embodiment of the third aspect of the present invention, the display control section sets the threshold level acting as a reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of the third aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the third aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof wherein:
In one embodiment of the third aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the third aspect of the present invention, when n is 3, the display control section includes:
In one embodiment of the third aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the third aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the third aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the third aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the third aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the gradation level allocated to the central sub-frame period in one frame period is higher than the gradation levels allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the third aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the luminance level of the image signal allocated to the central sub-frame period in one frame period is higher than the luminance levels of the image signal allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the third aspect of the present invention, a time-wise center of gravity of time-integrated values of luminance in the plurality of sub-frame periods moves within one sub-frame period.
In one embodiment of the third aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the fourth aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the fourth aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the fourth aspect of the present invention, where upper limits of the gradation levels of the image signals supplied in the first, second, . . . n'th sub-frame periods are respectively referred to as L1, L2, . . . Ln; and the sub-frame period which is at the time-wise the center, or closest to the time-wise center, of one frame period is referred to as the j'th sub-frame period,
In one embodiment of the fourth aspect of the present invention, the display control section sets the threshold level acting as reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of the fourth aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the fourth aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the fourth aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the fourth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the fourth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the fourth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the fourth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the fourth aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the gradation level allocated to the central sub-frame period in one frame period is higher than the gradation levels allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the fourth aspect of the present invention, where the plurality of sub-frame periods are three or more sub-frame periods, the luminance level of the image signal allocated to the central sub-frame period in one frame period is higher than the luminance levels of the image signal allocated to the other sub-frame periods at ends of one frame period.
In one embodiment of the fourth aspect of the present invention, a time-wise center of gravity of time-integrated values of luminance in the plurality of sub-frame periods moves within one sub-frame period.
In one embodiment of the fourth aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the fifth aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the fifth aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is shorter than a response time of the image display section to an increase in the luminance level, the sub-frame period α is assigned to a second sub-frame period among the two sub-frame periods; and
In one embodiment of the fifth aspect of the present invention, where a relatively largest luminance level of the image display section is Lmax and a relatively smallest luminance level of the image display section is Lmin,
In one embodiment of the fifth aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the fifth aspect of the present invention, where an upper limit L1 is the gradation level of the image signal supplied in one of the sub-frame periods and an upper limit L2 is the gradation level of the image signal supplied in the other sub-frame period,
In one embodiment of the fifth aspect of the present invention, the display control section sets the threshold level acting as reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of the fifth aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the fifth aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the fifth aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the fifth aspect of the present invention, the display control section includes:
In one embodiment of the fifth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the fifth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the fifth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the fifth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the fifth aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this present invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the sixth aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the sixth aspect of the present invention, when the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, the gradation level of the image signal supplied in the sub-frame period α and the gradation level of the image signal supplied in the sub-frame period β are set, such that the difference between the gradation levels is constant, or such that the difference between the luminance level in the sub-frame period α and the luminance level in the sub-frame period β is constant.
In one embodiment of the sixth aspect of the present invention, the gradation level of the image signal allocated in an earlier sub-frame period is half or less of the gradation level of the image signal allocated in a later sub-frame period.
In one embodiment of the sixth aspect of the present invention, when the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, the gradation level of the image signal supplied in the sub-frame period α and the gradation level of the image signal supplied in the sub-frame period β are set, such that the relationship between the gradation levels is set by a function, or such that the relationship between the luminance level in the sub-frame period α and the luminance level in the sub-frame period β is set by a function.
In one embodiment of the sixth aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is shorter than a response time of the image display section to an increase in the luminance level, the sub-frame period α is assigned to a second sub-frame period among the two sub-frame periods; and
In one embodiment of the sixth aspect of the present invention, where a relatively largest luminance level of the image display section is Lmax and a relatively smallest luminance level of the image display section is Lmin,
In one embodiment of the sixth aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the sixth aspect of the present invention, where an upper limit L1 is the gradation level of the image signal supplied in one of the sub-frame periods and an upper limit L2 is the gradation level of the image signal supplied in the other sub-frame period,
In one embodiment of the sixth aspect of the present invention, the display control section sets the threshold level acting as a reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of this invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the sixth aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the sixth aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the sixth aspect of the present invention, the display control section includes:
In one embodiment of this invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of the sixth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of this invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of the sixth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the sixth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the sixth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the sixth aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the seventh aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the seventh aspect of the present invention, when the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, the gradation level of the image signal supplied in the sub-frame period α and the gradation level of the image signal supplied in the sub-frame period β are set, such that the difference between the gradation levels is constant, or such that the difference between the luminance level in the sub-frame period α and the luminance level in the sub-frame period β is constant.
In one embodiment of this invention, the gradation level of the image signal allocated in an earlier sub-frame period is half or less of the gradation level of the image signal allocated in a later sub-frame period.
In one embodiment of the seventh aspect of the present invention, when the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, the gradation level of the image signal supplied in the sub-frame period α and the gradation level of the image signal supplied in the sub-frame period are set, such that the relationship between the gradation levels is set by a function, or such that the relationship between the luminance level in the sub-frame period α and the luminance level in the sub-frame period β is set by a function.
In one embodiment of the seventh aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is shorter than a response time of the image display section to an increase in the luminance level, the sub-frame period α is assigned to a second sub-frame period among the two sub-frame periods; and
In one embodiment of the seventh aspect of the present invention, where a relatively largest luminance level of the image display section is Lmax and a relatively smallest luminance level of the image display section is Lmin,
In one embodiment of the seventh aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the seventh aspect of the present invention, where an upper limit L1 is the gradation level of the image signal supplied in one of the sub-frame periods and an upper limit L2 is the gradation level of the image signal supplied in the other sub-frame period,
In one embodiment of the seventh aspect of the present invention, the display control section sets the threshold level acting as reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of this invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the seventh aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the seventh aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of the input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of the input image signal.
In one embodiment of the seventh aspect of the present invention, the display control section includes:
In one embodiment of the seventh aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the seventh aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the seventh aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the seventh aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the seventh aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of the seventh aspect of the present invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the eighth aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the eighth aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is shorter than a response time of the image display section to an increase in the luminance level, the sub-frame period α is assigned to a second sub-frame period among the two sub-frame periods; and
In one embodiment of the eighth aspect of the present invention, where a relatively largest luminance level of the image display section is Lmax and a relatively smallest luminance level of the image display section is Lmin,
In one embodiment of the eighth aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the eighth aspect of the present invention, where an upper limit L1 is the gradation level of the image signal supplied in one of the sub-frame periods and an upper limit L2 is the gradation level of the image signal supplied in the other sub-frame period,
In one embodiment of the eighth aspect of the present invention, the display control section sets the threshold level acting as reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibit an appropriate gamma luminance characteristic.
In one embodiment of the eighth aspect of the present invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the eighth aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the eighth aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of input image signal.
In one embodiment of the eighth aspect of the present invention, the display control section includes:
In one embodiment of the eighth aspect of the present invention, the display control section includes:
In one embodiment of the eighth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the eighth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the eighth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the eighth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the eighth aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
In one embodiment of the ninth aspect of the present invention, the sub-frame periods have an identical length to each other or different lengths from each other.
In one embodiment of the ninth aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is shorter than a response time of the image display section to an increase in the luminance level, the sub-frame period α is assigned to a second sub-frame period among the two sub-frame periods; and
In one embodiment of the ninth aspect of the present invention, where a relatively largest luminance level of the image display section is Lmax and a relatively smallest luminance level of the image display section is Lmin,
In one embodiment of the ninth aspect of the present invention, the display control section sets an upper limit of the gradation level of the image signal supplied in each sub-frame period.
In one embodiment of the ninth aspect of the present invention, where an upper limit L1 is the gradation level of the image signal supplied in one of the sub-frame periods and an upper limit L2 is the gradation level of the image signal supplied in the other sub-frame period,
In one embodiment of the ninth aspect of the present invention, the display control section sets the threshold level acting as reference for the gradation level of the image signal supplied in each sub-frame period, and also sets the gradation level of the image signal supplied in each sub-frame period, such that the relationship between the gradation level of the input image signal and the time-integrated values of luminance during one frame period exhibits an appropriate gamma luminance characteristic.
In one embodiment of this invention, the image display apparatus further comprises a gamma luminance characteristic setting section for externally setting the gamma luminance characteristic, wherein:
In one embodiment of the ninth aspect of the present invention, the image display apparatus further comprises a temperature detection section for detecting a temperature of a display panel or the vicinity thereof, wherein:
In one embodiment of the ninth aspect of the present invention, where the input image signal has a plurality of color components, the display control section sets the gradation level of the image signal supplied in each sub-frame period, such that the ratio between the luminance level displayed in each sub-frame period of a color other than a color having a highest gradation level of the input image signal, is equal to the ratio between the luminance level displayed in each sub-frame period of the color having the highest gradation level of the input image signal.
In one embodiment of the ninth aspect of the present invention, the display control section includes:
In one embodiment of the ninth aspect of the present invention, the display control section includes:
In one embodiment of the ninth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level of greater than 90% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 10% where the relatively smallest gradation level is 0%.
In one embodiment of the ninth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 90% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 10% where the relatively smallest luminance level is 0%.
In one embodiment of the ninth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level greater than 98% where the relatively largest gradation level is 100%, and the gradation level which is lower than the prescribed value is a gradation level lower than 2% where the relatively smallest gradation level is 0%.
In one embodiment of the ninth aspect of the present invention, the gradation level which is greater than the prescribed value is a gradation level corresponding to a luminance level greater than 98% where the relatively largest luminance level is 100%, and the gradation level which is lower than the prescribed value is a gradation level corresponding to a luminance level lower than 2% where the relatively smallest luminance level is 0%.
In one embodiment of the ninth aspect of the present invention, the display control section performs display control on each of a plurality of pixel portions on a display screen.
In one embodiment of this invention, each pixel portion includes one pixel or a prescribed number of pixels.
According to a tenth aspect of the present invention, an electronic apparatus is provided for performing image display on a display screen of an image display section of an image display apparatus according to the first aspect of the present invention.
According to an eleventh aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a twelfth aspect of the present invention, a liquid crystal monitoring apparatus is provided, comprising:
According to a thirteenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section inn sub-frame periods, where n is an integer of 2 or greater. The method comprises the following steps:
According to a fourteenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in n sub-frame periods, where n is an odd number of 3 or greater, wherein:
According to a fifteenth aspect of the present invention, an image display method for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in n sub-frame periods, where n is an even number of 2 or greater, wherein:
According to a sixteenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods,
According to a seventeenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods,
According to an eighteenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods,
According to a nineteenth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods,
According to a twentieth aspect of the present invention, an image display method is provided for performing one frame of image display by a sum of time-integrated values of luminance displayed in an image display section in two sub-frame periods,
According to a twenty first aspect of the present invention, a computer program is provided for allowing a computer to execute an image display method according to the thirteenth aspect of the present invention.
According to a twenty second aspect of the present invention, a computer-readable recording medium having a computer program according to the twenty first aspect of the present invention stored thereon.
According to a twenty third aspect of the present invention, a method of supplying, for display, an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods including at least an α sub-frame period and a β sub-frame period, comprising:
In a first embodiment of the twenty third aspect of the present invention, the plurality of sub-frame periods is two sub-frame periods.
According to a twenty fourth aspect of the present invention, a method of displaying is provided, including the method of the twenty third, further comprising:
According to a twenty fifth aspect of the present invention, a method of displaying including the method of the first embodiment of the twenty third aspect of the present invention, further comprising:
In one embodiment of the twenty fifth aspect of the present invention, when a response time of the image display section to a decrease in the luminance level is relatively shorter than a response time of the image display section to an increase in the luminance level, the a sub-frame period is assigned to a second sub-frame period of the two sub-frame periods; and
According to a twenty sixth aspect of the present invention, a device for performing the method of the twenty fifth aspect of the present invention, wherein a response time of the image display section to a decrease in the luminance level is relatively shorter than a response time of the image display section to an increase in the luminance level, and the α sub-frame period is assigned to a second sub-frame period of the two sub-frame periods.
According to a twenty seventh aspect of the present invention, a device for performing the method of the twenty fifth aspect of the present invention, wherein a response of the image display section to the decrease in the luminance level is longer than the response time of the image display section to the increase in the luminance level, and the sub-frame period α is assigned to a first sub-frame period of the two sub-frame periods.
According to a twenty eighth aspect of the present invention, a computer program for allowing a computer to execute a method according to the twenty third aspect of the present invention.
According to a twenty ninth aspect of the present invention, a computer program for allowing a computer to execute a method according to the first embodiment of the twenty third aspect of the present invention.
According to a thirtieth aspect of the present invention, a computer program for allowing a computer to execute a method according to the twenty fourth aspect of the present invention.
According to a thirty first aspect of the present invention, a computer program for allowing a computer to execute a method according to the twenty fifth aspect of the present invention.
According to a thirty second aspect of the present invention, a computer program for allowing a computer to execute a method according to the embodiment of the twenty second of the present invention.
According to a thirty third aspect of the present invention, a computer-readable recording medium having a computer program according to the twenty eighth aspect of the present invention.
According to a thirty fourth aspect of the present invention, a computer-readable recording medium having a computer program according to the twenty ninth aspect of the present invention.
According to a thirty fifth aspect of the present invention, a computer-readable recording medium having a computer program according to the thirtieth aspect of the present invention.
According to a thirty sixth aspect of the present invention, a computer-readable recording medium having a computer program according to the thirty third aspect of the present invention.
According to a thirty seventh aspect of the present invention, a computer-readable recording medium having a computer program according to the thirty second aspect of the present invention.
According to a thirty eighth aspect of the present invention, a method is provided for supplying, for display, an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods, comprising:
In one embodiment of the thirty eight aspect of the present invention, the plurality of sub-frame periods is two sub-frame periods.
According to a thirty ninth aspect of the present invention, a method of displaying including the method of the thirty eighth aspect of the present invention, further comprises:
According to a fortieth aspect of the present invention, a method of displaying including the method of the embodiment of the thirty eighth aspect of the present invention, further comprises:
According to a forty first aspect of the present invention, a computer program for allowing a computer to execute a method according to the thirty eighth aspect of the present invention.
According to a forty second aspect of the present invention, a computer program for allowing a computer to execute a method according to the embodiment of the thirty eighth aspect of the present invention.
According to a forty third aspect of the present invention, a computer program for allowing a computer to execute a method according to the thirty ninth aspect of the present invention.
According to a forty fourth aspect of the present invention, a computer program for allowing a computer to execute a method according to the forty aspect of the present invention.
According to a forty fifth aspect of the present invention, a computer program for allowing a computer to execute a method according to the forty first aspect of the present invention.
According to a forty sixth aspect of the present invention, a computer program for allowing a computer to execute a method according to the forty second aspect of the present invention.
According to a forty seventh aspect of the present invention, a computer program for allowing a computer to execute a method according to the forty third aspect of the present invention.
According to a forty eighth aspect of the present invention, a computer program for allowing a computer to execute a method according to the forty fourth aspect of the present invention.
According to a forty ninth aspect of the present invention, an apparatus is provided for displaying an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods including at least an α sub-frame period and a β sub-frame period, comprising:
In one embodiment of the forty ninth aspect of the present invention, the plurality of sub-frame periods is two sub-frame periods.
