The present application claims priority from Japanese application JP2008-214805 filed on Aug. 25, 2008, the content of which is hereby incorporated by reference into this application.
The present invention relates to an image display apparatus that displays input image data.
In a display device that uses backlight without emitting light by itself as in liquid crystals, power consumption of the backlight occupies most of that of the display device in many cases. In this case, reduction in the power consumption of the backlight has the key to that of the entire display device.
For the purpose, a processing where the light quantity of the backlight is reduced in a dark video scene is performed, and thereby, attempts are made to reduce the power consumption of the display device. When the light quantity of the backlight is simply reduced to 1/N, the brightness of the screen is also decreased to 1/N if nothing is done. However, the light quantity of the backlight is reduced to 1/N, and further, a pixel value of each pixel is corrected to thereby increase transmissivity of each liquid crystal pixel to N times. By doing so, the brightness of the screen can be finally maintained.
However, the transmissivity of each liquid crystal pixel cannot be set to a value greater than a maximum transmissivity that is feasible in liquid crystal elements. Therefore, an upper limit exists in a value of N. For the purpose of maximizing N in a range where the degradation in the image quality is prevented from occurring, the value of N may be adjusted such that the transmissivity of a liquid crystal pixel corresponding to a brightest pixel in a display image is set to the maximum transmissivity of the liquid crystal element. As described above, a method of collectively controlling backlight luminance of the entire screen as described above is referred to as global dimming.
In the global dimming, even if one luminescent spot is present in the screen, the value of N is affected by the luminescent spot and the luminance of the entire backlight increases. Therefore, an effect of the reduction in the power consumption is hard to be exerted too much depending on contents of the video in some cases.
To cope with the above-described problem, recently, watched is a technology called local dimming in which a screen is divided into small areas, a light source corresponding to each small area is prepared on one-on-one level, the light emission intensity of each light source can be independently controlled, and thereby, the luminance of the backlight is controlled to each area (“Locally Pixel-compensated backlight dimming on LED-backlight LCD TV”, Hanfeng Chen et al., Journal of the SID 2007 pp 981-988). Based on a pixel value in the area using the same manner as in the global dimming technology, the light emission intensity of a light source corresponding to each area is determined in this technology. This operation is performed over all the areas within the screen, thereby determining the light emission intensities of all the light sources. Using these values, each light source is controlled, and at the same time, each pixel value of input images is compensated in the same manner as in the global dimming technology. Thereby, the power consumption can be reduced without almost deteriorating quality of the video.
It is desired that when the global dimming technology is performed, light emitted from each light source is uniformly irradiated on the corresponding area, and further, light emitted from the other light sources has no effect on a luminance distribution within the area. However, light emitted from each light source actually extends also over other areas in many cases. In this case, when light emitted from the light source corresponding to the area is irradiated on the area and light emitted from light sources near the area is not irradiated on the area, the original luminance of the backlight in the area cannot be attained in some cases. Also under the above-described conditions, as a method of assuring the necessary backlight luminance, in JP-A-2008-9415, provided is a method of emitting light from ambient light sources with a value obtained by multiplying the light emission intensity by a certain constant value at the time of emitting light from a certain light source.
In JP-A-2008-9415, disclosed is a method where a pixel value of a pixel with maximum luminance within an area corresponding to each light source on one-on-one level is found to determine an initial value of light emission intensity of the light source using the pixel value. The above-described method is effective when light emitted from the light source corresponding to each area is uniformly spread; however, the method has the possibility that the power consumption reduction amount is lowered or the image quality is deteriorated when light is not uniformly spread.
In the present invention, when calculating the light emission intensity of each light source, not only a pixel value of a pixel with the maximum luminance within the area but also position information thereof is used at the same time to solve the above-described problem. Specifically, used is a method of dividing the entire display screen into areas whose number is greater than that of systems of the independently controllable light sources, finding out a feature value of a maximum of the pixel within each area, and calculating the light emission intensity of each light source using the feature values.
