The present application claims priority from Japanese application JP 2006-151728 filed on May 31, 2006, the content of which is hereby incorporated by reference into this application.
1. Field of the Invention
The present invention relates to an image display device and its drive circuit, and more particularly to a liquid-crystal display device and its drive circuit.
2. Description of the Related Art
An active matrix display, which is represented by an active matrix liquid-crystal display, forms a thin-film transistor (hereinafter referred to as the TFT) for each pixel, and stores display information in each pixel to display an image. A polysilicon TFT is formed by using a polysilicon film that is polycrystallized by laser-annealing an amorphous silicon film to raise the mobility to approximately 100 cm2/V-s. A circuit composed of a polysilicon TFT operates from a signal having a frequency of up to several megahertz to several tens of megahertz. Therefore, not only pixels but also drive circuits such as a data driver for generating a video signal and a gate driver for performing a scan can be formed in the same process as for a TFT that composes a pixel on a substrate for a liquid-crystal display device or the like.
A transmissive liquid-crystal display displays an image by controlling the transmissivity of the light transmitted through a backlight. On the other hand, a reflective liquid-crystal display has a reflective electrode within a pixel to reflect extraneous light and displays an image by controlling the reflectivity of sunlight and room illumination light incident on the pixel. Therefore, the reflective liquid-crystal display does not require the backlight.
A liquid-crystal display having both the transmission function and reflection function is called a semi-transmissive liquid-crystal display. The reflective liquid-crystal display and the semi-transmissive liquid-crystal display whose backlight is extinguished generally consume considerably less power than the transmissive liquid-crystal display, which needs to illuminate the backlight.
A liquid-crystal display having a built-in pixel memory is extremely low in power consumption. A normal liquid-crystal display having no built-in pixel memory temporarily retains an electrical charge in a capacitor within a pixel to keep the voltage to be applied to a liquid crystal. Therefore, even when a still picture is to be displayed, the normal liquid-crystal display having no built-in pixel memory needs to periodically refresh the voltage.
Consequently, even when a motion picture or still picture is displayed, a data line for transferring a data signal to a pixel needs to be constantly driven at several tens of kilohertz. Therefore, a considerable amount of power is consumed by the data line and a data driver for driving the data line. The liquid-crystal display having a built-in pixel memory, which is mainly designed for displaying a still picture, has a static memory in each pixel. Therefore, when displaying a still picture, the liquid-crystal display having a built-in pixel memory does not have to perform a refresh operation. Consequently, it is possible to completely save the power to be consumed by the data line and data driver.
Each pixel circuit 102 includes a static memory 104 and a selector 105. The static memory 104 samples an image signal from the data line in synchronism with a scanning pulse from a gate line. The selector 105 applies to a display section liquid-crystal element LC an AC voltage that corresponds to the information stored in the static memory 104. Further, an oscillator circuit (OSC) 103 and a buffer circuit 108, which are made of a thin-film transistor, are mounted on the glass substrate 101. The oscillator circuit 103 and buffer circuit 108 supply AC voltages VLCa and VLCb to all pixel circuits 102. Voltages VLCa and VLCb are square-wave voltages that normally have a frequency of 30 to 60 Hz, and in opposite phase to each other.
A gate input G of the static memory 104 is connected to gate lines GL1, GL2. A data input D of the static memory 104 is connected to data lines DL1, DL2. A data driver 106 is connected to the data lines DL1, DL2. A gate driver 107 is connected to the gate lines GL1, GL2.
An image signal is serially input (Sig_IN) into the data driver 106 from the outside of the display. The data driver 106 can temporarily store the input image signal and parallelly output it to the data lines DL1, DL2. The gate driver 107 sequentially outputs to the gate lines GL1, GL2 the pulses synchronized with the signal timing of the outputs DL1, DL2 of the data driver 106, thereby specifying a horizontal row of pixel circuits 102 into which the image signal developed in the data lines DL1, DL2 should be written.