In one embodiment of this invention, when a response time of the means for displaying to a decrease in the luminance level is relatively shorter than a response time of the means for displaying to an increase in the luminance level, the α sub-frame period is assigned to a second sub-frame period of the two sub-frame periods; and
In one embodiment of this invention, a response time of the means for displaying to a decrease in the luminance level is relatively shorter than a response time of the means for displaying to an increase in the luminance level, and the α sub-frame period is assigned to a second sub-frame period of the two sub-frame periods.
In one embodiment of this invention, a response of the means for displaying to the decrease in the luminance level is longer than the response time of the means for displaying to the increase in the luminance level, and the sub-frame period α is assigned to a first sub-frame period of the two sub-frame periods.
According to a fiftieth aspect of the present invention, an apparatus is provided for displaying an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods, comprising:
In one embodiment of this invention, the plurality of sub-frame periods is two sub-frame periods.
According to a fifty first aspect of the present invention, an apparatus for displaying an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods including at least an α sub-frame period and a β sub-frame period, comprising:
In one embodiment of this invention, the plurality of sub-frame periods is two sub-frame periods.
In one embodiment of this invention, when a response time of the image display section to a decrease in the luminance level is relatively shorter than a response time of the image display section to an increase in the luminance level, the α sub-frame period is assigned to a second sub-frame period of the two sub-frame periods; and
In one embodiment of this invention, a response time of the image display section to a decrease in the luminance level is relatively shorter than a response time of the image display section to an increase in the luminance level, and the α sub-frame period is assigned to a second sub-frame period of the two sub-frame periods.
In one embodiment of this invention, a response of the image display section to the decrease in the luminance level is longer than the response time of the image display section to the increase in the luminance level, and the sub-frame period α is assigned to a first sub-frame period of the two sub-frame periods.
According to a fifty second aspect of the present invention, an apparatus is provided for displaying an image of an input image signal including at least a moving object portion and a background portion, wherein a frame period is divided into a plurality of sub-frame periods, comprising:
In one embodiment of this invention, the plurality of sub-frame periods is two sub-frame periods.
According to a fifty third aspect of the present invention, a method of supplying, for display, an image of an input image signal, wherein a frame period is divided into a plurality of sub-frames, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central sub-frame.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In fourth embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to a fifty fourth aspect of the present invention, a method of displaying including the method of the fifty third aspect of the present invention, further comprises:
According to a fifty fifth aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty third aspect of the present invention.
According to a fifty sixth aspect of the present invention, a computer program for allowing a computer to execute a method according to the first embodiment of the fifty third aspect of the present invention.
According to a fifty seventh aspect of the present invention, a computer program for allowing a computer to execute a method according to the second embodiment of the fifty third aspect of the present invention.
According to a fifty eighth aspect of the present invention, a computer program for allowing a computer to execute a method according to the third embodiment of the fifty third aspect of the present invention.
According to a fifty ninth aspect of the present invention, a computer program for allowing a computer to execute a method according to the fourth embodiment of the fifty third aspect of the present invention.
According to a sixty aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty fourth aspect of the present invention.
According to a sixty first aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty fifth aspect of the present invention.
According to a sixty second aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty sixth aspect of the present invention.
According to a sixty third aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty seventh aspect of the present invention.
According to a sixty fourth aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty eighth aspect of the present invention.
According to a sixty fifth aspect of the present invention, a computer program for allowing a computer to execute a method according to the fifty ninth aspect of the present invention.
According to a sixty sixth aspect of the present invention, a computer program for allowing a computer to execute a method according to the sixty aspect of the present invention.
According to a sixty seventh aspect of the present invention, a method of supplying, for display, an image of an input image signal, wherein a frame period is divided into a plurality of sub-frames, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central of the plurality of sub-frames.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a fourth embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to a sixty eighth aspect of the present invention, a method of displaying including the method of the sixty seventh aspect of the present invention, further comprising:
According to a sixty ninth aspect of the present invention, a computer program for allowing a computer to execute a method according to the sixty seventh aspect of the present invention.
According to a seventieth aspect of the present invention, a computer program for allowing a computer to execute a method according to the first embodiment of the sixty seventh aspect of the present invention.
According to a seventy first aspect of the present invention, a computer program for allowing a computer to execute a method according to the second embodiment of the sixty seventh aspect of the present invention.
According to a seventy second aspect of the present invention, a computer program for allowing a computer to execute a method according to the third embodiment of the sixty seventh aspect of the present invention.
According to a seventy third aspect of the present invention, a computer program for allowing a computer to execute a method according to the fourth embodiment of the sixty seventh aspect of the present invention.
According to a seventy fourth aspect of the present invention, a computer program for allowing a computer to execute a method according to the sixty eighth aspect of the present invention.
According to a seventy fifth aspect of the present invention, a computer program for allowing a computer to execute a method according to the sixty ninth aspect of the present invention.
According to a seventy sixth aspect of the present invention, a computer program for allowing a computer to execute a method according to the seventieth aspect of the present invention.
According to a seventy seventh aspect of the present invention, a computer program for allowing a computer to execute a method according to the seventy first aspect of the present invention.
According to a seventy eighth aspect of the present invention, a computer program for allowing a computer to execute a method according to the seventy second aspect of the present invention.
According to a seventy ninth aspect of the present invention, a computer program for allowing a computer to execute a method according to the seventy third aspect of the present invention.
According to an eightieth aspect of the present invention, a computer program for allowing a computer to execute a method according to the seventy fourth aspect of the present invention.
According to an eighty first aspect of the present invention, an apparatus is provided for displaying an image of an input image signal, wherein a frame period is divided into a plurality of sub-frames, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central sub-frame.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to an eighty second aspect of the present invention, an apparatus is provided for displaying an image of an input image signal, wherein a frame period is divided into a plurality of sub-frames, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central sub-frame.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a fourth embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to an eighty third aspect of the present invention, an apparatus is provided for displaying an image of an input image signal, wherein a frame period is divided into a plurality of sub-frames, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central of the plurality of sub-frames.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a fourth embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to an eighty fourth aspect of the present invention, an apparatus is provided for displaying an image of an input image signal, wherein a frame period is divided into a plurality of sub-frame periods, comprising:
In a first embodiment of this invention, when the gradation level is at least 50% of relatively largest luminance, then a luminance level of a relatively largest luminance value is supplied to at least one relatively central of the plurality of sub-frames.
In a second embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a third embodiment of this invention, when the gradation level is less than 50% of the relatively largest luminance level, then a luminance level of a relatively smallest value is supplied in sub-frames relatively furthest from the relatively central of the plurality of sub-frames.
In a fourth embodiment of this invention, when the plurality of sub-frames is odd in number, a relatively largest luminance value is supplied in at least one central sub-frame, and when the plurality of sub-frames is even in number, a relatively largest luminance value is supplied in at least two relatively central sub-frames.
According to an eighty fifth aspect of the present invention, a computer program is provided for allowing a computer to execute an image display method according to the fourteenth aspect of the present invention.
According to an eighty sixth aspect of the present invention, a computer-readable recording medium having a computer program according to the eighty fifth aspect of the present invention stored thereon.
According to an eighty seventh aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the fifteenth aspect of the present invention.
According to an eighty eighth aspect of the present invention, a computer-readable recording medium having a computer program according to the eighty seventh aspect of the present invention stored thereon.
According to an eighty ninth aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the sixteenth aspect of the present invention.
According to a ninetieth aspect of the present invention, a computer-readable recording medium having a computer program according to the eighty ninth aspect of the present invention stored thereon.
According to a ninety first aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the seventeenth aspect of the present invention.
According to a ninety second aspect of the present invention, a computer-readable recording medium having a computer program according to the ninety first aspect of the present invention stored thereon.
According to a ninety third aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the eighteenth aspect of the present invention.
According to a ninety fourth aspect of the present invention, a computer-readable recording medium having a computer program according to the ninety third aspect of the present invention stored thereon.
According to a ninety fifth aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the nineteenth aspect of the present invention.
According to a ninety sixth aspect of the present invention, a computer-readable recording medium having a computer program according to the ninety fifth aspect of the present invention stored thereon.
According to a ninety seventh aspect of the present invention, a computer program for allowing a computer to execute an image display method according to the twentieth aspect of the present invention.
According to a ninety eighth aspect of the present invention, a computer-readable recording medium having a computer program according to the ninety seventh aspect of the present invention stored thereon.
According to a ninety ninth aspect of the present invention, an electronic apparatus is provided for performing image display on a display screen of an image display section of an image display apparatus according to the first aspect of the present invention.
According to a hundredth aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred first aspect of the present invention, a liquid crystal monitoring apparatus is provided, comprising:
According to a hundred second aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the second aspect of the present invention.
According to a hundred third aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred fourth aspect of the present invention, a liquid crystal monitoring apparatus is provided, comprising:
According to a hundred fifth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the third aspect of the present invention.
According to a hundred sixth aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred seventh aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred eighth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the fourth aspect of the present invention.
According to a hundred ninth aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred tenth aspect of the present invention, a liquid crystal monitoring apparatus is provided, comprising:
According to a hundred eleventh aspect of the present invention, an electronic apparatus is provided for performing image display on a display screen of an image display section of an image display apparatus according to the fifth aspect of the present invention.
According to a hundred twelfth aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred thirteenth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred fourteenth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the sixth aspect of the present invention.
According to a hundred fifteenth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred sixteenth aspect of the present invention, a liquid crystal monitoring apparatus is provided, comprising:
According to a hundred seventeenth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the seventh aspect of the present invention.
According to a hundred eighteenth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred nineteenth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred twentieth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the eighth aspect of the present invention.
According to a hundred twenty first aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred twenty second aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred twenty third aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an image display apparatus according to the ninth aspect of the present invention.
According to a hundred twenty fourth aspect of the present invention, a liquid crystal TV is provided, comprising:
According to a hundred twenty fifth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred twenty sixth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an apparatus for displaying according to the fifty first aspect of the present invention.
According to a hundred twenty seventh aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred twenty eighth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred twenty ninth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an apparatus for displaying according to the fifty second aspect of the present invention.
According to a hundred thirtieth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred thirty first aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred thirty second aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an apparatus for displaying according to the eighty second aspect of the present invention.
According to a hundred thirty third aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred thirty fourth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred thirty fifth aspect of the present invention, an electronic apparatus for performing image display on a display screen of an image display section of an apparatus for displaying according to the eight fourth aspect of the present invention.
According to a hundred thirty sixth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred thirty seventh aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred thirty eighth aspect of the present invention, an electronic apparatus for performing image display on a display screen of the means for displaying of an apparatus for displaying according to the forty ninth aspect of the present invention.
According to a hundred thirty ninth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred fortieth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred forty first aspect of the present invention, an electronic apparatus for performing image display on a display screen of the means for displaying of an apparatus for displaying according to the fiftieth aspect of the present invention.
According to a hundred forty second aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred forty third aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred forty fourth aspect of the present invention, an electronic apparatus for performing image display on a display screen of the means for displaying of an apparatus for displaying according to the eighty first aspect of the present invention.
According to a hundred forty fifth aspect of the present invention, a liquid crystal TV, comprising:
According to a hundred forty sixth aspect of the present invention, a liquid crystal monitoring apparatus, comprising:
According to a hundred forty seventh aspect of the present invention, an electronic apparatus for performing image display on a display screen of the means for displaying of an apparatus for displaying according to the eighty third aspect of the present invention.
According to the apparatus, method and program of the present invention, when a luminance level of the moving object supplied in a first sub-frame period is of a luminance level relatively smaller than the luminance level supplied in a second sub-frame period, then a luminance level of the background supplied in the first sub-frame period is also of a luminance level relatively smaller than the luminance level supplied in the second sub-frame period, and when a luminance level of the moving object supplied in a first sub-frame period is of a luminance level relatively larger than the luminance level supplied in a second sub-frame period, then a luminance level of the background supplied in the first sub-frame period is also of a luminance level relatively larger than the luminance level supplied in the second sub-frame period. Therefore, a reduction in image quality caused by due to the movement blur, which is the problem with conventional, general hold-type image display apparatuses, can be suppressed. In addition, the deterioration in the quality of moving images due to the movement blur, which is caused in general conventional hold-type image display apparatuses, can be alleviated. Even when the display is performed at the maximum gradation level, the reduction in the maximum luminance and contrast, which occurs with the minimum (luminance) insertion system (with which each one-frame period includes a minimum luminance period), can be suppressed.
Hereinafter, the function of the present invention provided by the above-described structure will be described.
According to the present invention, in a hold-type image display apparatus which sets a plurality of sub frame periods in one frame period, the gradation level of each sub frame period is controlled such that: the time-wise center of gravity of the display luminance does not move in accordance with the gradation level of the input image signal, while the reduction in the maximum luminance or contrast is suppressed. Thus, the quality of moving images is prevented from being lowered due to the movement blur.
For example, in the case where one frame of image display is performed by a sum of time-integrated values of luminance displayed in an image display section in n sub frame periods (where n is an integer of 2 or greater), the maximum or a sufficiently high gradation level (a gradation level greater than a prescribed value) is supplied in the sub frame period which is at the time-wise center, or closest to the time-wise center, of one frame period, in the range in which the gradation level of the input image signal does not exceed the corresponding luminance level. When the gradation level of the input image signal is reached, the minimum or a sufficiently low gradation level (a gradation level lower than the prescribed value) is supplied to the remaining sub frame periods.
In the case where n is an odd number of 3 or greater, the maximum or a sufficiently high gradation level (a gradation level greater than a prescribed value) is supplied in the sub frame period which is at the time-wise center (the m'th sub frame period, where m=(n+1)/2). A gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in the sub frame periods before and after the central sub frame period. The minimum or a sufficiently low gradation level (a gradation level lower than a prescribed value) is supplied in the remaining sub frame periods. The gradation level to be supplied to each sub frame period is determined by whether the gradation level of the input image signal is higher than the threshold level T.
In the case where n is an even number of 2 or greater, the maximum or a sufficiently high gradation level (a gradation level greater than a prescribed value) is supplied in the sub frame periods which are at the time-wise center, or closest to the time-wise center (the m1st sub frame period and the m2nd sub frame period, where m1=n/2 and m2=n/2+1). A gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in the sub frame periods before and after the central sub frame periods. The minimum or a sufficiently low gradation level (a gradation level lower than a prescribed value) is supplied in the remaining sub frame periods. The gradation level to be supplied to each sub frame period is determined by whether the gradation level of the input image signal is higher than the threshold level T.
By such control, the time-wise center of gravity of the display luminance is fixed to the sub frame period which is at the time-wise center, or closest to the time-wise center, of one frame period. Therefore, the problem with the technology of, for example, Japanese Laid-Open Publication No. 2001-296841, i.e., the problem that a change in the time-wise center of gravity of the display luminance in accordance with the gradation of the input image signal causes the abnormal luminance or the color imbalance, which lowers the image quality, is suppressed. Since the display luminance in one frame period appropriately changes, the deterioration in the quality of moving images due to the movement blur, which is caused in general conventional hold-type image display apparatuses, can be alleviated. Even when the display is performed at the maximum gradation level, the reduction in the maximum luminance and contrast, which occurs with the minimum (luminance) insertion system (with which each one-frame period includes a minimum luminance period), can be suppressed.