For example, according to one aspect of the present invention, there is provided an image display apparatus. The image display apparatus comprises: a liquid crystal panel having a plurality of pixels arranged in a matrix;
the liquid crystal panel including a first image area on the first end side, a second image area on the second end side, and a third image area between the first and second image areas;
a plurality of light sources arranged on the back side of the liquid crystal panel;
the plurality of light sources including at least a first light source arranged on a first end side in a horizontal direction of the liquid crystal panel and a second light source arranged on a second end side different from the first end; and
a controller controlling light emission intensity of the light source;
the controller controlling the light emission intensity of the first light source and that of the second light source, thereby displaying an image in the third image area.
Further, for example, according to another aspect of the present invention, there is provided an image display apparatus. The image display apparatus comprises: a liquid crystal panel having a plurality of pixels arranged in a matrix;
the liquid crystal panel including a plurality of image areas, wherein the number of the plurality of image areas is greater than that of the plurality of light sources; and
a plurality of light sources arranged on the back side of the liquid crystal panel;
the light source being formed from a plurality of small light sources controlled by one control signal.
According to the present invention, the amount of power consumption or the deterioration in the image quality can be suppressed.
These and other features, objects and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings wherein:
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings of the embodiments.
In reference numerals indicated in the drawings of the embodiments, a reference numeral 10 denotes a left-hand sidelight, 11 denotes a right-hand sidelight, 20 denotes a display unit, 21 denotes a liquid crystal panel, 22 denotes a diffusing plate, 23 denotes a light guide plate, 24 denotes a reflecting sheet, 30 denotes a backlight luminance distribution at the time of lighting only the left-hand sidelight, 31 denotes a backlight luminance distribution at the time of lighting only the right-hand sidelight, 32 denotes a backlight luminance distribution at the time of lighting both of the sidelights, 33 denotes a target backlight luminance distribution at the time of correcting an image, 100 denotes a top controllable light source of the left-hand sidelight, 101 denotes a second controllable light source from the top of the left-hand sidelight, 102 denotes a third controllable light source from the top of the left-hand sidelight, 103 denotes a bottom controllable light source of the left-hand sidelight, 110 denotes a top controllable light source of the right-hand sidelight, 111 denotes a second controllable light source from the top of the right-hand sidelight, 112 denotes a third controllable light source from the top of the right-hand sidelight, and 113 denotes a bottom controllable light source of the right-hand sidelight.
On the other hand, the display unit 20 has a structure in which the liquid crystal panel 21, the diffusing plate 22, the light guide plate 23, and the reflecting sheet 24 are superposed in the form of layers. This structure is one example, and there may also be used a structure in which another sheet is interleaved between respective layers, an order of layers is interchanged, or an unnecessary layer is removed. A layer that is used in a general liquid crystal device can be used as each layer, and therefore, a detailed description is here omitted and operations will be only introduced simply.
Light emitted from the sidelights 10 and 11 is spread over the entire face of the display unit 20 via the light guide plate 23. Specifically, the light is reflected by the reflecting sheet 24, and thereby, it is radiated on the liquid crystal panel 21 side, that is, on the side of a person that is viewing the screen. In the present specification, a remaining portion in which the sidelights 10 and 11, and the liquid crystal panel 21 of the display unit 20 are removed from the display device 1 is referred to as a backlight for the reason of a light source behind the liquid crystal panel 21. The diffusing plate 22 has a function of appropriately diffusing light reflected by the reflecting sheet 24 to uniform luminance of the backlight.
On the liquid crystal panel 21, the liquid crystal switches of the number that is equivalent to that of pixels corresponding to the panel resolution are two-dimensionally disposed. In the case of a color liquid crystal, disposed are the liquid crystal switches of the number obtained by multiplying the number of pixels by the number of color components constituting each pixel. As this liquid crystal switch, there is widely used a switch formed by sandwiching a substance called the liquid crystal between two sheets of transparent electrodes. Further, a voltage applied between the transparent electrodes is adjusted, thereby changing the amount of light that transmits through the liquid crystal switch. Light emitted from the backlight is visible to human eyes through the liquid crystal switches. In the case where the transmissivity of the liquid crystal switch is low, most of light emitted from the backlight is shielded, and therefore, the liquid crystal switch looks dark. On the contrary, in the case where the transmissivity of the liquid crystal switch is high, the liquid crystal switch looks bright. As described above, the liquid crystal switches are two-dimensionally disposed on the liquid crystal panel 21. Therefore, the voltage applied to each liquid crystal switch is adjusted, thereby displaying objects two-dimensionally. Further, the sidelights 10 and 11 emit white light or light pursuant to the white light, and a color filter is attached to each liquid crystal switch, thereby also displaying a color image. For ease of description, hereinafter, it is assumed that the liquid crystal switches exist over the entire face of the display unit 20 and an image with the same size as that of the display unit 20 can be displayed.