The static memory 104 uses the scanning pulse supplied to the gate line to be connected to read the image signal of the data line to be connected. The selector 105 selects supplied square-wave voltage VLCa or VLCb in accordance with a one-bit storage state in the static memory, and supplies the selected square-wave voltage to the liquid-crystal element LC.
For example, it is assumed that a liquid crystal for giving a normally white screen (giving a white screen when the applied AC voltage is low) and an optical structure necessary for giving a normally white screen are used.
When the selector 105 selects voltage VLCa, voltages of the same phase are applied to two electrodes that sandwich the liquid-crystal element LC. Therefore, the applied AC voltage is 0 V so that the liquid-crystal element LC gives a white screen. On the contrary, when the selector 105 selects voltage VLCb, voltages in opposite phase to each other are applied to the two electrodes that sandwich the liquid-crystal element LC. Therefore, a raised AC voltage is applied so as to give a black screen. The liquid-crystal display having a built-in memory is described in more detail in JP-A-1996-194205 and JP-A-1996-286170.
The status (white or black) of each pixel can be determined by the storage state of the static memory 104. Therefore, while a still picture, which does not require an image refresh, is displayed, the operations of the data driver 106 and gate driver 107 can be stopped. This makes it possible to save the entire drive circuit power consumption for driving the data lines DL1, DL2 and gate lines GL1, GL2. Consequently, the liquid-crystal display having a built-in memory can substantially reduce the power consumption for a still picture display period unlike a normal liquid-crystal display.
Meanwhile, the power supply voltage for a circuit formed with a thin-film transistor is generally higher than that for an LSI or other circuit formed with monocrystalline silicon. Therefore, it may be necessary in some cases that a plurality of thin-film-transistor-based level shifters (LS) 109 be mounted on the glass substrate 101. The level shifters 109 voltage-amplify a small-amplitude voltage signal, which is supplied from an LSI that is positioned outside an image display, to a large-amplitude voltage signal, and supply drive signals to the data driver 106 and gate driver 107.
If, on the other hand, the enable signal ENB has a voltage that is low enough to turn OFF the TFT 111, the drain current flow to the TFT 111 is virtually zero. Therefore, the level shifter shown in
When an apparatus in which an image display device is mounted is to be driven by battery power, it is preferred that the power consumption of the image display device be small. In a display having a built-in memory, which features low power consumption, it is particularly important that the power consumption of the level shifters 109 be reduced. If, in the conventional liquid-crystal display having a built-in memory, which is shown in
The power consumption of the level shifter having a shutdown function, which is shown in
In general, the subthreshold region of a thin-film transistor is approximately 3 V and several times higher than that of a monocrystalline silicon transistor. The enable signal ENB needs to have an amplitude of higher than 3 V. Therefore, when an enable signal having an amplitude of lower than 3 V is supplied to the image display device, a level shifter needs to be furnished to amplify the enable signal to a large-amplitude signal.
It is an object of the present invention to provide an image display device that is capable of shutting down all level shifters to reduce the total power consumption.
According to a typical aspect of the present invention, there is provided an image display device that includes a plurality of pixel circuits, which are mounted on a substrate, formed with a thin-film transistor, and arranged in a matrix form; a plurality of data lines, which transmit an image signal to the plurality of pixel circuits; a plurality of gate lines, which intersect with the data lines and transmit a scanning pulse to the plurality of pixel circuits; and a drive circuit, which drive the data lines and the gate lines. The image display device comprising: an oscillator circuit that is mounted on the substrate and formed with a thin-film transistor; and a plurality of level shifters that are formed with a thin-film transistor, wherein the plurality of level shifters each have a shutdown function for reducing the power consumption of the level shifters; wherein the plurality of level shifters include a first level shifter and a group of second level shifters; wherein the shutdown function of the first level shifter is controlled by an output pulse of the oscillator circuit; and wherein the shutdown function of the group of second level shifters is controlled by an output signal of the first level shifter.