In the case where n is 2, where one of the sub frame periods is referred to as a sub frame period α and the other sub frame period is referred to as a sub frame period β, the maximum or a sufficiently high gradation level, or a gradation level which is increased or decreased by the gradation level of the input image signal is supplied in the sub frame period α. The gradation level to be supplied in sub frame period is determined by whether the gradation level of the input image signal is higher than the threshold level.
By such control, the movement of the time-wise center of gravity of luminance can be minimized. Therefore, the problem with the technology of, for example, Japanese Laid-Open Publication No. 2001-296841, i.e., the problem that a change in the time-wise center of gravity of the display luminance in accordance with the gradation of the input image signal causes the abnormal luminance or the color imbalance, which lowers the image quality, is suppressed. Since the display luminance in one frame period appropriately changes, the deterioration in the quality of moving images due to the movement blur, which is caused in general conventional hold-type image display apparatuses, can be alleviated. Even when the display is performed at the maximum gradation level, the reduction in the maximum luminance and contrast, which occurs with the minimum (luminance) insertion system, can be suppressed.
In the case where n is 2, a frame image of an intermediate state in terms of time may be generated based on two frames of images which are consecutively input. In this case, the gradation level supplied in the sub frame period β may be determined by whether the gradation level of the image in the intermediate state is higher than the threshold level. In such a case, the image in the intermediate state in terms of time is generated by estimation. Therefore, inaccurate display caused by interpolation errors which may be generated in some pixel portions can be inconspicuous.
In the case where n is 2, the gradation level supplied in the sub frame period β may be determined by whether the threshold is larger than the value obtained by averaging (i) the gradation level of the input image signal and (ii) the gradation level of the image signal which was input one frame period before or the image signal to be input one frame after.
The upper limits (the maximum levels) of the gradation levels supplied in the sub frame periods are set such that the level of the upper limit is highest for the sub frame period which is at the time-wise center or closest to the time-wise center is highest and decreases as the sub frame period is farther from the center, or such that the upper limits are the same. By such setting, even when the gradation of the input image signal is high, a sub frame period in which the luminance is low can be provided. Thus, even when the gradation of the input image signal is high, the deterioration in the quality of moving images caused by the movement blur (as caused in conventional hold-type image display apparatuses) can be alleviated. When n=2, the upper limit of the gradation level supplied in one of the sub frame periods can be set to be equal to or higher than the upper limit of the gradation level supplied in the other sub frame period.
The gradation levels supplied in the sub frame periods and the threshold levels can be set such that the relationship between the gradation level of the input image signal and the time-integrated luminance exhibits a gamma luminance characteristic. Thus, the deterioration in the quality of moving images caused by the movement blur (as caused in conventional hold-type image display apparatuses) can be alleviated, while guaranteeing the compatibility in gradation reproduce ability with image signals which are generated in consideration of the gamma luminance characteristic of CRTs.
A temperature detection section for detecting the temperature of a panel or the vicinity thereof may be provided, so that the gradation level supplied in the sub frame periods or the threshold levels can be changed in accordance with the detected temperature. Thus, the relationship between the gradation level of the input image signal and the display luminance can be maintained, even when a display element such as a liquid crystal display element, with which the response speed to a luminance increase and the response speed to a luminance decrease can be different under certain temperature, is used.
In the case where an input image signal has a plurality of color components, the gradation levels are set such that the ratio, between the luminance levels displayed in the sub frame periods, of the color having the highest gradation level of input image signal is equal to the ratio, between the luminance levels displayed in the sub frame periods, of the colors other than the color having the highest gradation level of input image signal.
By this, even when the luminance balance is significantly different among different colors, the phenomenon that abnormal colors appear by the luminance balance of the three colors being destroyed in the display of moving images can be prevented.
Hereinafter, various methods for allocating the luminance level assumed for the input image signal to the plurality of sub frame periods will be described in correspondence with claims. As described in more detail below, the gradation levels are adjusted so as to realize the luminance level assumed for the input image signal.
In the following description, for the sake of clarity, the gradation level of the input image signal is allocated such that the gradation level is gradually increased to a prescribed level. According to the present invention, the allocation is actually performed instantaneously by, for example, calculation or conversion using a look-up table or the like, based on the above manner of allocation in accordance with the gradation level of the input image signal.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
According to the present invention, in an image display apparatus for performing one frame period of image display by a sum of time-integrated values of luminance displayed in a plurality of sub frame periods, the gradation level of the image signals supplied in each sub frame period is controlled. By this, when a moving image is displayed, the distance, by which the time-wise center of gravity of luminance moves in accordance with the gradation level of the input image signal, can be minimized. This provides the following effects: (i) the reduction in the maximum luminance or contrast is suppressed, (ii) the quality deterioration due to inaccurate luminance and color imbalance, observed because the time-wise center of gravity of luminance which relies on the gradation level of the input image signal at the time of display of moving images significantly moves, is suppressed; and (iii) the deterioration in moving images due to the movement blur, which is a problem with a conventional hold-type image display apparatus is alleviated.
According to the present invention, the gradation level of the image signal supplied in each sub frame period and the threshold level acting as reference for the gradation level are set, such that the relationship between the gradation level of the input image signal and the time-integrated luminance in one frame period exhibits an appropriate gamma luminance characteristic. Therefore, the deterioration in quality of moving images due to the movement blur can be alleviated while guaranteeing the compatibility in terms of gradation reproduceability with conventional image signals which are generated in consideration of the gamma luminance characteristic of CRTs.
According to the present invention, the gradation level of the image signal supplied in each sub frame period and the threshold level acting as reference for the gradation level are set, in accordance with the temperature of the display panel or the vicinity thereof. Therefore, the relationship between the gradation level of the input image signal and the display luminance can be maintained, even when a display element such as a liquid crystal display element, with which the response speed to a luminance increase and the response speed to a luminance decrease can be different under certain temperature, is used.
Thus, the invention described herein makes possible the advantages of providing a hold-type image display apparatus for suppressing the reduction in the maximum luminance and contrast, minimizing the deterioration in quality caused by the time-wise center of gravity of the display luminance being different in accordance with the gradation level of an input image signal, and minimizing the deterioration of quality of moving images represented by afterimage and movement blur, while being compatible in terms of gradation representation with an image signal which is generated so as to be output to image display devices having a general luminance characteristic (e.g., a gamma luminance characteristic); an electronic apparatus, a liquid crystal TV, a liquid crystal monitoring apparatus, which use such an image display apparatus for a display section; an image display method performing image display using such an image display apparatus; a display control program for allowing a computer to execute the image display method; and a computer-readable recording medium having the display control program recorded thereon.
These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.
a) through (d),
Hereinafter, the present invention will be described by way of illustrative examples 1 through 12 with reference to the accompanying drawings.
In this specification, the term “gradation level” refers to a level of a signal which is input. The term “luminance level” refers to the level of the brightness of an image which is displayed.
As shown in
The display panel 10 includes a display element array 11, a TFT substrate 12, source drivers 13a through 13d, and gate drivers 14a through 14d.
The display element array 11 includes a plurality of display elements 11a (pixel portions) in a matrix. The plurality of display elements 11a are formed of a liquid crystal material or an organic EL (electroluminescence) material.
In a display area of the TFT substrate 12, a plurality of pixel electrodes 12a for respectively driving the display elements 11a and a plurality of TFTs 12b are provided. The plurality of TFTs 12b are for switching on or off the supply of a display voltage to the pixel electrodes 12a respectively. The plurality of pixel electrodes 12a and the plurality of TFTs 12b are arranged in a matrix in correspondence with the display elements 11a. In an area along the display element array 11 and the TFT substrate 12, the first through fourth source drivers 13a through 13d and the first through gate drivers 14a through 14d are provided. The first through fourth source drivers 13a through 13d are for driving the pixel electrodes 12a and the display elements 11a via the respective TFTs 12b. The first through gate drivers 14a through 14d are for driving the TFTs 12b.
In the display area of the TFT substrate 12, a plurality of source voltage lines connected to the source drivers 13a through 13d to provide source voltages (display voltages) and a plurality of gate voltage lines connected to the gate drivers 14a through 14d to provide gate voltages (scanning signal voltages) are provided. The plurality of source voltage lines and the plurality of gate voltage lines are arranged to cross each other, for example, perpendicular to each other. At each of the intersections of the source voltages lines and the gate voltage lines, a pixel electrode 12a and a TFT 12b are provided. A gate electrode of each TFT 12b is connected to the respective gate voltage line (i.e., the gate voltage line running through the respective intersection). A source electrode of each TFT 12b is connected to the respective source voltage line (i.e., the source voltage line running through the respective intersection). A drain electrode of each TFT 12b is connected to the respective pixel electrode 12a.
The leftmost source voltage line connected to each source driver (source drivers 13a through 13d) will be referred to as the first source voltage line, and the source voltage line adjacent to the first source voltage line will be referred to as the second source voltage line. The source voltage lines will be referred to in this manner, and the rightmost source voltage line connected to each source driver will be referred to as the final source voltage line. The uppermost gate voltage line connected to each gate driver (gate drivers 14a through 14d) will be referred to as the first gate voltage line, and the gate voltage line adjacent to the first gate voltage line will be referred to as the second gate voltage line. The gate voltage lines will be referred to in this manner, and the lowermost gate voltage line connected to each gate driver will be referred to as the final gate voltage line.
For the sake of simplicity,
In the vicinity of the display panel 10, the temperature sensor IC 20 for detecting the temperature of the display panel 10 or the vicinity thereof and for outputting the temperature as a temperature level signal is provided. The frame memory 30 for holding input image signals is also provided in the vicinity of the display panel 10. The controller LSI 40 is also provided in the vicinity of the display panel 10 for outputting signals to the source drivers 13a through 13d and the gate drivers 14a through 14d, for accessing the frame memory 30 and storing data therein, and for reading the temperature level signal which is output from the temperature sensor IC 20 and correcting and controlling the luminance in accordance with the temperature.
A basic display method using the image display apparatus 1 having such a structure will be described.
The controller LSI 40 sends image signals corresponding to pixel portions of one horizontal line to the first source driver 13a sequentially in synchronization with a clock signal. Since the first through fourth source drivers 13a through 13d are connected as shown in
The controller LSI 40 also outputs enable signals, start pulse signals and vertical shift clock signals as control signals to the first through fourth gate drivers 14a through 14d. While the enable signal is at a LOW level, the gate voltage line is in an OFF state. When a start pulse signal is input at the rising edge of a vertical shift clock signal while the enable signal is put to a HIGH level, the first gate voltage line of the corresponding gate driver is placed into an ON state. When the start pulse signal is not input at the rising edge of the vertical clock shift signal, the gate voltage line immediately subsequent to the gate voltage line, which was placed into an ON state at the immediately previous time, is placed into an ON state.
By one gate voltage line being placed into an ON state while the display voltages corresponding to the pixel portions of one horizontal line are output to the source voltage line, the TFTs 12b connected to this gate voltage line (corresponding to the pixel portions of the one horizontal line) are placed into an ON state. By this, the pixel electrodes 12a corresponding to pixels of the one horizontal line are each supplied with charge (display voltage) from the respective source voltage line. Thus, the state of the corresponding display element 11a changes, and image display is performed. Such display control is repeated for each horizontal line, and thus image display is performed in the entire display screen.
Hereinafter, an image display apparatus 1 and an image display method according to the present invention will be described by way of specific examples 1 through 8. In Examples 1 through 8, the image display apparatus 1 described above including the controller LSI 40 is used.
In Example 1 of the present invention, image display is performed for each pixel portion on the screen by the sum of time-integrated values (or levels) of luminance during the first and second sub frame periods. During one of the two sub frame periods which is uniquely defined (for example, a first sub frame period), an image signal of the maximum gradation level, or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, is supplied. This sub frame period is referred to as the “sub frame period α”. During the other sub frame period (for example, a second sub frame period), an image signal of the minimum gradation level, or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, is supplied. This sub frame period is referred to as the “sub frame period β”. Such control is performed in units of single pixel or in units of a prescribed number of pixels.
How to determine which of the sub frame period α and the sub frame period β is assigned to the first sub frame period and the second sub frame period will be described later.
In Example 1, the display panel 10 uses, as a display element, a liquid crystal material which has a high temperature dependency of the response speed.
As shown in
The line buffer 41 receives the input image signal horizontal line by horizontal line, and temporarily stores the input image signal. The line buffer 41 includes a receiving port and a sending port independently, and therefore can receive and send signals simultaneously.
The timing controller 42 controls the frame memory data selector 43 to alternately select data transfer to the frame memory 30 or data read from the frame memory 30. The timing controller 42 also controls the output data selector 46 to alternately select data output from the first gradation conversion circuit 44 or data output from the second gradation conversion circuit 45. Namely, the timing controller 42 selects the first sub frame period or the second sub frame period for the output data selector 46, as described later in detail.
The frame memory data selector 43 is controlled by the timing controller 42 to alternately select data transfer or data read. In data transfer, the frame memory data selector 43 transfers the input image signal stored in the line buffer 41 to the frame memory 30, horizontal line by horizontal line. In data read, the frame memory data selector 43 reads an input image signal which was read one frame period before and has been stored in the frame memory 30, horizontal line by horizontal line, and transfers the read data to the second gradation conversion circuit 45.
The first gradation conversion circuit 44 converts the gradation level of the input image signal supplied from the line buffer 41 to the maximum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal.
The second gradation conversion circuit 45 converts the gradation level of the image signal supplied from the frame data selector 43 to the minimum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal.
The first gradation conversion circuit 44 and the second gradation conversion circuit 45 have a function of changing the conversion value in accordance with a temperature level signal which is output from the temperature sensor IC 20. In Example 1, the first gradation conversion circuit 44 and the second gradation conversion circuit 45 include look-up tables which store output values in correspondence with input values. Alternatively, output values may be calculated by a calculation circuit.
The output data selector 46 is controlled by the timing controller 42 to alternately select an image signal which is output from the first gradation conversion circuit 44, or an image signal which is output from the second gradation conversion circuit 45, horizontal line by horizontal line. The output data selector 46 outputs the selected image signal as a panel image signal.
An operation of an image display apparatus in Example 1 including the controller LSI 40A having the above-described structure will be described.
In
In operation, an input image signal is first received by the line buffer 41 as represented by arrow D1 in
Then, as represented by arrow D2, while one horizontal line of image signal is being received, the image signal is written from the line buffer 41 to the frame memory 30 via the frame memory data selector 43, and is also transferred from the line buffer 41 to the first gradation conversion circuit 44. The first gradation conversion circuit 44 outputs the converted image signal as a panel image signal.
As represented by arrow D3, alternately with the image signal being written to the frame memory 30, an image signal of the horizontal line, which is a half frame period before the horizontal line of the image signal which is being written, is read from the frame memory 30, horizontal line by horizontal line. The read image signal is converted by the second gradation conversion circuit 44 via the frame memory data selector 43 and is output as a panel image signal.
One horizontal line of panel image signal is output from the controller LSI 40A and is transferred to the first through fourth source drivers 13a through 13d by a clock signal. Then, when a latch pulse signal is provided, a display voltage corresponding to the display luminance of each pixel portion is output from the respective source voltage line. At this point, the gate driver corresponding to the horizontal line, which is to be supplied with charge (display voltage) on the source voltage line to perform image display, is supplied with a vertical shift clock signal or a gate start pulse signal as necessary. Thus, the scanning signal on the corresponding gate voltage line is placed into an ON state. For a gate driver which is not to be used for image display, the enable signal is put to a LOW level and thus the scanning signal of the corresponding gate voltage line is placed into an OFF state.