At first, a method of performing the local dimming will be described on the assumption of an ideal case where interference between light sources is negligible. In this case, as in
When, for example, aiming at the area (0, 3), the backlight luminance of the pixels included in this area is uniquely determined by the light emission intensity of the light source 103 regardless of the position within the area. Specifically, when the light source 103 is lighted in the light emission intensity of 100%, the backlight luminance value of both the pixels A and B becomes equal to the value L100 regardless of states of the other light sources. When the light source 103 is lighted in the light emission intensity of C %, the backlight luminance value of both the pixels A and B becomes equal to L100×C.
As described above, when the backlight luminance is uniform regardless of the position within the area, an optimum luminous ratio α for the backlight can be calculated from a pixel value Pmax of the pixel with the maximum luminance within the area. The procedure will be described with reference to
A general liquid crystal display apparatus is adjusted such that power characteristics called gamma characteristics hold between the input pixel value and the transmissivity of the liquid crystal switch. That is, the γth power of the input pixel value becomes equal to the transmissivity of the liquid crystal switch. Here, the pixel value and the transmissivity of the liquid crystal switch are assumed to be normalized in the range of 0 to 1 using the respective maximums. Further, γ is a constant value, and generally set to a value adjacent to 2.2.
In this case, the brightness V of the pixel visible to human eyes can be represented by the product of the γth power of the normalized pixel value P and the backlight luminance BL. When the pixel value is represented in 8 bits, the maximum thereof is equal to 255. Therefore, the brightness V0(x, y) at the time when human beings view the pixel of the coordinates (x, y) before light control can be represented by an expression 1 using the pixel value P0(x, y) of the coordinates (x, y) before the light control and the BL0(x, y) before the light control. In the same manner, when respective values after the light control are set to V1(x, y), P1(x, y), and BL1(x, y), a relationship of an expression 2 holds among the values V1(x, y), P1(x, y), and BL1(x, y). Here, in order that the same image may be visible to human eyes before and after the light control, the V0(x, y) and the V1(x, y) may be equal to each other in all the coordinates (x, y). In this case, an expression 3 is derived from the expressions 1 and 2. In order that the expression 3 may hold in all the coordinates (x, y), this expression must hold also in the maximum Pmax of the P0(x, y) in each area. At this time, when the P1(x, y) is adjusted so as to be equal to 255 as the maximum capable of being represented in 8 bits, the maximum effect of reduction in the power consumption can be realized.
When the above-described values are substituted in the expression 3, an expression 4 holds. When the expression 4 is transformed, an expression 5 holds with regard to the luminous ratio α of the backlight. The expression 5 means that the brightness of the light source for the area to which the pixel (x, y) belongs can be multiplied by α. Here, α is a value between 0 and 1. Since each light source is PWM-controlled, the brightness of the light source and the power consumption are roughly proportional to each other. In short, the light emission intensity of the light source for the area to which the pixel (x, y) belongs can be multiplied by α, and at this time, the power consumption is also multiplied by α.
In this connection, only when the brightness of the light source is simply multiplied by α, the brightness V1(x, y) at the time when human beings view the image is also multiplied by α, and as a result, the video is changed. To cope with the above-described problem, the dimmed light of the backlight is required to be canceled out by increasing the pixel value P1(x, y) after the light control. With regard to the value of the P1(x, y), the expression 3 is transformed to derive an expression 6. That is, the light source is controlled according to the expression 5, and at the same time, a value of the image side is also multiplied by a correction value according to the expression 6, thereby preventing the change in the video.
In addition, when there occurs a case where the P1(x, y) calculated by the expression 6 is greater than the maximum 255 that can be represented in 8 bits, the image cannot be correctly displayed. However, as long as the expression 5 holds, the above-described case does not occur.
The description is made above on a method of performing the local dimming in the ideal case where interference between the light sources is negligible.
