1. Field of the Invention
The invention relates to an image displaying apparatus in which an electrode plate is interposed between two substrates arranged so as to face each other.
2. Related Background Art
Hitherto, studies of an image forming apparatus using electron-emitting devices have been being progressed. For example, there has been known a flat electron-beam (field-emission) displaying panel in which an electron source substrate on which a number of cold cathode electron-emitting devices are formed and an anode substrate having an anode electrode for accelerating electrons emitted from the electron-emitting devices and a phosphor are arranged in parallel so as to face each other and an internal space is exhausted to a vacuum. According to the flat electron-beam displaying panel, a lighter weight and a larger display screen can be realized as compared with those of a CRT (cathode ray tube) displaying apparatus which is widely used at present. An image of higher luminance and higher quality can be provided as compared with those of another flat display panel such as flat display panel using a liquid crystal, plasma display, electroluminescence display, or the like.
As an image displaying apparatus in which an electrode plate is interposed between two substrates arranged so as to face each other, an image displaying apparatus in which an electrode plate to control an electron emitted from an electron-emitting device is fixed to a predetermined position has been disclosed in Japanese Patent Application Laid-open No. 2002-63859 (paragraph [0044],
According to the image displaying apparatus disclosed in Patent Document 1, if adhesion by the adhesive agent is imperfect, a positional deviation of the electrode plate occurs. If the spacer and the electrode plate are strictly fixed by the adhesive agent, there is also such an inconvenience that in a heating step during manufacturing of the displaying apparatus, a stress occurs in the adhesive portion of the spacer and the electrode plate, so that the spacer or the electrode plate is broken. It is considered that this is because such a phenomenon is caused by a difference between coefficients of thermal expansion of the spacer and the electrode plate.
It is an object of the invention to provide an image displaying apparatus which can solve the above inconvenience and can easily fix an electrode plate to a predetermined position in the displaying apparatus.
To accomplish the above object, according to the invention, there is provided an image displaying apparatus comprising:
According to the invention, a Coulomb attracting force which acts between the substrate (first substrate) that faces the surface on the wider width portion side of the electrode plate and the electrode plate is larger than a Coulomb attracting force which acts between the substrate (second substrate) which faces the surface on the narrower width portion side of the electrode plate and the electrode plate. Therefore, the electrode plate is come into contact with a step-forming portion of the spacer (portion at a boundary between the wider width portion and the narrower width portion) and held by the Coulomb attracting force which acts between the substrate which faces the surface on the wider width portion side of the electrode plate and the electrode plate and can be maintained at a predetermined position.
An image displaying apparatus of the invention incorporates image displaying apparatuses such as liquid crystal displaying apparatus, plasma displaying apparatus, electron-beam displaying apparatus (for example, field-emission display (FED)), and the like. The electron-beam displaying apparatus is a preferable form when the invention is applied with respect to a point that the apparatus has an electron correcting electrode for controlling an electron emitted from an electron-emitting device toward an electron-beam excitement type phosphor layer.
An embodiment of the invention will now be described hereinbelow with reference to the drawings. In the embodiment, the electron-beam displaying apparatus (field-emission displaying apparatus: FED) is used as an image displaying apparatus.
In
The first substrate 1 has a first conductor set as a predetermined electric potential. The first substrate 1 is, for example, a substrate (rear plate) in which a plurality of electron-emitting devices 3 are formed in a matrix form onto the surface which faces the second substrate 2. In this case, the first conductor denotes the electron-emitting device.
The second substrate 2 has a phosphor member 4 constructing an image display surface and a second conductor 5 set as a specific electric potential different from that of the first conductor. In the case of using the electron-beam displaying apparatus as an image displaying apparatus, it is desirable that the specific electric potential is higher than the predetermined electric potential.
The second substrate 2 is, for example, a face plate for the electron-beam displaying apparatus. The second substrate 2 is arranged so as to face the electron-emitting devices 3. The phosphor member 4 is, for example, an electron-beam excitement type phosphor layer, is excited by the electron emitted from the electron-emitting device 3, and emits the light, thereby displaying an image. The second conductor 5 is a thin film conductor covering the phosphor member 4 and is a metal back made of, for example, Al.