In the example shown in
Next, as represented by arrow D9, the first line (one horizontal line) of image signal of the N'th frame is transferred to the source driver. Then, as represented by arrow D10, the enable signal from the controller LSI 40A to the first gate driver 14a is put to a HIGH level. As represented by arrows D10 and D11, a start pulse signal and a vertical shift clock signal are supplied to the first gate driver 14a. As a result, as represented by arrow D13, the TFT 12b connected to the first gate voltage line of the first gate driver 14a (corresponding to the first line on the screen in terms of the display position) is placed into an ON state. Thus, image display is performed. At this point, the enable signals to the second through fourth gate drivers 14b, 14c and 14d, which are not at the display position, are put to a LOW level, and the TFTs 12b connected to the second through fourth gate drivers 14b, 14c and 14d are in an OFF state.
In
Paying attention to a vertical position of one horizontal line on the screen, the following is appreciated: during a half of one frame, image display is performed by an image signal obtained by conversion by the first gradation conversion circuit 44; and during the next half of the frame, image display is performed by an image signal obtained by conversion by the second gradation conversion circuit 45. The first half of the frame is referred to as the first sub frame period, and the second half of the frame is referred to as the second sub frame period.
Whether the sub frame period α is assigned to the first sub frame period or the second sub frame period, and whether the sub frame period β is assigned to the first sub frame period or the second sub frame period, is determined by the response speed characteristic, of the display panel used, to a luminance switch.
In the case of the display panel used in Example 1, the response speed to a luminance switch from the minimum luminance level to the maximum luminance level is low (i.e., the response time to such a luminance switch is long), and the response is not completed in one sub frame period. By contrast, the response speed to a luminance switch from the maximum luminance level to the minimum luminance level is high, and the luminance response is substantially completed in one sub frame period.
With such a display panel, in the case where the gradation level of the input image signal is changed as shown in
In
Next, the sub frame period α is assigned to the second sub frame period and the sub frame period β is assigned to the first sub frame period, in the case where the gradation level of the input image signal is changed as shown in
In
An image display method performed using the image display apparatus in Example 1 will be described.
In Example 1, the second sub frame period is referred to as the sub frame period α as described above. In the sub frame period α, the input image signal is converted by the first gradation conversion circuit 44, such that an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied when the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, and such that an image signal of the maximum gradation level is supplied when the gradation level of the input image signal is greater than the threshold level.
The first sub frame period is referred to as the sub frame period β as described above. In the sub frame period β, the input image signal is converted by the second gradation conversion circuit 45, such that an image signal of the minimum gradation level is supplied when the gradation level of the input image signal is equal to or less than the threshold level uniquely determined, and such that an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied when the gradation level of the input image signal is greater than the threshold level.
Here, the luminance levels which are the target values for the first sub frame period and the second sub frame period will be described.
In
As shown in
Luminance in the second sub frame period=luminance assumed for the input image signal×2 (prescribed ratio, i.e., multiplication value: 2).
Thus, the luminance in the second sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal. For example, when the luminance assumed for the input image signal is 25%, the luminance in the second sub frame period is 25%×2=50%.
When the luminance assumed for the input image signal is greater than ½ (50%) of the maximum luminance, the luminance in the second sub frame period is the maximum luminance (100%).
When the luminance assumed for the input image signal is ½ (50%) of the maximum luminance or less, the luminance in the first sub frame period is the minimum luminance (0%).
When the luminance assumed for the input image signal is greater than ½ (50%) of the maximum luminance, the luminance in the first sub frame period is expressed as follows.
Luminance in the first sub frame period=luminance assumed for the input image signal×2−1 (prescribed ratio, i.e., multiplication value: 2).
Thus, the luminance in the first sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal. For example, when the luminance assumed for the input image signal is 75% (¾), the luminance in the first sub frame period is (¾)×2−1=50%.
As described above, the gradation level of the input image signal is converted by the first gradation conversion circuit 44 (in the first sub frame period) and by the second gradation conversion circuit 45 (in the second sub frame period) in accordance with the set luminance level, and the converted values are respectively output in the first sub frame period and the second sub frame period. In this manner, the time-wise center of gravity of the display luminance does not rely on the gradation level of the input image signal and is fixed to the second sub frame period. Therefore, the reduction in image quality caused by the abnormal luminance or the color imbalance, which is the problem with the technology of, for example, Japanese Laid-Open Publication No. 2001-296841, can be suppressed.
Current general image signals, for example, TV broadcast signals, video reproduction signals, and PC (personal computer) image signals, are mostly generated and output in consideration of the gamma luminance characteristic of CRTs (cathode ray tubes). In this case, the gradation level of an image display signal and the display luminance assumed for the gradation level do not have a linear relationship. Accordingly, in order to realize appropriate gradation representation by display devices such as liquid crystal display devices and EL display devices, the source driver generally includes a circuit having substantially the same gamma luminance characteristic as that of a CRT as a circuit for converting the image signal into a source voltage.
In Example 1, the gradation level of an input image signal and the display luminance assumed for the gradation level have the following relationship.
Display luminance=(gradation level of the input image signal/the maximum gradation level)γ(γ=2.2) expression (1)
In Example 1, the source drivers 13a through 13d of the display panel 10 are designed to have the same gamma luminance characteristic as that of expression (1). This is done such that the relationship between the gradation level of an input image signal and the display luminance assumed for the gradation level can be reproduced when one frame of input image signal is simply reproduced in one frame period, like in the general conventional hold-type display apparatuses. In this case, the gradation level of the input image signal and the display luminance assumed for the gradation level have the relationship shown in
Even in the case where one frame of image display is performed in two sub frame periods as in Example 1, it is preferable to be able to reproduce the relationship between the gradation level of the input image signal and the display luminance assumed for the gradation level.
In order to realize this, in Example 1, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased in accordance with the gradation level of the input image signal, are set such that the relationship between the gradation level of the input image signal and the time-integrated value of luminance in one frame period exhibits an appropriate gamma luminance characteristic.
In Example 1, the priority is given to suppressing the reduction in luminance, rather than to solving the movement blur at all the gradation levels. When the gradation level of the input image signal is maximum, the image display is performed at the maximum possible luminance of the display panel 10.
In this case, the gradation level of the input image signal, and the gradation level supplied in the first sub frame period and the gradation level supplied in the second sub frame period, have the following relationship.
(Gradation level of the input image signal/the maximum gradation level)γ={(the gradation level supplied in the first subframe period/the maximum gradation level)γ+(the gradation level supplied in the second sub frame period/the maximum gradation level)γ}/2(γ=2,2) expression (2)
In
As shown in
When the gradation level of the input image signal is greater than 72.97%, the gradation level of the image signal supplied in the second sub frame period is maximum (100%). The gradation level of the image signal supplied in the first sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal, so as to fulfill expression (2).
The gradation level of the image signal supplied in the first sub frame period is obtained as a result of the input image signal being temporarily stored in, and output from, the line buffer 41 and converted by the first gradation conversion circuit 44 in the control LSI 40A. The gradation level of the image signal supplied in the second sub frame period is obtained as a result of the input image signal being temporarily stored in, and output from, the frame memory 30 and converted by the second gradation conversion circuit 45 in the control LSI 40A.
When the converted gradation levels as shown in the middle part of
As a result, the time-integrated luminance in the first and second sub frame periods of one frame period as shown in the right part of
For displaying an image of an object moving in the horizontal direction with a still background using the image display apparatus and method in Example 1, when the gradation level of the input image signal is sufficiently low, an image of the minimum gradation level is supplied in the second sub frame period for both the display portion of the still background and the display portion of the moving object. Therefore, as in the case of the image display apparatus which adopt the minimum (luminance) insertion system shown in
In the following description, an image of an object having a gradation level of as high as 72.97% or greater (display luminance of 50% or greater) moving with a background having a still higher luminance is input to a general conventional hold-type image display apparatus and also the image display apparatus in Example 1.
As shown in
In
In
Next, a temperature correction function of the image display apparatus in Example 1 will be described.
The image display apparatus in Example 1 uses liquid crystal elements as the display elements 11a of the display panel 10. The response speed of liquid crystal material is generally known to be lower in lower temperatures and higher in higher temperatures. Under certain temperature conditions, the response speed of increasing the transmittance with respect to a change in the gradation level may be different from the response speed of decreasing the transmittance with respect to a change in the gradation level. Such a difference in response speed in accordance with the temperature, and which response speed (i.e., the response speed of increasing or decreasing the transmittance) is higher, depends on the using conditions of the liquid crystal materials.
In the case of the liquid crystal material used in Example 1, the response speed of increasing the transmittance and the response speed of decreasing the transmittance are substantially the same when the temperature is high, and the response speed of decreasing the transmittance becomes lower as the temperature is lowered. With such a liquid crystal material, the luminance may be different under certain temperature conditions even when the same gradation level of image signal is supplied to the image display apparatus which performs one frame of image display using time-integrated luminance of the two sub frame periods.
As described above, in the case of the liquid crystal material used in Example 1, the response speed of decreasing the transmittance is lowered (i.e., the luminance is lowered) as the temperature is lowered. Accordingly, at the low temperature shown in the right part of
A temperature level signal which is output from the temperature sensor IC 20 provided in the vicinity of the display panel 10 is input to the first gradation conversion circuit 44 and the second gradation conversion circuit 45. As described above, the first gradation conversion circuit 44 and the second gradation conversion circuit 45 include look-up tables. More specifically, the first gradation conversion circuit 44 and the second gradation conversion circuit 45 each include a plurality of look-up tables, and the look-up table used for gradation conversion is switched in accordance with the temperature level signal from the temperature sensor IC 20.
Owing to the above-described temperature correction function, at the low temperature shown in the right part of
As described above, according to Example 1 of the present invention, when an image of an object moving with a still background is displayed, the movement blur is alleviated while reducing the maximum value of time-integrated luminance, which is the brightness perceived by the observer's eye, by only 25%, and without generating portions which are abnormally brighter or abnormally darker than the original image. Thus, the quality of moving images of a hold-type image display apparatus can be improved. In addition, the image can be displayed with gradation representation having a gamma luminance characteristic suitable to the input image signal. Even when the display panel 10 uses a liquid crystal material, the relationship between the gradation level of the input image signal and the brightness perceived by the observer's eye can be maintained regardless of the temperature conditions.
In Example 2 of the present invention, one frame of image display is performed by the sum of the time-integrated values of luminance during the first and second sub frame periods of each one-frame period. An image display apparatus in Example 2 includes display control section for performing image display control on an image display portion in the two sub frame periods.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β. Threshold levels, T1 and T2, of the gradation level in the two sub frame periods are defined. The threshold level T2 is larger than the threshold level T1.
When the gradation level of the input image signal is equal to or less than the threshold level T1, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to an image display section of the image display apparatus in the sub frame period α, and an image signal of the minimum gradation level is supplied to the image display section in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the image display section in the sub frame period α, and an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal and which is lower than the gradation level supplied in the sub frame period α is supplied to the image display section in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T2, an image signal of the maximum gradation level is supplied to the image display section in the sub frame period α, and an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the image display section in the sub frame period β.
For example, the luminance assumed for the input image signal is gradually changed as shown in
As shown in
In Example 2, in order to suppress such an inconvenience, the gradation distribution in the first and second sub frame periods is performed in a different manner from that in Example 1.
In Example 2, the threshold level T1 is defined as the gradation level when the assumed luminance is 25%, and the threshold level T2 is defined as the gradation level when the assumed luminance is 75%. When the luminance assumed for the input image signal is equal to or less than the threshold level T1 (25%), the image display is performed at the minimum luminance level of 0% in the first sub frame period (the sub frame period β), and the image display is performed at a luminance level which is increased or decreased in accordance with the gradation level of the input image signal in the second sub frame period (the sub frame period α).
When the luminance assumed for the input image signal is greater than the threshold level T1 (25%) and equal to or less than the threshold level T2 (75%), the image display is performed at the luminance level of 0% to 50% in the first sub frame period (the sub frame period β), and the image display is performed at the luminance level of 50% to 100% in the second sub frame period (the sub frame period α). The luminance level in the sub frame period β and the luminance level in the sub frame period α are determined in accordance with the gradation level of the input image signal, and the difference between the luminance levels of the sub frame period β and the sub frame period α is maintained at 50%. Regarding the relationship between the sub frame period β and the sub frame period α, the luminance levels thereof may be fixed, the difference between the gradation levels supplied may be fixed, or the ratio of the gradation levels supplied may be fixed. The luminance levels of the sub frame period α and the sub frame period β, or the gradation levels supplied in the sub frame period α and the sub frame period β, may be defined by some function.
When the luminance assumed for the input image signal is greater than the threshold level T2 (75%), the image display is performed at a luminance level which is increased or decreased in accordance with the gradation level of the input image signal in the first sub frame period (the sub frame period β), and the image display is performed at the maximum luminance level of 100% in the second sub frame period (the sub frame period α).
In Example 1, the target display luminance level for each of the first sub frame period and the second sub frame period, when the luminance assumed for the input image signal is 25% or greater and less than 75%, is gradually increased from the second sub frame period to the first sub frame period. By contrast, in Example 2, the target display luminance is increased both in the second sub frame period and the first sub frame period. When the luminance assumed for the input image signal is less than 25% or equal to or greater than 75%, Example 2 works in the same manner as in Example 1.
As described above,
Next, the gradation level which is supplied in each sub frame period in order to maintain the above-described target display luminance when the luminance assumed for the input image signal is 25% or greater and less than 75% will be described.
In Example 2, like in Example 1, the display panel has a gamma luminance characteristic. The input image signal also has a gamma luminance characteristic in consideration of the CRTs. For maintaining the difference between the luminance level in the first sub frame period and the luminance level in the second sub frame period to 50%, the relationship between the gradation level in the first sub frame period and the gradation level in the second sub frame period is expressed as follows.
(Gradation level of the second sub frame period/the maximum gradation level)γ−(gradation level of the first sub frame period/the maximum gradation level)γ=0.5(γ=2.2) expression (3)
The relationship regarding the gradation level of the input image signal is the same as expression (2) described in Example 1. Based on these expressions,
As described above, Example 2 of the present invention provides the effect of avoiding the phenomenon that the observer views discontinuity in the luminance change even when an image of an object with the luminance gradually changing as shown in
In Example 3 of the present invention, one frame of image display is performed by the sum of the time-integrated values of luminance during the first and second sub frame periods. In Example 3, an image display apparatus includes a display control section for performing image display control on an image display portion in the two sub frame periods of one frame period.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β. Threshold levels, T1 and T2, of the gradation level in the two sub frame periods are defined. The threshold level T2 is larger than the threshold level T1. A gradation level (value) L is uniquely determined.
When the gradation level of the input image signal is equal to or less than the threshold level T1, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to an image display section of the image display apparatus in the sub frame period α, and an image signal of the minimum gradation level is supplied to the image display section in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, an image signal of the gradation level L is supplied to the image display section in the sub frame period α, and an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the image display section in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T2, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the image display section in the sub frame period α, and an image signal of the maximum gradation level is supplied to the image display section in the sub frame period β.