Actually, in some cases interference between the light sources is not negligible. A problem of that case will be described with reference to
Here, there is considered a case where the maximum Pmax of the pixel in the region (0, 3) is equal to 186 and the maximum Pmax of the pixel in the region (1, 3) is equal to 90. For ease of description, fractional figures after the decimal points are neglected in the following description.
When interference between the light sources is not negligible, the central term of the expression 5 has different values depending on the coordinates. Therefore, an expression 7 of
When the pixel with the maximum Pmax=186 exists at a position of the pixel A, BL0(x, y)/BL1(x, y) is approximately equal to 2 in the expression 6, and as a result, the P1(x, y) is equal to about 255. Since 255 can be represented in 8 bits, this case can be displayed without problems.
On the other hand, when the pixel with the maximum Pmax=186 exists at a position of the pixel B, BL0(x, y)/BL1(x, y) is greater than 2 in the expression 6. In this case, the P1(x, y) has a value greater than the maximum 255 that can be represented in 8 bits, and the brightness of the pixel B cannot be displayed without errors. As a result, this causes deterioration in the image quality.
For the purpose of solving the above-described problem, in the present embodiment, adopted is a method of dividing the display screen into 12 areas whose number is greater than 8 being the number of the controllable light sources as in
The division method in the lateral direction is performed as in
Here, a description will be made while aiming at the bottom areas (0, 3), (c, 3), and (1, 3) of the screen and the light sources 103 and 113 that have an effect on these areas in the same manner as in the previous description. For ease of description, it is assumed that an effect that is exerted on these areas by all the light sources except the light sources 103 and 113 is negligible. In this case, the light emission intensities of the light sources 103 and 113 are determined as follows.
When the luminous ratios of the light sources 103 and 113 are determined using the above-described procedure, the luminous ratio in which deterioration in the video is more reduced can be selected. In addition, when the luminous ratio of one light source exceeds 100% by multiplying the luminous ratios α103 and α113 by (Pc3/Pc3e) in the item (9), the luminous ratio of the light source is set to 100%. When the luminous ratio of the other light source is raised up to Pc3e=Pc3, the control can be more appropriately performed.
When the above-described procedure is applied to all the light sources, the luminous ratios of all the light sources are determined. Further, a value of BL0(x, y)/BL1(x, y), which is necessary for the correction of the pixel values in all the coordinates (x, y) within the screen, is uniquely determined. Then, each light source is controlled according to the luminous ratio, and at the same time, all of the pixel values are corrected using the expression 6, thereby reducing the power consumption.
In addition, in this example, the maximum in each area is used to determine the luminous ratio of each light source. This method has an advantage that deterioration in the image quality is small; however, the amount of reduction in the power consumption tends to be suppressed. In order to solve the above-described problem, it is effective to use the histogram to determine the luminous ratio of each light source. This method will be described with reference to
On the other hand, human eyes tend to get dull with deterioration in the image quality. A method of using the histogram improves the power consumption reduction effect by using the above-described fact. Here, as an example, the maximum pixel is found for the remaining pixels obtained by excluding the pixels having included therein the luminance value in the top 5% from all the pixels within the area. The maximum pixel value corresponds to Phist of
A method of determining the light emission intensities of the light sources 103 and 113 in the case of applying this method of using the histogram to the area division of
In addition, in the item (6) of this example, the average luminance in the area (c, 3) is defined as the Pc3e; further, a value obtained by multiplying the average luminance in the area (c, 3) by N may be defined as the Pc3e by giving a margin for the Pc3e. N is an arbitrary number. When this value is reduced, the power consumption reduction effect is lowered; however, deterioration in the image quality can be more suppressed. On the contrary, when N is increased, the power consumption reduction effect is improved; however, deterioration in the image quality increases. When N is thus adjusted, the output characteristics can be more approximated to desired characteristics.