The electrode plate 8 is, for example, a grid and is arranged between the first substrate 1 and the second substrate 2. The electrode plate 8 controls an electron beam emitted from the electron-emitting device 3 toward the phosphor member 4. The electrode plate 8 has holes 9 and positioning holes 11. Since the electrode plate 8 has the holes 9, the electrode plate 8 converges the electron emitted from the electron-emitting device 3 toward the phosphor member 4 or corrects its trajectory.
The spacer 10 is interposed between the first substrate 1 and the second substrate 2 and defines a spacing between the first substrate 1 and the second substrate 2. The spacer 10 has a narrower width portion 10a, a wider width portion 10b, and a shoulder portion (step-forming portion) 13 formed at a boundary between the narrower width portion 10a and the wider width portion 10b. The narrower width portion 10a penetrates through the positioning hole 11. A width of wider width portion 10b is wider than the positioning hole 11. The shoulder portion 13 is come into engagement with the electrode plate 8.
The spacer 10 can be arranged so that the shoulder portion 13 faces the second substrate 2 as shown in
In the embodiment of
The electric field E1 is equal to a value obtained by dividing a difference (V1) between the first electric potential and the third electric potential by the distance d1. The electric field E2 is equal to a value obtained by dividing a difference (V2) between the second electric potential and the third electric potential by the distance d2.
By the above settings, a Coulomb attracting force (F1) which acts between the substrate (first substrate) which faces the surface on the wider width portion 10b side of the electrode plate 8 and the electrode plate 8 is larger than a Coulomb attracting force (F2) which acts between the substrate (second substrate) which faces the surface on the narrower width portion 10a side of the electrode plate 8 and the electrode plate 8. Therefore, the electrode plate 8 is come into contact with the step-forming portion 13 of the spacer 10 and held by the Coulomb attracting force which acts between the substrate which faces the surface on the wider width portion side of the electrode plate 8 and the electrode plate 8 and is maintained at a predetermined position.
In the case of
Specific examples will be described in detail hereinbelow with respect to the electric potential of the electrode plate 8, the distance between the electrode plate 8 and the first substrate 1, and the distance between the electrode plate 8 and the second substrate 2.
If PD-200 is used as a material for the first substrate 1 and the second substrate 2, as a material for the electrode plate 8, a 426 alloy or a 48 alloy (both are the alloys of the Fe—Ni system) can be used as a material whose coefficient of line expansion is close to that of PD-200.
In
F1=(½)−(Q11·E11)=(½)·εS1·(Vg/d1)2
F2=(½)·(Q12·E12)=(½)·εS2·{(Va−Vg)/d2}2
where,
The electric potential of the electron-emitting device 3 is set to 0V (hereinbelow, there is also a case where Va is referred to as an applied voltage to the second conductor and Vg is referred to as an applied voltage to the electrode plate).
In the embodiment, as shown in
When the surface on the wider width portion 10b side of the electrode plate 8 faces the second substrate 2, the electric potential Vg of the electrode plate 8, the distance d1 between the electrode plate 8 and the first substrate 1, and the distance d2 between the electrode plate 8 and the second substrate 2 are set so as to satisfy F2>F1, that is, Q12·E12>Q11·E11. In any one of the cases of
A magnitude |F1−F2| of the Coulomb force which acts on the electrode plate 8 is calculated by using the following values which are typical to respective parameters. Specifically speaking,
The dielectric constant of the vacuum:
ε=8.85E−12[F/m]
The applied voltage to the second conductor 5:
Va=10 [kV]
The applied voltage to the electrode plate 8:
Vg=6 [kV]
The distances between the substrates and the electrode plate:
d1=d2=2 [mm]
The areas of the substrate and the electrode plate:
S1=S2=80000 [mm2]
In this case, |F1−F2|=17.7 [N]
Assuming that the 426 alloy or 48 alloy is used as a material of the electrode plate 8 and its thickness is equal to 0.15 [mm], it is presumed that the tare weight of the electrode plate 8 is equal to about 10 [N]. Therefore, the Coulomb force (|F1−F2|) is sufficiently larger than the tare weight of the electrode plate 8. Consequently, for example, by properly setting the direction from the wider width portion toward the narrower width portion of the spacer 10, the electric potential of the electrode plate 8, the distance between the electrode plate 8 and the first substrate 1, the distance between the electrode plate 8 and the second substrate 2, and the like, the electrode plate 8 can be held in the state where it is in contact with the shoulder portion 13.