In Example 3, whether the luminance in the sub frame period α is higher or lower than the luminance in the sub frame period β varies in accordance with the gradation level of the input image signal. Therefore, unlike in Example 1, the sub frame period which is assigned to the first sub frame period and the sub frame period which is assigned to the second sub frame period cannot be determined by the relationship between the response speed to a luminance switch from the minimum luminance level to the maximum luminance level and the response speed to a luminance switch from the maximum luminance level to the maximum luminance level. Which sub frame period is assigned to the first sub frame period and which sub frame period is assigned to the second sub frame period is preferably determined in accordance with, for example, the other characteristics of the display panel, or the characteristics of the image displayed. In this example, the sub frame period β is assigned to the first sub frame period, and the sub frame period α is assigned to the second sub frame period.
In Example 3, as shown in
When the luminance assumed for the input image signal is equal to or less than the threshold level T1, the image display is performed at the minimum luminance level of 0% in the first sub frame period (the sub frame period β), and the image display is performed at a luminance level which is increased or decreased in accordance with the gradation level of the input image signal in the second sub frame period (the sub frame period α).
When the luminance assumed for the input image signal is greater than the threshold level T1 (25%) and equal to or less than the threshold level T2 (75%), the image display is performed at the luminance level corresponding to the gradation value L (50%) in the first sub frame period (the sub frame period β), and the image display is performed at a luminance level which is increased or decreased in accordance with the gradation level of the input image signal in the second sub frame period (the sub frame period α).
When the luminance assumed for the input image signal is greater than the threshold level T2 (75%), the image display is performed at a luminance level which is increased or decreased in accordance with the gradation level of the input image signal, and the image display is performed at the maximum luminance level of 100% in the second sub frame period (the sub frame period α).
In Example 3, like in Example 1, the display panel has the gamma luminance characteristic represented by expression (1), and the input image signal is also generated in consideration of the gamma luminance characteristic represented by expression (1).
An image display apparatus in Example 4 of the present invention uses a display panel having different response characteristics from those of the display panel in Example 1. For one of the two sub frame periods, an upper limit is provided for the supplied gradation level, so that the movement blur is alleviated. For the sake of simplicity, the display panel is represented also by reference numeral 10.
In the case of the display panel used in Example 4 of the present invention, the response speed to a luminance switch from the maximum luminance level to the minimum luminance level is low, and the response is not completed in one sub frame period. By contrast, the response speed to a luminance switch from the minimum luminance level to the maximum luminance level is high, and the response is substantially completed in one sub frame period. Accordingly, the sub frame period α is assigned to the first sub frame period, and the sub frame period β is assigned to the second sub frame period.
The target luminance levels for the first sub frame period and the second sub frame period in Example 4 will be described.
In
As shown in
Luminance in the first sub frame period=Luminance assumed for the input image signal×1.5 (prescribed ratio, i.e., multiplication value: 1.5).
Thus, the luminance in the first sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal. For example, when the luminance assumed for the input image signal is 25%, the luminance in the first sub frame period is 25%×1.5=37.5%.
When the luminance assumed for the input image signal is greater than ⅔ (66.67%) of the maximum luminance, the luminance in the first sub frame period is maximum (100%). The maximum value of 100% is obtained by multiplying the threshold level of 66.67% (⅔) by 1.5.
When the luminance assumed for the input image signal is ⅔(66.67%) of the maximum luminance or less, the luminance in the second sub frame period is minimum (0%).
When the luminance assumed for the input image signal is greater than ⅔ (66.67%) of the maximum luminance, the luminance in the second sub frame period is expressed as follows.
Luminance in the second sub frame period=(luminance assumed for the input image signal−⅔)×1.5 (prescribed ratio, i.e., multiplication value: 1.5).
Thus, the luminance in the second sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal. For example, when the luminance assumed for the input image signal is 75% (¾), the luminance in the second sub frame period is (¾−⅔)×1.5=12.5%.
In Example 4, in order to improve the quality of moving images, an upper limit L1 of the gradation level of the image signal supplied in the first sub frame period and an upper limit L2 of the gradation level of the image signal supplied in the second sub frame period are set to fulfill the relationship of L1≧L2. In this example, the upper limit L1 for the first sub frame period is 100%, and the upper limit L2 for the second sub frame period is 50%.
Since the upper limit L2 for the second sub frame period is set to 50%, the maximum value of the brightness perceived by the observer's eye is reduced by 25%. However, even when the luminance for the input image signal is maximum (100%), there is a difference in luminance between the first sub frame period and the second sub frame period. Therefore, the movement blur is alleviated.
In Example 4, like in Example 1, the display panel and the luminance has the gamma luminance characteristic represented by expression (1), and the input image signal is also generated in consideration of the gamma luminance characteristic represented by expression (1). The gradation level of an input image signal and the display luminance assumed for the gradation level have the relationship as represented by expression (1).
In Example 4, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased in accordance with the gradation level of the input image signal, are set such that the relationship between the gradation level of the input image signal and the time-integrated luminance in one frame period exhibits an appropriate gamma luminance characteristic.
In Example 4, the time-integrated luminance in the two sub frame periods is considered to match the brightness actually perceived by the observer's eye. Especially in Example 4, in order to alleviate the movement blur even when the gradation level of the input image signal is high, the luminance level in the second sub frame period is restricted to be half of or less than the maximum possible value of the display panel. In the following description, the luminance level (time-integrated luminance in one frame period) which is 75% of the maximum possible value of the display panel will be described as the maximum luminance level which can be provided by the image display apparatus in Example 4.
In this case, the gradation level of the input image signal, and the gradation level supplied in the first sub frame period and the gradation level supplied in the second sub frame period, have the following relationship.
(Gradation level of the input image signal/the maximum gradation level)γ={(the gradation level supplied in the first sub frame period/the maximum gradation level)γ+(the gradation level supplied in the second sub frame period/the maximum gradation level)γ}/2×(1/0.75) (Γ=2,2) expression 4)
In
As shown in
When the gradation level of the input image signal is greater than 83.2%, the gradation level of the image signal supplied in the first sub frame period is maximum (100%). The gradation level of the image signal supplied in the second sub frame period is increased or decreased in accordance with the luminance assumed for the input image signal so as to fulfill expression (4).
The gradation level of the image signal supplied in the first sub frame period is obtained as a result of the input image signal being temporarily stored in, and output from, the line buffer 41 and converted by the first gradation conversion circuit 44 in the control LSI 40A. The gradation level of the image signal supplied in the second sub frame period is obtained as a result of the input image signal being temporarily stored in, and output from, the frame memory 30 and converted by the second gradation conversion circuit 45 in the control LSI 40A.
When the converted gradation levels as shown in the middle part of
As a result, the time-integrated luminance in the first and second sub frame periods of one frame period, as shown in the right part of
For displaying an image of an object moving in the horizontal direction with a still background using the image display apparatus and method in Example 4, when the gradation level of the input image signal is sufficiently low, the minimum gradation level is supplied in the second sub frame period for both the display portion of the still background and the display portion of the moving object. Therefore, as in the case of the image display apparatus which adopts the minimum (luminance) insertion system shown in
In
In
Owing to the above-described temperature correction function, at the low temperature in the right part of
As described above, according to Example 4 of the present invention, when an image of an object moving with a still background is displayed, the movement blur is alleviated while reducing the maximum value of time-integrated luminance, which is the brightness perceived by the observer's eye, by only 25%, without generating portions which are abnormally brighter or abnormally darker than the original image. Thus, the quality of moving images of a hold-type image display apparatus can be improved. In addition, the image can be displayed with gradation representation having a gamma luminance characteristic suitable to the input image signal.
In Example 5 of the present invention, an image display apparatus represents colors by supplying image signals of separate gradation levels for the three primary colors of red, green and blue.
As shown in
Paying attention to the dotted arrow representing the observer's eye following the moving object, it is appreciated that an appropriate color is viewed in the central part of the object as in a still image, but only red is viewed at the right end of the object and the left end of the object appears to be short of red. Since the luminance balance of the three colors is destroyed, abnormal colors may be viewed.
The reason is that the red input image signal has a high gradation level and is displayed in the first and second sub frame periods, whereas the green and blue input image signals have a low gradation level and are displayed only in the first sub frame period. This results in the time-wise center of gravity being different between red and the other two colors.
In order to avoid such a phenomenon, in Example 5, the gradation levels of image signals supplied in the first sub frame period and the second sub frame period are controlled regarding the two colors other than the color having the highest gradation level of input image signal.
This is specifically performed as follows. Regarding the color having the highest gradation level of input image signal among the three colors, an image signal having the maximum gradation level, or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, is supplied in the second sub frame period. In the first sub frame period, an image signal having the minimum gradation level, or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, is supplied, as in Example 1. Regarding each of the other two colors, the gradation levels are set such that the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period is equal to the ratio, of the color having the highest gradation level of input image signal, between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period. The image signal is supplied to each sub frame period at each obtained gradation level.
In Example 5, the time flow of the image signal and the method for driving the display panel 10 are substantially the same as those of Example 1, and will not be repeated. Hereinafter, a method for converting the gradation level of the colors other than the color having the highest gradation level of input image signal, using the first gradation level conversion circuit 44 and the second gradation level conversion circuit 45, will be described as a difference from the method of Example 1.
The display panel 10 used in Example 5 has the following gamma luminance characteristic as in Example 1.
Display luminance=(gradation level of the input image signal/the maximum gradation level)γ(γ=2.2) expression (1)
For a pixel portion in a frame, the ratio between the gradation level of image signal, of the color having the highest gradation level of input image signal, supplied in the first sub frame period and the maximum gradation level is X1. The ratio between the gradation level of image signal of that color supplied in the second sub frame period and the maximum gradation level is X2.
The display luminance in each sub frame period is as follows due to the gamma luminance characteristic.
Similarly, the ratio between the gradation level of image signal, of a color other than the color having the highest gradation level of input image signal, supplied in the first sub frame period and the maximum gradation level is Y1. The ratio between the gradation level of image signal of that color supplied in the second sub frame period and the maximum gradation level is Y2.
The display luminance in each sub frame period is as follows due to the gamma luminance characteristic.
In Example 5, as described above, the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period of a color other than the color having the highest gradation level of input image signal is equal to the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period of the color having the highest gradation level of input image signal.
Therefore, the following relationship is obtained.
Y1γ:Y2γ=X1γ:X2γ expression (5)
Where the gradation level of the input image signal of a color other than the color having the maximum gradation level of input image signal is Y, the following expression needs to be fulfilled in order to provide an appropriate gamma luminance characteristic to the relationship between the gradation level of input image signal and the time-integrated luminance of one frame period, as described in Example 4.
Yγ=(Y1γ+Y2γ)/2 expression (6)
From expressions (5) and (6),
Y1=Y·{2X1γ/(X1γ+X2γ)}1/γ expression (7)
Y2=Y·{2X2γ/(X1γ+X2γ)}1/γ expression (8)
Accordingly, the output gradation level of a color other than the color having the highest gradation level of input image signal is determined by performing the calculation in accordance with expressions (7) and (8) using the first gradation conversion circuit 44 and the second gradation conversion circuit 45 in the controller LSI 40A.
As shown in
In Example 6 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during two sub frame periods (i.e., the first sub frame period and the second sub frame period). Based on two frames of image continuously input, an image in an intermediate state in terms of time is generated through estimation. When the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in one of the sub frame period uniquely defined (for example, the first sub frame period). When the gradation level of the input image signal is greater than the threshold level, an image signal of the maximum gradation level is supplied also in one of the sub frame periods uniquely defined (for example, the first sub frame period). When the gradation level of the image signal in the intermediate state is equal to or less than the threshold level, an image signal of the minimum gradation level is supplied in the other sub frame period (for example, the second sub frame period). When the gradation level of the image signal in the intermediate state is greater than the threshold level, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the image signal in the intermediate state is supplied also in the other sub frame period (for example, the second sub frame period).
As shown in
The single line buffer 41a receives the input image signal horizontal line by horizontal line, and temporarily stores the input image signal. The single line buffer 41a includes a receiving port and a sending port independently, and therefore can receive and send signals simultaneously.
The frame memory data selector 43 is controlled by the timing controller 42 to transfer the input image signal stored in the single line buffer 41a to the frame memory 30, horizontal line by horizontal line. Thus, the input image signal is transferred to the frame memory 30 within one frame period. The frame memory 30 cannot simultaneously send and receive data. Therefore, the timing controller 42 switches the frame memory data selector 43 (timing control) such that data is read from the frame memory 30 while the input image signal is not transferred to the frame memory 30. More specifically, an input image signal which was read one frame period before and has been stored in the frame memory 30 is read horizontal line by horizontal line, and is transferred to the first multiple line buffer 47. In parallel to this, and in a time division manner, an input image signal which was read two frame periods before and has been stored in the frame memory 30 is read horizontal line by horizontal line, and is transferred to the second multiple line buffer 48.
The intermediate image generation circuit 50 compares the image signals stored in the first multiple line buffer 47 and the second multiple line buffer 48, so as to estimate and generate an image signal in an intermediate state in terms of time between the image signal which was input one frame period before and the image signal which was input two frame periods before.
The first multiple line buffer 47 and the second multiple line buffer 48 can store several tens of horizontal lines of image signal. The intermediate image generation circuit 50 compares the above-mentioned two image signals by the range of the number of pixel portions in the horizontal direction×several tens of horizontal lines, in order to generate an image signal in an intermediate state in terms of time. Such an image signal is generated, for example, as follows. From the image signal which was input two frame periods before, one partial area is picked up. A sum of the gradation levels of pixel portions in this partial area is obtained. A partial area having the same shape is found from the image signal which was input one frame period before, such that the difference between (a) the sum of the gradation levels of the pixel portions in the partial area of the image signal which was input two frame periods before, and (b) the sum of the gradation levels of the pixel portions in the partial area of the image signal which was input one frame period before, is minimum. The partial area found from the image signal which was input one frame period before is estimated as the transfer destination of the partial area of the image signal which was input two frame periods before. An image signal is obtained by moving the partial area of the image signal which was input two frame periods before, by half the distance of transfer. In this manner, an image signal in an intermediate state in terms of time is generated. The method will not be described in more detail since Example 6 is not provided to specify the method for generating such an image signal. With such a method for generating an image signal in an intermediate state in terms of time, it is not easy to generate an image with completely accurate interpolation. Therefore, inaccurate display may occur in some of the pixel portions due to interpolation errors.
The image signal generated by the intermediate image generation circuit 50 is sequentially transferred to the second gradation conversion circuit 45.
The image signal which was input one frame period before and is held in the first multiple line buffer 47 and the image signal which was input two frame periods before and is held in the second multiple line buffer 48 are also transferred to the buffer data selector 49.
The buffer data selector 49 is controlled by the timing controller 42 to select the image signal which was input one frame period before and is supplied from the first multiple line buffer 47 or the image signal which was input two frame periods before and is supplied from the second multiple line buffer 48, in accordance with the display timing. The selected image signal is transferred to the first gradation conversion circuit 44.
The first gradation conversion circuit 44 converts the gradation level of the input image signal supplied from the buffer data selector 49 to the maximum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, like in Example 4.
The second gradation conversion circuit 45 converts the gradation level of the image signal supplied from the intermediate image generation circuit 50 to the minimum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, like in Example 4.
The output data selector 46 is controlled by the timing controller 42 to select the image signal which is output from the first gradation conversion circuit 44 and to output the image signal as the panel image signal in the first sub frame period, or to select the image signal which is output from the second gradation conversion circuit 45 and to output the image signal as the panel image signal in the second sub frame period.