A relationship between the display image and the sidelight behaves differently in the past by adopting the above-described constitution. Suppose a case where the entire display screen is painted in a light gray color and a luminescent spot like a star is located only at a position of the pixel A in
On the other hand, suppose a case where the entire display screen is painted in a light gray color and a luminescent spot like a star is located only at a position of the pixel B in
As described above, when using the method according to the present invention, the light emission luminance of each light source may be changed even if an object moves within one area of
The embodiment 1 assumes a case where interference between the light sources occurs only in the horizontal direction and interference between the light sources in the vertical direction is negligible; however, the embodiment 1 may assume a case where interference between the light sources occurs only in the vertical direction and interference between the light sources in the horizontal direction is negligible depending on characteristics in an optical system. In the above-described case, another area is provided in the vicinity of a border between areas (x, y) and (x, y+1), thereby suppressing deterioration in the image quality. This method will be described with reference to
When no interference between the light sources occurs as in
An example of a method of determining the light emission intensity of each light source in this constitution will be described. Here, a method of determining the light emission intensity of each light source will be described based on the maximum within the area; however, the determination method is not limited thereto. Various methods such as a method of using the histogram described in the embodiment 1 are considered.
First, the luminous ratios of the light sources 100 and 101 are here determined using the following procedure.
In the same manner, the luminous ratios of the light sources 101 and 102 are determined using the following procedure.
When the luminous ratio of each light source is sequentially determined as described above, the light source in which a plurality of luminous ratios are calculated exists in some cases. In this example, the luminous ratio α101 of the light source 101 is calculated through both of the flow (a1) to (a8) and the flow (b1) to (b8). In the above-described case, among the luminous ratios calculated through the respective flows, the maximum luminous ratio is defined as that of the light source.
The luminous ratios of all the light sources are determined by repeating the above-described procedure. When the luminous ratios of all the light sources are determined, the luminance distribution of the backlight is uniquely determined. Each light source is controlled according to the calculated luminous ratio, and at the same time, correction of the image is performed by the expression 6 based on the luminance distribution of the backlight. Thereby, the power consumption can be reduced in a state that deterioration in the image quality is more suppressed.
In the embodiments 1 and 2, a description is made on a case where interference between the light sources occurs in any one of the horizontal direction and the vertical direction and interference between the light sources in the other direction is negligible; further, even if interference between the light sources in both the directions is not negligible, the present invention is effective. The above-described case will be described with reference to
In this embodiment, in the same manner as in the embodiment 1, an area with which light emitted from the light sources for irradiating both the areas interferes in the vicinity of a border between the areas (x, y) and (x+1, y) is defined as an area (c, y) again, thereby corresponding to interference between the light sources in the horizontal direction. Further, in the same manner as in the embodiment 2, an area with which light emitted from the light sources for irradiating both the areas interferes in the vicinity of a border between the areas (x, y) and (x, y+1) is defined as another area again, thereby corresponding to interference between the light sources in the vertical direction.
A calculation example of light emission intensity of each light source according to the present embodiment is given as follows.
Here, the above-described method is performed while aiming at only an upper half of the screen, and further, the method is performed for the entire screen. When a plurality of luminous ratios are calculated with regard to one light source using the above-described procedure, the maximum luminous ratio among those is used as that of the light source.
In addition, in the previous embodiments, a description is made with reference to the so-called sidelight type display device in which each light source is disposed on both sides of the display unit; further, the same processing can be performed also in the display device using a so-called direct backlight type in which each light source is disposed under the display unit. That is, the present invention is effective without depending on the sidelight type or the direct type.
In
In this case, the luminous ratio of each light source is determined using the following procedure.
In the above-described example, each area is assumed to be not overlapped with each other; however, depending on characteristics of the optical system, the areas may be overlapped with each other as in
Another method of solving a problem caused by interference between the light sources will be described with reference to
An area close to the left end of the screen is hardly affected by the right-hand sidelight 11, and therefore, the luminance value at the time of lighting only the left-hand sidelight in the light emission intensity of 100% approximately coincides with the value L100. Much the same is true on the area close to the right end of the screen.
On the other hand, in the vicinity of the center of the screen, for setting the luminance value at the time when both of the right and left sidelights is lighted in the light emission intensity of 100% to the value L100, the luminance value at the time when only any one of the right and left sidelights is lighted is required to be a value smaller than the value L100.
For this reason, when performing the local dimming in which the area is divided as in
To cope with the above-described problem, in the present embodiment, as in
In this case, when both of the right and left sidelights are lighted in the light emission intensity of 100%, the luminance distribution in which an emphasis is put on the luminance in the vicinity of the center of the screen is obtained as denoted in a reference number 32 in
When the BLT(x, y) is substituted for the BL0(x, y) of the expression 6 in
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008-214805 | Aug 2008 | JP | national |