In the embodiment, the phosphor layer 4 is provided on the second substrate 2, the first substrate 1 has the electron-emitting devices 3 formed on the surface which faces the second substrate 2, and the electric potential of the second conductor 5 is higher than that of the electron-emitting device 3. Since the electrode plate 8 has been defined so as to have a desired electric potential adapted to control the electron emitted from the electron-emitting device 3 toward the phosphor layer 4 (for example, to converge the electron emitted from the electron-emitting device 3 or correct its trajectory), the position of the electrode plate 8 for controlling the electron is fixed by the shoulder portion (step-forming portion) 13 of the spacer by the Coulomb force.
Therefore, the deviation of the electron beam and the deterioration of discharge-resistant performance which are caused by the positional deviation of the electrode plate 8 can be prevented. Thus, the deterioration of image displaying performance can be prevented.
The shape of the spacer 10 is not limited to the shape in which two prisms having different widths as shown in
The shape of the spacer 10 can be set to, for example, a shape in which two circular cylinders having different diameters as shown in
The image displaying apparatus shown in
First, the first manufacturing method will be described. As shown in
The second manufacturing method will now be described. As shown in
From a viewpoint of improving working efficiency, it is preferable that escaping holes (escaping portion) 18 of grip units 17 of the spacer 10 are formed on the electrode plate 8 in consideration of the automatization of the assembling work as shown in
Explanation will now be supplemented with reference to
Therefore, a method whereby the grip units 17 allow the narrower width portion 10a to automatically penetrate through the positioning hole 11 in the state where the spacer 10 is gripped is considered. However, when the grip units 17 allow the narrower width portion 10a to automatically penetrate through the positioning hole 11, if the grip units 17 are come into contact with the electrode plate 8, a possibility that it is difficult for the grip units 17 to allow the narrower width portion 10a to penetrate through the positioning hole 11 occurs.
In the embodiment shown in
From a viewpoint of improving the working efficiency, it is also preferable that temporary fixing portions 19 to temporarily fix the spacer 10 and the electrode plate 8 are provided at a few points along the longitudinal direction of the spacer 10 as shown in
As an example of a temporary fixing method, it is desirable to use a method whereby an inorganic adhesive agent is used for the temporary fixing portions 19 in consideration of a small quantity of degassing and a small amount of adhesive agent is potted by a dispenser or the like.
The constructions shown in the diagrams in the embodiments described above are mere examples and the invention is not limited to them. For example, the invention is not limited to the electron-beam displaying apparatus (field-emission display (FED)) but can be also applied to other image displaying apparatuses.
According to the invention, in the manufacturing step, specifically speaking, at the time of a thermal step such as heating, cooling, or the like, since the spacer and the electrode plate are not fixed, the generation of the stress caused by the difference between the coefficients of thermal expansion of the spacer and the electrode plate can be prevented. Therefore, a risk that the spacer and the electrode plate are broken during the manufacturing step can be reduced. At the time of the operation of the displaying apparatus, since the electrode plate is pressed and fixed to the wider width portion of the spacer by the force of the electric field, the electrode plate can be easily fixed to the predetermined position at an extremely high precision equal to a shape precision of the spacer.
This application claims priority from Japanese Patent Application No. 2004-237165 filed Aug. 17, 2004, which is hereby incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2004-237165 | Aug 2004 | JP | national |