An operation of an image display apparatus in Example 6 including the controller LSI 40B having the above-described structure will be described.
In
Regarding the frame memory 30, the hatched areas represent a period in which signals are written, and the white areas represent a period in which signals are read. Since the frame memory 30 cannot simultaneously read and write data, data read and data write are performed in a time division manner.
As shown in
In Example 6, the display panel 10 is driven by a different method from that of Example 1 shown in
In
Paying attention to a vertical position of one horizontal line on the screen, the following is appreciated: during a half of one frame, image display is performed by an image signal obtained by converting the image signal which was input two frame periods before using the first gradation conversion circuit 44; and during the next half of the frame, image display is performed by an image signal obtained by converting, by the second gradation conversion circuit 45, the image signal in an intermediate state in terms of time between the image signal which was input one frame period before and the image signal which was input two frame periods before. The first half of the frame is referred to as the first sub frame period, and the second half of the frame is referred to as the second sub frame period.
In
In
The image displayed in the second sub frame period is generated based on an image in an intermediate state in terms of time between image signals which were previously input. Therefore, the moving object is displayed at a position which is on the line followed by the observer's eye which is paying attention to the moving object.
The display portion A of the moving object is on the line followed by the observer's eye in the image displayed in the second sub frame period. Therefore, it is easy for the observer to recognize the border between the still background and the moving object. As a result, the width of the movement blur is smaller than in the case of the general conventional hold-type image display apparatus shown in
In the case where an image signal in as intermediate state is estimated and generated based on two frames of image signals, inaccurate display may occur at some of the pixel portion due to interpolation errors. Such inaccurate display can be made inconspicuous by assigning the image signal in the intermediate state in terms of time to the second sub frame period, in which the conversion is performed to a relatively low gradation level, and assigning an image signal externally input to the first sub frame period, in which the conversion is performed to a relatively high gradation level.
In Example 6, as in Example 4, the upper limit L1 of the gradation level of the image signal supplied in one of the sub frame periods and the upper limit L2 of the gradation level of the image signal supplied in the other sub frame period are set to fulfill the relationship of L1≧L2. By such setting, even when the luminance assumed for the input image signal is maximum, a luminance difference equal to or greater than a prescribed value can be provided between the first sub frame period and the second sub frame period. Therefore, the movement blur can be alleviated.
In Example 6, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased in accordance with the gradation level of the input image signal, can be set such that the relationship between the gradation level of the input image signal and the time-integrated value of luminance in one frame period exhibits an appropriate gamma luminance characteristic. By such setting, images can be displayed with gradation representation having a gamma luminance characteristic suitable to the input image signal.
In Example 6, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased (for example, by multiplication with a prescribed value) in accordance with the gradation level of the input image signal, can be set in accordance with the temperature level signal from the temperature sensor IC 20 for detecting the temperature of the display panel 10 or the temperature in the vicinity thereof. By such setting, even when the display panel 10 uses a liquid crystal material, the relationship between the gradation level of the input image signal and the brightness perceived by the observer's eye can be maintained regardless of the temperature conditions.
In Example 6, in the case where an input image signal has a plurality of color components, the gradation levels of the image signals supplied in each sub frame period can be set as follows. Regarding each of the two colors (for example, green and blue) other than the color having the highest gradation level of input image signal (for example, red), the gradation levels are set such that the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period is equal to the ratio, of the color having the highest gradation level of input image signal, between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period. With such setting, the luminance ratio among the colors is maintained at an appropriate value, and deterioration in image quality due to inaccurate color balance can be prevented.
In Example 7 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during two sub frame periods (i.e., the first sub frame period and the second sub frame period).
When the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in one of the sub frame periods uniquely defined (for example, the first sub frame period).
When the gradation level of the input image signal is greater than the threshold level, an image signal of the maximum gradation level is supplied also in one of the sub frame periods uniquely defined (for example, the first sub frame period).
When an average value of the gradation level of the image signal in the current frame period and the gradation level of an image signal input one frame before or one frame after is equal to or less than the threshold level, an image signal of the minimum gradation level is supplied in the other sub frame period (for example, the second sub frame period).
When such an average value is greater than the threshold level, an image signal of a gradation level which is increased or decreased in accordance with the average value is supplied also in the other sub frame period (for example, the second sub frame period).
As shown in
The controller LSI 40C operates in substantially the same manner as the controller LSI 40B in Example 6.
The frame-by-frame flow of the signals in Example 7 is as shown in
In this manner, in the first sub frame period, an image signal obtained by converting an image signal input already input by the first gradation conversion circuit 44 is output; and in the second sub frame period, an image signal obtained by converting, by the second gradation conversion circuit 45, an average value of two frames of image signals which were input successively, is output.
In
In
According to such setting, when the gradation level of the input image signal is sufficiently low, an image signal of the minimum gradation level is supplied in the second sub frame period both for the display portion A of the moving object and the display portion B of the still background. Therefore, the quality of moving images can be improved (as in the image display apparatus which adopts the minimum (luminance) insertion system shown in
The phenomenon shown in
In Example 7, the upper limit L1 of the gradation level of the image signal supplied in one of the sub frame periods and the upper limit L2 of the gradation level of the image signal supplied in the other sub frame period are set to fulfill the relationship of L1≧L2. By such setting, even when the luminance assumed for the input image signal is maximum, a luminance difference equal to or greater than a prescribed value can be provided between the first sub frame period and the second sub frame period. Therefore, the movement blur can be alleviated.
In Example 7, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased in accordance with the gradation level of the input image signal, can be set such that the relationship between the gradation level of the input image signal and the time-integrated value of the display luminance in one frame period exhibits an appropriate gamma luminance characteristic. By such setting, images can be displayed with gradation representation having a gamma luminance characteristic suitable to the input image signal.
In Example 7, (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased (for example, by multiplication with a prescribed value) in accordance with the gradation level of the input image signal, can be set in accordance with the temperature level signal from the temperature sensor IC 20 for detecting the temperature of the display panel 10 or the temperature in the vicinity thereof. By such setting, even when the display panel 10 uses a liquid crystal material, the relationship between the gradation level of the input image signal and the brightness perceived by the observer's eye can be maintained regardless of the temperature conditions.
In Example 7, in the case where an input image signal has a plurality of color components, the gradation levels of the image signals supplied in each sub frame period can be set as follows. Regarding each of the two colors (for example, green and blue) other than the color having the highest gradation level of input image signal (for example, red), the gradation levels are set such that the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period is equal to the ratio, of the color having the highest gradation level of input image signal, between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period. With such setting, the luminance ratio among the colors is maintained at an appropriate value, and deterioration in image quality due to inaccurate color balance can be prevented.
In Example 8 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during three sub frame periods. In a sub frame period which is at the center of one frame period in terms of time (center sub frame period), an image signal of the maximum gradation level or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied. In each of a sub frame period before the center sub frame period and a sub frame period after the center sub frame period, an image signal of the minimum gradation level or an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied. The center of one frame period in terms of time will also be referred to as the “time-wise center”.
As shown in
The line buffer 41 receives the input image signal horizontal line by horizontal line, and temporarily stores the input image signal. The line buffer 41 includes a receiving port and a sending port independently, and therefore can receive and send signals simultaneously.
The frame memory data selector 43 is controlled by the timing controller 42 to transfer the input image signal stored in the line buffer 41 to the frame memory 30, horizontal line by horizontal line. The input image signal stored in the line buffer 41 is also transferred to the gradation conversion source selector 52.
Alternately with the data transfer to the frame memory 30, the timing controller 42 reads an image signal which was stored before and has been stored in the frame memory 30 from two vertical positions on the screen, horizontal line by horizontal line. Then, the timing controller 42 switches the frame memory data selector 43 such that the read image signal is transferred to the first gradation conversion circuit 44 and the gradation conversion source selector 52. At this point, an image signal which is ¼ frame before is read from the frame memory 30 and transferred to the first gradation conversion circuit 44, and an image signal which is ¾ frame before is read from the frame memory 30 and is transferred to the gradation conversion source selector 52.
The gradation conversion source selector 52 is controlled by the timing controller 42 to select the image signal from the line buffer 41 or the image signal which is ¾ frame before from the frame memory data selector 43 in accordance with the display timing. The gradation conversion source selector 52 transfers the selected image signal to the second gradation conversion circuit 45.
The first gradation conversion circuit 44 converts the gradation level of the image signal which is ¼ frame before, which is supplied from the frame memory data selector 43, to the maximum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal (like in Example 4).
The second gradation conversion circuit 45 converts the gradation level of the image signal which is ¾ frame before, which is supplied from the gradation conversion source selector 52, to the minimum gradation level or a gradation level which is increased or decreased in accordance with the gradation level of the input image signal (like in Example 4).
The output data selector 46 is controlled by the timing controller 42 to select the image signal from the first gradation conversion circuit 44 or the image signal from the second gradation conversion circuit 45 in accordance with the display timing. The output data selector 46 sends the selected image signal to the image display section as a panel image signal.
An operation of an image display apparatus in Example 8 including the controller LSI 40D having the above-described structure will be described.
In
In operation, an input image signal is first received by the line buffer 41, horizontal line by horizontal line, as represented by arrow D1 in
In parallel with this, as shown by arrow D3, one horizontal line image signal which was stored in the frame memory 30 ¼ of the screen before, in the vertical direction, from the image signal which is currently input is read from the frame memory 30 and supplied to the first gradation conversion circuit 44. The image signal is converted by the first gradation conversion circuit 44 and output as a panel image signal. Similarly, one horizontal line image signal which was stored in the frame memory 30 ¾ of the screen before, in the vertical direction, from the image signal which is currently input is read from the frame memory 30 and supplied to the second gradation conversion circuit 45. The image signal is converted by the second gradation conversion circuit 45 and output to the image display section as a panel image signal. One horizontal line of image signal which is currently input and received by the line buffer 41 is written to the frame memory 30 as represented by arrow D2 and is also supplied to the second gradation conversion circuit 45. The image signal is converted by the second gradation conversion circuit 45 and output as a panel image signal.
One horizontal line of panel image signal is output from the controller LSI 40D and is transferred to the first through fourth source drivers 13a through 13d by a clock signal. Then, when a latch pulse signal is provided, a display voltage corresponding to the display luminance of each pixel portion is output from the respective source voltage line. At this point, the gate driver corresponding to the horizontal line, which is to be supplied with charge (display voltage) on the source voltage line for image display, is supplied with a vertical shift clock signal or a gate start pulse signal as necessary. Thus, the corresponding gate voltage line is placed into an ON state. For a gate driver which is not to be used for image display, the enable signal is put to a LOW level and thus the corresponding gate voltage line is placed into an OFF state. In this manner, during a period in which one horizontal line of image signal is input, three horizontal lines of image signals are transferred to the display panel for image display. This operation is repeated.
In the example shown in
Next, as represented by arrow D9, the M1st line (one horizontal line) of image signal of the (N−1)'th frame is transferred to the source driver. Then, as represented by arrow D10, the enable signal from the controller LSI 40D to the second gate driver 14b is put to a HIGH level. As represented by arrows D10 and D11, a start pulse signal and a vertical shift clock signal are supplied to the second gate driver 14b. As a result, as represented by arrow D13, the TFT 12b connected to the second gate voltage line of the first gate driver 14b (corresponding to the M1st line on the screen in terms of the display position) is placed into an ON state. Thus, image display is performed. At this point, the enable signals to the first, third and fourth gate drivers 14a, 14c and 14d which are not at the display position are put to a LOW level, and the TFTs 12b connected to the first, third and fourth gate drivers 14a, 14c and 14d are in an OFF state.
Then, as represented by arrow D14, the first line (one horizontal line) of image signal of the N'th frame is transferred to the source driver. Then, as represented by arrow D15, the enable signal from the controller LSI 40D to the first gate driver 14a is put to a HIGH level. As represented by arrows D16 and D17, a start pulse signal and a vertical shift clock signal are supplied to the first gate driver 14a. As a result, as represented by arrow D18, the TFT 12b connected to the first gate voltage line of the first gate driver 14a (corresponding to the first line on the screen in terms of the display position) is placed into an ON state. Thus, image display is performed. At this point, the enable signals to the second through fourth gate drivers 14b, 14a and 14d which are not at the display position are put to a LOW level, and the TFTs 12b connected to the second through fourth gate drivers 14b, 14c and 14d are in an OFF state.
In
Paying attention to a vertical position of one horizontal line on the screen, the following is appreciated: during a half of one frame, image display is performed by an image signal converted by the first gradation conversion circuit 44; and during each ¼ of one frame before and after the half frame, image display is performed by an image signal converted by the second gradation conversion circuit 45. The first ¼ of one frame period is referred to as a first sub frame period, the half frame period following this is referred to a second sub frame period, and the final ¼ of one frame period is referred to a third sub frame period.
As shown in
For displaying an image of an object moving in the horizontal direction with a still background using the image display apparatus and method in Example 8, when the gradation level of the input image signal is sufficiently low, the minimum gradation level is supplied in the first sub frame period and the third sub frame period for both the display portion of the still background and the display portion of the moving object. Therefore, as in the case of the image display apparatus which adopts the minimum (luminance) insertion system shown in
In
In
The phenomenon shown in
In Example 8 (as in Example 4), (a) the threshold level which is a reference for the gradation level of the image signal in each sub frame period, and (b) the gradation level of the image signal supplied in each sub frame period after being increased or decreased in accordance with the gradation level of the input image signal, can be set in accordance with the temperature level signal from the temperature sensor IC 20 for detecting the temperature of the display panel 10 or the temperature in the vicinity thereof. By such setting, even when the display panel 10 uses a liquid crystal material, the relationship between the gradation level of the input image signal and the brightness perceived by the observer's eye can be maintained regardless of the temperature conditions.
In Example 8, in the case where an input image signal contains a plurality of color components, the gradation levels of the image signals supplied in each sub frame period can be set as follows. Regarding each of the two colors (for example, green and blue) other than the color having the highest gradation level of input image signal (for example, red), the gradation levels are set such that the ratio between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period is equal to the ratio, of the color having the highest gradation level of input image signal, between the luminance level displayed in the first sub frame period and the luminance level displayed in the second sub frame period. With such setting, the luminance ratio among the colors is maintained at an appropriate value, and deterioration in image quality due to inaccurate color balance can be prevented.
According to an image display apparatus in Examples 1 through 7 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during two sub frame periods. According to an image display apparatus in Example 8 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during three sub frame periods. The present invention is not limited to these. The present invention is applicable to an image display apparatus for performing one frame of image display by the sum of time-integrated values of luminance during n sub frame periods (where n is an integer of 2 or greater).