Since a pulse of the oscillator circuit is used as an enable signal for a level shifter that amplifies the enable signal to be supplied to the group of level shifters, the total power consumption of the level shifters can be reduced. As the power consumption required for a pixel circuit refresh can be reduced, the power consumption of the image display device can be effectively reduced. The effect of power consumption reduction can be readily produced particularly for reflective liquid-crystal displays, semi-transmissive liquid-crystal displays, and other image display devices in which power is mostly consumed for circuit operations. Further, the power consumption of an electronic device that includes the image display device according to the present invention can be reduced to increase the operating time of an employed battery.
A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.
A display electrode 4 is formed so as to cover each pixel circuit PX. The display electrode 4 is connected to an output of the pixel circuit PX. The glass substrate 1 is attached to another glass substrate 11 with a several micron thick liquid-crystal material (not shown) sandwiched between these two glass substrates. The thickness of the liquid-crystal material can be maintained uniform by spreading spherical beads (not shown) on the glass substrate 1. A transparent electrode 12 is formed on the lower surface of the glass substrate 11. A liquid-crystal element LC is formed by causing the liquid crystal to be sandwiched between the transparent electrode 12 and the display electrode 4 for each pixel circuit PX. When the transparent electrode 12 is connected to a connection terminal 5 that is mounted on the glass substrate 1, a voltage is supplied from the drive circuit 2 to the transparent electrode 12. Further, a voltage developed between the transparent electrode 12 and display electrode 4 is applied to the liquid-crystal element LC, which is sandwiched between the transparent electrode 12 and display electrode 4.
There are openings 13 in the inner surface of the glass substrate 11. The openings 13 coincide with the display electrodes 4 when the glass substrate 11 is attached to the glass substrate 1. A light-shielding layer is formed on an area other than the openings 13 so that light does not travel through the area other than the openings 13. The display electrodes 4 are made of metal such as aluminum. They reflect light that travels downward through the openings 13. Further, when the openings 13 are provided with red, green, and blue color filters (not shown), the image display device is capable of displaying a color image. A polarization film 14 and a retardation film 15 are attached to a surface of the glass substrate 11 that is positioned opposite the glass substrate 1. When AC voltages having different amplitudes are applied to the liquid-crystal element LC, the polarization film 14 and retardation film 15 function so that the light reflectivity ratio greatly varies to produce bright and dark visible spots.
Each pixel circuit PX includes a static memory 21 and a selector 22. The static memory 21 stores image data, which is supplied through a data line, in synchronism with a scanning pulse, which is supplied through a gate line. The selector 22 applies an AC voltage to the liquid-crystal element LC of a display section in accordance with the data stored in the static memory 21.
The display electrode 4 (not shown in
The drive circuit 2 includes an oscillator circuit (OSC) 25, a frequency divider circuit (DIV) 26, a buffer amplifier 27, shift registers 31, 32, a sampling circuit 33, and a level shifter circuit 30. The shift register 31 corresponds to a gate driver circuit of a common liquid-crystal display. The shift register 32 and sampling circuit 33 correspond to a data driver circuit of a common liquid-crystal display. The output signal of the oscillator circuit 25 is supplied to the frequency divider circuit 26, a level shifter 35, and a latch 36. The signal INTCK is a pulse waveform having a fixed period. The frequency divider circuit 26 frequency-divides the signal INTCK, and supplies to the buffer amplifier 27 a square wave having a period that is an integer multiple of the period of the signal INTCK. The buffer amplifier 27 generates square waves VLCa, VLCb, which are in opposite phase to each other, and supplies them to all pixel circuits PX. The square-wave voltage VLCa is also supplied to the transparent electrode 12 through the connection terminal 5.
The level shifter circuit 30 includes a group of level shifters 34, a level shifter 35, a latch 36, and a level shifter (LS_DN) 37. The group of level shifters 34 amplify the amplitudes of small-amplitude signals L-GST, L-GCK, L-HST, L-HCK, L-DT that are input to the image display device, and supply large-amplitude signals to the shift registers 31, 32 and sampling circuit 33.