One frame of image display is performed by the sum of time-integrated values of luminance during n sub frame periods (where n is an integer of 2 or greater), for example, as follows. In a sub frame period which is at the center, (when n is an odd number), or which is closest to the center (when n is an even number), of one frame period in terms of time, an image signal of the following gradation level is supplied: the maximum gradation level within the range in which the sum of time-integrated luminance levels in the n sub frame periods does not exceed the luminance level of the input image signal. (The sub frame period which is at the center or which is closest to the center of one frame period in terms of time will be referred to as the “central sub frame period”.) When the sum of time-integrated luminance levels in the central sub frame period still does not reach the luminance level of the input image signal, an image signal of the following gradation level is supplied in each of the sub frame periods before and after the central sub frame period: the maximum gradation level within the range in which the sum of time-integrated luminance levels in the n sub frame periods does not exceed the luminance level of the input image signal. (The sub frame period before the central sub frame period will be referred to as the “preceding sub frame period”, and the sub frame period after the central sub frame period will be referred to as the “subsequent sub frame period”.) The image signal may be supplied in the preceding sub frame period and the subsequent sub frame period simultaneously. Alternatively, the image signal may be first supplied in the preceding sub frame period and then in the subsequent sub frame period. Still alternatively, the image signal may be first supplied in the subsequent sub frame period and then in the preceding sub frame period. When the sum of time-integrated luminance levels in the central sub frame period, the preceding sub frame period and the subsequent sub frame period still does not reach the luminance level of the input image signal, an image signal of the following gradation level is supplied in each of the sub frame periods before the preceding sub frame period and the sub frame period after the subsequent sub frame period: the maximum gradation level within the range in which the sum of time-integrated luminance levels in then sub frame periods does not exceed the luminance level of the input image signal. Such an operation is repeated until the sum of time-integrated luminance levels in all the sub frame periods in which the image signals have been supplied reaches the luminance level of the input image signal. When this occurs, an image signal of the minimum gradation level is supplied in the remaining sub frame period(s).
In the case where “n” is an odd number of 3 or greater, one frame of image display is performed by the sum of time-integrated values of luminance during n sub frame periods, for example, as follows. The sub frame periods are referred to the first sub frame period, the second sub frame period, . . . the n'th sub frame period from the sub frame period which is earliest in terms of time or from the sub frame period which is latest in terms of time. The sub frame period which is at the center in terms of time is referred to as the “m'th sub frame period” (where m=(n+1)/2. (n+1)/2-number of threshold levels are provided as references for the gradation level of the input image signal. The threshold levels are referred to as T1, T2, . . . T[(n+1)/2] from the smallest threshold level. When the gradation level of the input image signal is T1 or less, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal, is supplied in the m'th sub frame period, and an image signal of the minimum gradation level is supplied in the other sub frame periods. When the gradation level of the input image signal is greater than T1 and equal to or less than T2, an image signal of the maximum gradation level is supplied in the m'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the (m−1)'th sub frame period and the (m+1)'th sub frame period, and an image signal of the minimum gradation level is supplied in the other sub frame periods. When the gradation level of the input image signal is greater than T2 and equal to or less than T3, an image signal of the maximum gradation level is supplied in each of the m'th sub frame period, the (m−1)'th sub frame period and the (m+1)'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the (m−2)'th sub frame periods and the (m+2)'th sub frame period, and an image signal of the minimum gradation level is supplied in the other sub frame periods. In this manner, when the gradation level of the input image signal is greater than Tx−1 (x is an integer of 4 or greater) and equal to or less than Tx, an image signal of the maximum gradation level is supplied in each of the [m−(x−2)]'th sub frame period through the [m+(x−2)]'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the [m−(x−1)]'th sub frame periods through the [m+(x−1)]'th sub frame periods, and an image signal of the minimum gradation level is supplied in the other sub frame periods.
In the case where “n” is an even number of 2 or greater, one frame of image display is performed by the sum of time-integrated values of luminance during n sub frame periods, for example, as follows. The sub frame periods are referred to as the first sub frame period, the second sub frame period, . . . the n'th sub frame period from the sub frame period which is earliest in terms of time or from the sub frame period which is latest in terms of time. Two sub frame periods which are closest to the center in terms of time are referred to as the “mist sub frame period” (where m1=n/2) and the “m2nd sub frame period” (where m2=n/2+1). n/2-number of threshold levels are provided as references for the gradation level of the input image signal. The threshold levels are referred to as T1, T2, . . . T[n/2] from the smallest threshold level. When the gradation level of the input image signal is T1 or less, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the m1st sub frame period and the m2nd sub frame period, and an image signal of the minimum gradation level is supplied in the other sub frame periods. When the gradation level of the input image signal is greater than T1 and equal to or less than T2, an image signal of the maximum gradation level is supplied in each of the m1st sub frame period and the m2nd sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the (m1−1)'th sub frame periods and the (m2+1)'th sub frame periods, and an image signal of the minimum gradation level is supplied in the other sub frame periods. When the gradation level of the input image signal is greater than T2 and equal to or less than T3, an image signal of the maximum gradation level is supplied in each of the mist sub frame periods, the m2nd sub frame periods, the (m1−1)'th sub frame periods and the (m2+1)'th sub frame periods, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the (m1−2)'th sub frame periods and the (m2+2)'th sub frame periods, and an image signal of the minimum gradation level is supplied in the other sub frame periods. In this manner, when the gradation level of the input image signal is greater than Tx−1 (x is an integer of 4 or greater) and equal to or less than Tx, an image signal of the maximum gradation level is supplied in each of the [m1−(x−2)]'th sub frame period through the [m2+(x−2)]'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the [m1−(x−1)]'th sub frame period through the [m2+(x−1)]'th sub frame period, and an image signal of the minimum gradation level is supplied in the other sub frame periods.
An upper limit of the gradation level of the image signal supplied in each sub frame period can be determined as follows. Upper limits of the gradation levels of the image signals supplied in the first, second, . . . n'th sub frame periods are respectively referred to as L1, L2, . . . Ln. The sub frame period which is at the center, or closest to the center, of one frame period in terms of time is referred to as the j'th sub frame period. The upper limits are defined so as to fulfill the following relationships.
L[j−i]≧L[j−(i+1)];
L[j+i]≧L[j+(i+1)]
where i is an integer of 0 or greater and less than j.
The upper limits thus determined can be used as the maximum values of the gradation levels supplied in the respective sub frame periods.
With such control, the time-wise center of gravity of display luminance can be fixed to the position which is at the center, or closest to the center, of one frame period in terms of time. Therefore, the deterioration in image quality caused by inaccurate luminance or color balance, which occurs when the position of the time-wise center of gravity of display luminance varies in accordance with the gradation level of the input image signal (as described in, for example, Japanese Laid-Open Publication No. 2001-296841) can be suppressed. Since the luminance levels are different among the sub frame periods, the movement blur is alleviated to improve the quality of moving images. Even when the display is performed at the maximum gradation level, the reduction in the maximum luminance and contrast, which occurs with the minimum (luminance) insertion system (with which each one-frame period includes a minimum luminance period), can be suppressed.
In Example 9 of the present invention, one frame of image display is performed by the sum of time-integrated values of luminance during two sub frame periods (i.e., the first sub frame period and the second sub frame period). The gamma luminance characteristic is changed using a digital input system source driver.
Also in Example 9, when the gradation level of the input image signal is 50% or less, an image signal of a gradation level of, for example, several percent, instead of the minimum gradation level (0%) is supplied in one of the two sub frame periods. When the gradation level of the input image signal is greater than 50%, an image signal of a gradation level of, for example, several percent less than 100%, instead of the maximum gradation level (100%) is supplied in one of the two sub frame periods. The gradation levels are allocated to the first sub frame period and the second sub frame period such that the gradation level of the image signal supplied in one of the two sub frame periods is half or less than half of the gradation level of the image signal supplied in the other sub frame period. The gradation level of the image signal supplied in one of the two sub frame periods is preferably 10% or less of, and more preferably 2% or less of, the gradation level of the image signal supplied in the other sub frame period, in order to provide the effect of the present invention. When the gradation level of the image signal supplied in one of the two sub frame periods is 2% or less of the gradation level of the image signal supplied in the other sub frame period, for example, only one gradation level among 256 gradation levels is given to one of the two sub frame periods.
As shown in
The digital input system source drivers 13Da through 13Dd each receive a panel image signal as digital display data, select one of preset voltages in accordance with the value of the respective digital display data, and output the selected voltage as a gradation voltage. In the case of, for example, 8-bit input system source drivers, 256 gradation voltages which can be output are pre-set. Each digital input system source driver selects a gradation voltage which is uniquely defined, in accordance with one of 256 values (0 through 255) determined by the input 8-bit digital display data.
As shown in
The line buffer 41 receives the input image signal horizontal line by horizontal line, and temporarily stores the input image signal. The line buffer 41 includes a receiving port and a sending port independently, and therefore can receive and send signals simultaneously.
The timing controller 42 controls the frame memory data selector 43 to alternately select data transfer to the frame memory 30 or data read from the frame memory 30. The timing controller 42 also controls the output data selector 46 to alternately select data output from the first gradation conversion circuit 44 or data output from the second gradation conversion circuit 45. Namely, the timing controller 42 selects the first sub frame period or the second sub frame period for the output data selector 46, as described later in detail.
The frame memory data selector 43 is controlled by the timing controller 42 to alternately select data transfer or data read. In data transfer, the frame memory data selector 43 transfers the input image signal stored in the line buffer 41 to the frame memory 30, horizontal line by horizontal line. In data read, the frame memory data selector 43 reads an input image signal which was read one frame period before and has been stored in the frame memory 30, horizontal line by horizontal line, and transfers the read data to the second gradation conversion circuit 45E.
The first gradation conversion circuit 44E converts the gradation level of the input image signal supplied from the line buffer 41 to a gradation level for the first sub frame period in accordance with a look-up table.
The second gradation conversion circuit 45E converts the gradation level of the image signal supplied from the frame data selector 43 to a gradation level for the second sub frame period in accordance with a look-up table.
In Example 9, the first gradation conversion circuit 44 and the second gradation conversion circuit 45 work by look-up tables which store output values for input values. One of the gradation levels is selected by three types of look-up tables which are determined by the gamma value from the gamma luminance characteristic setting switch 21 to determine output values. Alternatively, the output values may be obtained by a calculation circuit by selecting a calculation expression.
The output data selector 46 is controlled by the timing controller 42 to alternately select an image signal which is output from the first gradation conversion circuit 44E, or an image signal which is output from the second gradation conversion circuit 45E, horizontal line by horizontal line. The output data selector 46 outputs the selected image signal as a panel image signal.
An operation of the image display apparatus in Example 9 is substantially the same as that of Example 1 except that the digital input system source drivers 13Da through 13Dd are used instead of the source drivers 13a through 13d, and will not be described in detail here.
In Example 9, the sub frame period α is assigned to the second sub frame period. The gradation level of the image signal is converted by the second gradation conversion circuit 45E such that: when the gradation level of the input image signal is equal to or less than the threshold level uniquely determined, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in the sub frame period α; and when the gradation level of the input image signal is greater than the threshold level uniquely determined, an image signal of the maximum gradation level is supplied in the sub frame period α. When the image signal of the maximum gradation level is supplied, the gradation level of the image signal supplied in one of the two sub frame periods is equal to or less than half, preferably equal to or less than 10%, or more preferably equal to or less than 2%, of the gradation level of the image supplied in the other sub frame period.
The sub frame period β is assigned to the first sub frame period. The gradation level of the image signal is converted by the first gradation conversion circuit 44E such that: when the gradation level of the input image signal is equal to or less than the threshold level uniquely determined, an image signal of the minimum gradation level is supplied in the sub frame period β; and when the gradation level of the input image signal is greater than the threshold level uniquely determined, an image signal of the maximum gradation level is supplied in the sub frame period α. When the image signal of the minimum gradation level is supplied, the gradation level of the image signal supplied in one of the two sub frame periods is equal to or less than half, preferably equal to or less than 10%, or more preferably equal to or less than 2%, of the gradation level of the image supplied in the other sub frame period.
Hereinafter, how to allocate the gradation levels to the first sub frame period and the second sub frame period will be described.
In Example 9, 5-bit digital input system source drivers will be used for the sake of explanation, but the number of bits of the source drivers is not specifically limited. In general, 8-bit input system source drivers capable of displaying 256 gradation levels are used.
The luminance level of the display panel 10 (liquid crystal display panel) is determined by the relationship between the output gradation voltage and the voltage-transmittance characteristic (V-T characteristic) of the liquid crystal display panel 10 in accordance with the digital display data which is input to the source drivers 13Da through 13Dd. In Example 9, the source drivers 13Da through 13Dd are of the 5-bit digital input system, and the gradation voltages are set such that the luminance level of the liquid crystal display panel 10, with respect to the input digital data, is as shown in Table 1. In other words, the reference voltages are set such that the gamma luminance characteristic of the source drivers 13Da through 13Dd is 2.2.
In Example 9, the gamma luminance characteristic of the image display apparatus is changed by appropriately combining the gradation levels for the first sub frame period and the second sub frame period using the digital input system source drivers 13Da through 13Dd. A majority of general image signals are output with a gamma value of 2.2 in consideration of the gamma luminance characteristic of CRTs which are mainly used as display devices conventionally. In Example 9, the gamma value (gamma luminance characteristic) is selectable to “2.1”, “2.2” or “2.3” by the gamma luminance characteristic setting switch 21. Thus, the optimum gamma luminance characteristic for the screen can be selected, so that the image on the screen is easy to view.
Specifically, one of the three look-up tables (a look-up table A for the gamma luminance characteristic of 2.2, a look-up table B for the gamma luminance characteristic of 2.1, and a look-up table C for the gamma luminance characteristic of 2.3) in each of the first gradation conversion circuit 44E and the second gradation conversion circuit 45E is selected in accordance with the gamma luminance characteristic setting signal which is sent from the gamma luminance characteristic setting switch 21.
Table 2 shows the following correspondence in the look-up table A (gamma luminance characteristic: 2.2): the correspondence between the gradation level of the input image signal, the digital data output to the source drivers 13Da through 13Dd in the first and second sub frame periods, the gradation levels in the first and second sub frame periods, and the time-integrated value of the display luminance during the first and second sub frame periods (perceived brightness).
The relationship between the gradation level of the input image signal and the target luminance level of the image display apparatus is represented by the following expression.
Target luminance level of the image display apparatus=(gradation level of the input image signal)γ expression (100)
where γ is the gamma luminance characteristic of the image display apparatus (the gamma value set by the switch 21).
The relationship between the gradation levels of the image signals supplied in the first sub frame period and the second sub frame period, and the time-integrated luminance during the first sub frame period and the second sub frame period (perceived brightness) is represented by the following expression.
Time-integrated luminance (perceived brightness)={(gradation level in the first sub frame period)Dγ+(gradation level in the second sub frame period)Dγ}/2 expression (101)
where Dγ=2.2 (gamma luminance characteristic of the source drivers).
As shown in
Table 3 shows the above-described correspondence in the look-up table B, and Table 4 shows the above-described correspondence in the look-up table C. In theses cases, the expressions (100) and (101) are obtained. In the look-up table B, γ=2.1. In the look-up table C, γ=2.3.
The data in the look-up tables used in Example 9 is selected such that the error with respect to the gamma luminance characteristic set for the image display apparatus is within ±1.5%.
As described above, in Example 9, the gradation level of the image signal is converted by the first gradation conversion circuit 44E such that: when the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied; and when the gradation level of the input image signal is greater than the threshold level, an image signal of a gradation level in the vicinity of the maximum gradation level is supplied. The gradation level of the image signal is converted by the second gradation conversion circuit 45E such that: when the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level in the vicinity of the minimum gradation level is supplied; and when the gradation level of the input image signal is greater than the threshold level, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied. With such setting, the gamma luminance characteristic of the image display apparatus can be changed. In other words, the gradation levels in the first and second sub frame periods are appropriately combined, so that the gamma luminance characteristic of the image display apparatus can be changed while alleviating the movement blur to improve the quality of moving images of a hold-type image display apparatus, without reducing the maximum value of the time-integrated luminance in any given one frame period.
In Example 9, the gamma luminance characteristic of the image display apparatus is changed by supplying an image signal of a gradation level which is increased or decreased by the gradation level of the input image signal, and an image signal of a gradation level in the vicinity of the minimum gradation level, respectively to the two sub frame periods, or by supplying an image signal of a gradation level in the vicinity of the maximum gradation level, and an image signal of a gradation level which is increased or decreased by the gradation level of the input image signal, respectively to the two sub frame periods. Thus, the brightness perceived during one frame period is controlled. The image display apparatus in Example 9 is also usable for other purposes, for example, for correcting the temperature of the liquid crystal display panel, or for correcting the gradation level which is necessitated when use of a different liquid crystal material changes the V-T characteristic.
In Examples 1 through 9, the image display control section of an image display apparatus is provided by hardware, i.e., a controller LSI. In Example 10, the image display control section of the image display apparatus is provided by software.
As shown in
Usable computer-readable mediums include memory devices, for example, various types of IC memories, hard discs (HDs), optical discs (e.g., CDs), and magnetic recording mediums (e.g., FDs). The display control program and data stored in the ROM 402 is transferred to the RAM 403, and executed by the CPU 401.
For displaying an image corresponding to one frame period, the CPU 401 repeats the following processing using the corresponding section, based on the display control program and data according to the present invention.
In a sub frame period which is at the center or which is closest to the center of one frame period in terms of time, an image signal of the maximum gradation level within the range, in which the sum of time-integrated luminance levels in the n sub frame periods does not exceed the luminance level of the input image signal, is supplied to the display panel 10. (The sub frame period which is at the center or which is closest to the center of one frame period in terms of time will be referred to as the “central sub frame period”.)
When the sum of time-integrated luminance levels in the central sub frame period does not reach the luminance level of the input image signal, an image signal of the maximum gradation level within the range, in which the sum of time-integrated luminance levels in the n sub frame periods does not exceed the luminance level of the input image signal, is supplied to the display panel 10 in each of the sub frame periods before and after the central sub frame period. (The sub frame period before the central sub frame period will be referred to as the “preceding sub frame period”, and the sub frame period after the central sub frame period will be referred to as the “subsequent sub frame period”.)
When the sum of time-integrated luminance levels in the central sub frame period, the preceding sub frame period and the subsequent sub frame period still does not reach the luminance level of the input image signal, an image signal of the maximum gradation level within the range, in which the sum of time-integrated luminance levels in the n sub frame periods does not exceed the luminance level of the input image signal, is supplied to the display panel 10 in each of the sub frame period before the preceding sub frame period and the sub frame period after the subsequent sub frame period.
Such an operation is repeated until the sum of time-integrated luminance levels in all the sub frame periods in which the image signals have been supplied reaches the luminance level of the input image signal. When this occurs, an image signal of the minimum gradation level or an image signal of a gradation level less than a prescribed value is supplied to the display panel 10 in the remaining sub frame period(s).
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during n sub frame periods, the CPU 401 repeats the following process using the corresponding section, based on the display control program and data according to the present invention.
The n sub frame periods are referred to as the first sub frame period, the second sub frame period, . . . the n'th sub frame period from the sub frame period which is earliest in terms of time or from the sub frame period which is latest in terms of time. Two sub frame periods which are closest to the center in terms of time are referred to as the “m1st sub frame period” and the “m2nd sub frame period”. The mist sub frame period is set to n/2, and the m2nd sub frame period is set to n/2+1. n/2-number of threshold levels are provided and referred to as T1, T2, . . . T[n/2] from the smallest threshold level.
When the gradation level of the input image signal is T1 or less, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in each of the mist sub frame period and the m2nd sub frame period, and an image signal of the minimum gradation level or an image signal of a gradation level less than a prescribed value is supplied to the display panel 10 in the other sub frame periods.
When the gradation level of the input image signal is greater than T1 and equal to or less than T2, an image signal of the maximum gradation level or an image signal of a gradation level which is greater than the prescribed value is supplied to the display panel 10 in each of the mist sub frame periods and the m2nd sub frame periods, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in each of the (m1−1)'th sub frame periods and the (m2+1)'th sub frame periods, and an image signal of the minimum gradation level or an image signal of a gradation level less than the prescribed value is supplied to the display panel 10 in the other sub frame periods.
When the gradation level of the input image signal is greater than T2 and equal to or less than T3, an image signal of the maximum gradation level or an image signal of a gradation level greater than the prescribed value is supplied to the display panel 10 in each of the mist sub frame periods, the m2nd sub frame periods, the (m1−1)'th sub frame period and the (m2+1)'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in each of the (m1−2)'th sub frame periods and the (m2+2)'th sub frame periods, and an image signal of the minimum gradation level or an image signal of a gradation level less than the prescribed value is supplied to the display panel 10 in the other sub frame periods.
In this manner, when the gradation level of the input image signal is greater than Tx−1 (x is an integer of 4 or greater) and equal to or less than Tx, an image signal of the maximum gradation level or an image signal of a gradation level greater than the prescribed value is supplied to the display panel 10 in each of the [m1−(x−2)]'th sub frame periods through the [m2+(x−2)]'th sub frame period, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied in each of the [m1−(x−1)]'th sub frame periods through the [m2+(x−1)]'th sub frame period, and an image signal of the minimum gradation level or an image signal of a gradation level less than the prescribed value is supplied to the display panel 10 in the other sub frame periods.
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during two sub frame periods, the CPU 401 repeats the following process using the corresponding section, based on the display control program and data according to the present invention.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β. When the gradation level of the input image signal is equal to or less than the threshold level uniquely determined, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period α, and an image signal of the minimum gradation level or an image signal of a gradation level less than a prescribed value is supplied to the display panel 10 in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level, an image signal of the maximum gradation level or an image signal of a gradation level greater than the prescribed value is supplied to the display panel in the sub frame period α, and an image signal of a gradation level which is increased or decreased by the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period β.
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during two sub frame periods, the CPU 401 repeats the following processing using the corresponding section, based on the display control program and data according to the present invention.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β. Threshold levels T1 and T2 of the gradation level in the two sub frame periods are defined. The threshold level T2 is larger than the threshold level T1.
When the gradation level of the input image signal is the threshold level T1 or less, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period α, and an image signal of the minimum gradation level or an image signal of a gradation level less than a prescribed value is supplied to the display panel 10 in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period α, and an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal and which is lower than the gradation level supplied in the sub frame period α is supplied to the display panel 10 in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T2, an image signal of the maximum gradation level or an image signal of a gradation level greater than the prescribed value is supplied to the display panel 10 in the sub frame period α, and an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period β.
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during two sub frame periods, the CPU 401 repeats the following process using the corresponding section, based on the display control program and data according to the present invention.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β. Threshold levels T1 and T2 of the gradation level in the two sub frame periods are defined. The threshold level T2 is larger than the threshold level T1. A gradation level L is uniquely to be defined.
When the gradation level of the input image signal is the threshold level T1 or less, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied to the display panel 10 in the sub frame period α, and an image signal of the minimum gradation level or an image signal of a gradation level less than a prescribed value is supplied to the display panel 10 in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T1 and equal to or less than the threshold level T2, an image signal of the gradation level L is supplied to the display panel 10 in the sub frame period α, and an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied to the display panel 10 in the sub frame period β.
When the gradation level of the input image signal is greater than the threshold level T2, an image signal of a gradation level which is increased or decreased in accordance with the gradation level of the input image signal is supplied to the display panel 10 in the sub frame period α, and an image signal of the maximum gradation level or an image signal of a gradation level greater than the prescribed value is supplied to the display panel 10 in the sub frame period β.
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during two sub frame periods, the CPU 401 repeats the following process using the corresponding section, based on the display control program and data according to the present invention.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β.
Based on two frames of image continuously input, an image in an intermediate state in terms of time is generated through estimation.
When the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied to the display panel 10 in the sub frame period α. When the gradation level of the input image signal is greater than the threshold level, an image signal of the maximum gradation level or an image signal of a gradation level greater than a prescribed value is supplied to the display panel 10 in the sub frame period α.
When the gradation level of the image signal in the intermediate state is equal to or less than the threshold level, an image signal of the minimum gradation level or an image signal of a gradation level less than the prescribed value is supplied to the display panel 10 in the sub frame period β. When the gradation level of the image signal in the intermediate state is greater than the threshold level, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the image signal in the intermediate state, is supplied to the display panel 10 in the sub frame period β.
Alternatively, for displaying an image corresponding to one frame period by the sum of time-integrated values of luminance during two sub frame periods, the CPU 401 repeats the following process using the corresponding section, based on the display control program and data according to the present invention.
One of the two sub frame periods is referred to as the sub frame period α, and the other sub frame period is referred to as the sub frame period β.
When the gradation level of the input image signal is equal to or less than a threshold level uniquely determined, an image signal of a gradation level, which is increased or decreased in accordance with the gradation level of the input image signal, is supplied to the display panel 10 in the sub frame period α. When the gradation level of the input image signal is greater than the threshold level, an image signal of the maximum gradation level or an image signal of a gradation level greater than a prescribed value is supplied to the display panel 10 in the sub frame period α.
When an average value of the gradation level of the image signal in the current frame period and the gradation level of an image signal input one frame before or one frame after is equal to or less than the threshold level, an image signal of the minimum gradation level or an image signal of a gradation level less than the prescribed value is supplied to the display panel 10 in the sub frame period β. When such an average value is greater than the threshold level, an image signal of a gradation level, which is increased or decreased in accordance with the average value, is supplied to the display panel 10 in the sub frame period β.
With the above-described execution, the movement blur of moving images can be suppressed while suppressing the reduction in the maximum luminance or contrast.
In Example 11 of the present invention, a liquid crystal TV using the image display apparatus and the image display method described in any of Examples 1 through 10 will be described.
As shown in
With such a structure, the liquid crystal TV 1000 displays high quality images with the movement blur of moving images being suppressed while suppressing the reduction in the maximum luminance or contrast.
In Example 12 of the present invention, a liquid crystal monitoring apparatus using the image display apparatus and the image display method described in any of Examples 1 through 10 will be described.
As shown in
With such a structure, the liquid crystal monitoring apparatus 2000 displays high quality images with the movement blur of moving images being suppressed while suppressing the reduction in the maximum luminance or contrast.
In Example 1, the display control is performed on each of the pixel portions on the screen. Also in Examples 2 through 9, the display control is performed on each of the pixel portions on the screen.
In Examples 1 through 12, in the case where there are three or more sub frame periods, the gradation level allocated to the central sub frame period in one frame period is higher than the gradation levels allocated to the other sub frame periods. The luminance level allocated to the central sub frame period in one frame period is higher than the luminance levels allocated to the other sub frame periods. The center of gravity of the time-integrated luminance during a plurality of sub frame periods moves within one frame period.
In Examples 1 through 12, the display control is performed with one frame period being divided into two or three sub frame periods. The present invention is not limited to this, but is applicable to display control performed with one frame period being divided into a plurality of (integer of 2 or greater) sub frame periods. Hereinafter, various methods for allocating the luminance level assumed for the input image signal to the plurality of sub frame periods will be described. The gradation levels supplied in the sub frame periods are adjusted so as to realize the luminance level assumed for the input image signal.
In the following description, for the sake of clarity, the gradation level of the input image signal is allocated such that the gradation level is gradually increased to a prescribed level. According to the present invention, the allocation is actually performed instantaneously by, for example, calculation or conversion using a look-up table or the like, based on the above manner of allocation in accordance with the gradation level of the input image signal.
In
In
In
In
In
In
In
In
i) show the case where the sub frame periods have different lengths.
In
One frame is divided into two sub frame periods. Reference values for allocating the gradation level, corresponding to the luminance level assumed for the input image signal, to the sub frame periods are the threshold levels T1 and T2. As shown in the left part of
In
m) is regarding the response speed of a liquid crystal material. In the case where the response time of the liquid crystal material to an increase in luminance is different from the response time of the liquid crystal material to a decrease in luminance, it is checked whether the allocation should start from the first sub frame period or from the second sub frame period in order to provide less harm. In this example, the allocation of the luminance level is started from the second sub frame period when the response time of the liquid crystal material to an increase in luminance>the response time of the liquid crystal material to a decrease in luminance. The allocation of the luminance level is started from the first sub frame period when the response time of the liquid crystal material to an increase in luminance<the response time of the liquid crystal material to a decrease in luminance.
Here,
n) is the response speed of a display element. The maximum luminance level of the display element is Lmax, and the minimum luminance level of the display element is Lmin. In the case where the response time of the display element to a luminance switch from Lmax to Lmin is different from the response time of the display element to a luminance switch from Lmin to Lmax, it is checked whether the allocation should start from the first sub frame period or from the second sub frame period in order to provide less harm. In this example, the allocation of the luminance level is started from the second sub frame period when the response time of the display element to a luminance switch from Lmin to Lmax (the luminance is increased)>the response time of the display element to a luminance switch from Lmax to Lmin (the luminance is decreased). The allocation of the luminance level is started from the first sub frame period when the response time of the display element to a luminance switch from Lmin to Lmax (the luminance is increased)<the response time of the display element to a luminance switch from Lmax to Lmin (the luminance is decreased).
In
For example, as in the case of
In
For example, as in the case of
In
For example, as in the case of
By providing the upper limits L as in
In
More specifically, the luminance level to be allocated to each sub frame period is determined, such that: the number of sub frame periods to which the luminance level is allocated is increased or decreased in accordance with the gradation level of the input image signal, whereas the time-integrated luminance in one frame period always exhibits an appropriate gamma luminance characteristic with respect to the gradation level of the input image signal. Then, the gradation level which realizes such a luminance level is set.
In
According to the present invention, the following effects are provided in, for example, the field of an image display apparatus using a hold-type image display device such as a liquid crystal display device or an EL display device: the reduction in the maximum luminance and contrast is suppressed; the deterioration in quality caused by the time-wise center of gravity of the display luminance being different in accordance with the gradation level of an input image signal is minimized; and minimizing the deterioration of quality of moving images represented by afterimage and movement blur, while maintaining the compatibility in terms of gradation representation with an image signal which is generated so as to be output to image display devices having a general gamma luminance characteristic.
Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.
Number | Date | Country | Kind |
---|---|---|---|
2003-387269 | Nov 2003 | JP | national |
2004-332509 | Nov 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6088012 | Shigeta et al. | Jul 2000 | A |
6208467 | Naka et al. | Mar 2001 | B1 |
6417835 | Otobe et al. | Jul 2002 | B1 |
7084861 | Iisaka | Aug 2006 | B2 |
20020003520 | Aoki | Jan 2002 | A1 |
20020191008 | Naka et al. | Dec 2002 | A1 |
20030006952 | Hong | Jan 2003 | A1 |
20030011614 | Itoh et al. | Jan 2003 | A1 |
20040196233 | Shimizu | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2001-296841 | Oct 2001 | JP |
2002-023707 | Jan 2002 | JP |
2004-240317 | Aug 2004 | JP |
2004-302270 | Oct 2004 | JP |
2005-173573 | Jun 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20050162360 A1 | Jul 2005 | US |