The shift register 31 inputs GST and GCK signals and outputs a scanning pulse to the gate lines g1-g3. The shift register 32 inputs HST and HCK signals, sequentially outputs sampling pulses to the sampling circuit 33. In synchronism with the sampling pulses, the sampling circuit 33 samples signal data, which is an image signal, in relation to the data lines. The level shifter 35 amplifies a small-amplitude signal L-ENB and supplies the amplified signal to the latch 36. The output of the latch 36 is supplied to the group of level shifters 34 as large-amplitude ENB signal. The ENB signal supplied in this manner controls the shutdown function of the group of level shifters 34.
The output signal INTCK of the oscillator circuit 25 is supplied to the level shifter 35 to control the shutdown function of the level shifter 35. The ENB signal is attenuated to a small-amplitude signal by the level shifter 37 and output as an L-ENBO signal. A plus power supply voltage VDD and a minus ground voltage GND (0 V) are supplied from the outside of the image display device as power supply voltages for the drive circuit 2 and pixel circuits PX.
The latch 36 is made of a negative edge trigger type D flip-flop. It latches an input D signal when the output signal INTCK of the oscillator circuit 25 falls, and ensures that an input D value is reflected in signal ENB. The level shifter 37 includes inverters 47, 48 and resistive wirings 45, 46. It attenuates signal ENB, which is a large-amplitude signal, to signal L-ENBO, which is a small-amplitude signal, and outputs the attenuated signal.
A still picture display period TDISP of the image display device is determined by signal L-ENB. The still picture display period prevails while signal L-ENB is maintained at High-level voltage VH. When a pulse appears in signal INTCK while signal L-ENB is voltage VH, the level shifter 35 voltage-amplifies signal L-ENB. When the pulse of signal INTCK falls, the latch 36 stores it and a voltage of 0 V is output as signal ENB. While signal INTCK is at 0 V, the latch 36 maintains the ENB state and the TFTs 41 in the group of level shifters 34 are OFF. Therefore, the power consumption of the group of level shifters 34 is virtually zero.
During an image rewrite period TRW, during which the image display device rewrites an image, signal L-ENB is set at 0 V at first (time t1). When signal INTCK falls for the first time after signal L-ENB was set at 0 V, signal ENB is set at voltage VDD (time t2). The TFTs 41 in the group of level shifters 34 then turn ON. Thus, the group of level shifters 34 is ready for an amplification operation. Simultaneously, voltage VDD of signal ENB is attenuated by the level shifter circuit 37 so that voltage VH is output as signal L-ENBO. This operation notifies the outside of the image display device that the group of level shifters 34 is ready for an amplification operation. When the signals L-GST, L-GCK, L-HST, L-HCK, L-DT for driving the shift registers 31, 32 and sampling circuit 33 are input after signal L-ENBO was set at voltage VH, the group of level shifters 34 amplify the input signals to signals GST, GCK, HST, HCK, and DT.
When the rewrite operation is terminated to return to the still picture display period, L-ENB is set at voltage VH (time t3). Signal ENB is then set at 0 V when the first pulse of signal INTCK falls (time t4). This turns OFF the TFTs 41 in the group of level shifters 34. Therefore, the power consumed by the group of level shifters 34 is zero.
During the image rewrite period TRW, power supply current ILS, which is supplied from power supply VDD to the level shifter circuit 30, flows in an increased amount due to the amplification operation by the group of level shifters 34. During the still picture display period TDISP, on the other hand, no electrical current is consumed by the group of level shifters 34 because the group of level shifters 34 is shut down. The level shifter 35 consumes an electrical current during period tPW to perform an amplification operation, but consumes no electrical current during the other period. During the still picture display period during which a decrease in the electrical current consumption is demanded, therefore, the electrical current consumption of the level shifter 35 is tPW/T times the electrical current consumption during a continuous operation. Consequently, the electrical current consumption of the level shifter 35 decreases with a decrease in period tPW. When, for instance, T=1 ms and tPW=1 μs, the electrical current consumption of the level shifter 35 is 1/1000 the electrical current consumption during a continuous operation.
As regards signal DT, binary digital data D1-D9 are sequentially arranged. These binary digital data correlate to the 3×3 pixel circuits PX that are arranged in a matrix form as indicated in
At time t01, gate line g1 goes High, and the static memories 21 of the pixel circuits PX in the uppermost line in
The pulses at outputs H1 to H3 cause the sampling circuit 33 to sample data D1 to D3 in relation to the data lines d1-d3 (time t11, time t12, and time t13). The sampled data D1-D3 are retained even after sampling due to the parasitic capacitance of the data lines d1-d3.
At time t02, gate line g1 goes Low, and the states of the static memories 21 of the pixel circuits PX in the uppermost line in
At time t03, the sampling circuit 33 performs the same operation as described above so that the states of the static memories 21 of the pixel circuits PX in the middle line in
At time t04, the same operation is performed so that the states of the static memories 21 of the pixel circuits PX in the lowermost line in
The states of the static memories in all pixel circuits PX are rewritten by the above operations. Subsequently, the operating waveforms shown in
The period T≈2.2×C1×R1, and the pulse width tPW≈C2×R2. When, for instance, C1, R1, C2, and R2 are set so that C1×R1=450×C2×R2, a pulse waveform having a pulse width tPW of approximately 1/1000T is generated at the INTCK output. If, for instance, C1=10 pF, R1=45 MΩ, C2=1 pF, and R2=1 MΩ, a pulse waveform having a period T of approximately 1 ms and a pulse width tPW of approximately 1 μs is generated at the INTCK output.
If, for instance, the period T=1 ms and n=5, the frequency fDIV of the frequency-divided signal is 31.25 Hz. This frequency is appropriate for voltages VLCa and VLCb, which are employed to use an AC current for liquid crystal. When the frequencies fLC of liquid-crystal AC voltages VLCa and VLCb are to be further decreased for power consumption reduction, it is possible to increase the number of divide-by-two circuits 71, furnish a selector 74, and selectively output a frequency of a square wave whose period differs depending on the purpose.
During the image rewrite period TRW, the moment a scanning pulse is supplied to terminal G, which is connected to a gate line, TFT 81 turns ON, and the status of the memory, which is composed of TFTs 82 to 85, is updated in accordance with a binary digital image signal that is input to terminal D to which a data line is connected. During the still picture display period TDISP, either a pair of TFTs 86 and 88 or a pair of TFTs 87 and 89 turn ON depending on the status of the memory that is composed of TFTs 82 to 85.
When TFTs 86 and 88 are ON, the same voltage waveform VLCa is supplied to the electrodes at both ends of the liquid-crystal element LC. Therefore, the AC voltage applied to the liquid-crystal element LC is 0 V. Thus, the liquid-crystal element LC produces a white visible spot. When, on the other hand, TFTs 87 and 89 are ON, voltage waveforms VLCa and VLCb, which are in opposite phase to each other, are supplied to the electrodes at both ends of the liquid-crystal element LC. Therefore, the AC voltage applied to the liquid-crystal element LC is VDD. Thus, the liquid-crystal element LC produces a black visible spot.
The embodiment shown in
The employed reference numerals are as follows:
Number | Date | Country | Kind |
---|---|---|---|
2006-151728 | May 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6127899 | Silva et al. | Oct 2000 | A |
7116307 | Toyozawa et al. | Oct 2006 | B2 |
7659877 | Murakami et al. | Feb 2010 | B2 |
20020054009 | Koyama et al. | May 2002 | A1 |
20040041777 | Toyozawa et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
08-194205 | Jan 1995 | JP |
08-286170 | Feb 1996 | JP |
WO 03036606 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070279366 A1 | Dec 2007 | US |