This application claims priority under 35 U.S.C. § 119 from Japanese Patent Application No. 2020-141423 filed on Aug. 25, 2020 and Japanese Patent Application No. 2020-171055 filed on Oct. 9, 2020. The entire subject matter of the applications are incorporated herein by reference.
Aspects of the present disclosure relate to an image forming apparatus and a control method therefor.
In an electrophotographic image forming apparatus, an initialization operation is performed by rotating motors for a particular period of time in response to the apparatus being turned on or in response to a cover being opened and closed. There has been known an image forming apparatus that performs an initialization operation by rotating motors at low speeds when a new cartridge is mounted.
If toner is stored for a long period of time or is subjected to vibration during transportation, fluidity of the toner may decrease and the toner may solidify. When loosening the solidified toner, there is a problem that load for stirring the toner is large. On the other hand, in non-new cartridges, since the toner is often not solidified, if the toner is stirred, the toner deteriorates unnecessarily and power is wasted.
According to aspects of the present disclosure, there is provided an image forming apparatus including a housing having an opening, a cover movable between a closed position for closing the opening and an open position for opening the opening, a plurality of photosensitive drums, a plurality of cartridges, a first motor and a controller. Each cartridge has a developing roller, a storage chamber configured to store toner, and an agitator for configured to agitate the toner. The plurality of cartridges are configured to be mounted to the housing through the opening. The first motor is configured to rotate the agitators. The controller is configured to rotate the agitators by rotating the first motor when forming an image on a sheet. The controller is further configured to executes a determination process of determining whether a new cartridge is included in the plurality of cartridges in response to the image forming apparatus being turned on or in response to the cover being moved from the open position to the closed position. In a case where a new cartridge is included, the controller executes an initial stirring process of stirring toner with the agitators by rotating the first motor. In a case where a new cartridge is not included, the controller does not execute the initial stirring process.
According to aspects of the present disclosure, there is further provided a method of controlling an image forming apparatus including a housing having an opening, a cover movable between a closed position for closing the opening and an open position for opening the opening, a plurality of photosensitive drums, and a plurality of cartridges each having a developing roller, a storage chamber configured to store toner, and an agitator configured to agitate the toner, the plurality of cartridges being configured to be mounted to the housing through the opening. The method includes rotating the agitators when forming an image on a sheet, and in response to the image forming apparatus being turned on or in response to the cover being moved from the open position to the closed position, executing a determination process of determining whether a new cartridge is included in the plurality of cartridges, executing an initial stirring process of stirring toner by rotating the agitator in a case where a new cartridge is included, and not executing the initial stirring process in a case where a new cartridge is not included.
According to aspects of the present disclosure, there is further provided an image forming apparatus including a housing having an opening, a cover movable between a closed position for closing the opening and an open position for opening the opening, a plurality of photosensitive drums, a plurality of cartridges, a first motor, a plurality of separation mechanisms, and a controller. Each cartridge has a developing roller, a storage chamber configured to store toner, and an agitator configured to agitate the toner. the plurality of cartridges are configured to be mounted to the housing through the opening. The first motor is configured to rotate the agitators. Each separation mechanism is configured to move a corresponding developing roller between a contact position at which the developing roller is in contact with the corresponding photosensitive drum and a separated position at which the corresponding developing roller is separated from the photosensitive drum. In response to the image forming apparatus being turned on or in response to the cover being moved from the open position to the closed position, the controller executes an initial separation process of rotating the first motor to move the developing roller of each of the plurality of cartridges to the separated position, executes a determination process of determining whether a new cartridge is included in the plurality of cartridges after executing the initial separation process, executes an initial stirring process of stirring toner with the agitators by rotating the first motor in a case where a new cartridge is included, and does not execute the initial stirring process in a case where a new cartridge is not included.
As shown in
The housing 10 has an opening 10A on the front side. The cover 11 is movable between a closed position shown with a solid line for closing the opening 10A and an open position shown with a virtual line for opening the opening 10A. The housing 10 is provided with a conventionally-known cover sensor that detects an open state and a closed state of the cover 11. The controller 2 can determine the open state and the closed state of the cover 11 based on a signal from the cover sensor.
The sheet feeder 20 is provided at a lower portion inside the housing 10 and includes a sheet tray 21 that accommodates sheets S and a feeding mechanism 22 that feeds the sheets S from the sheet tray 21 to the image formation engine 30. The sheet tray 21 is configured to be pulled out of the housing 10 to the left side in
In the sheet feeder 20, after the sheets S in the sheet tray 21 are conveyed by the feeding roller 23, the sheets S are separated one by one between the separation roller 24 and the separation pad 25. Thereafter, a leading edge of the sheet S is regulated by the registration roller 27 in a state in which the rotation thereof is stopped, and then the registration roller 27 rotates to feed the sheet S to the image formation engine 30.
The image formation engine 30 includes an exposure device 40, a drawer 90 (see
The exposure device 40 includes a conventionally-known laser diode, deflector, lens and mirror. The exposure device 40 is configured to emit a plurality of laser beams to expose the plurality of photosensitive drums 50 to scan surfaces of the photosensitive drums 50.
The plurality of photosensitive drums 50 include a photosensitive drum 50Y corresponding to yellow, a photosensitive drum 50M corresponding to magenta, a photosensitive drum 50C corresponding to cyan, and a photosensitive drum 50 K corresponding to black. In this specification and the drawings, members that are provided to correspond to yellow, magenta, cyan, and black are denoted with Y, M, C, and K, respectively, when distinguishing the colors.
Each developing cartridge 60 includes a developing roller 61 that supplies toner to the photosensitive drum 50. Specifically, the developing cartridges 60Y, 60M, 60C and 60K respectively have the developing rollers 61Y, 61M, 61C and 61K corresponding to the photosensitive drums 50Y, 50M, 50C and 50K for the colors of yellow, magenta, cyan, and black, respectively.
Each developing cartridge 60 includes a case 63 having a storage chamber configured to store toner and an agitator 67 configured to agitate the toner stored in the storage chamber. The developing roller 61 and the agitator 67 of each developing cartridge 60 are connected by a not-shown gear, and when the developing roller 61 rotates, the agitator 67 also rotates simultaneously. Each developing cartridge 60 also includes a memory 68 on a side wall at the front. Identification data indicating whether the developing cartridge 60 is new is stored in the memory 68.
The developing rollers 61Y, 61M, 61C and 61K are arranged in this order from an upstream side toward a downstream side in a moving direction of the sheet S.
Each developing cartridge 60 is movable between a position indicated with a solid line in
As shown in
Although the detailed structure is not shown, the pair of side frames 91 supports end portions of the photosensitive drums 50. One side frame 91 (in the present embodiment, the left side frame 91L) has second openings 91A. The second openings 91A are notches that are formed to recess downward at an upper edge of the side frame 91L. The second openings 91A penetrate the left side frame 91L in the left-right direction, and it is made possible for cam followers 170, which will be described later, to enter the second openings 91A.
Further, although not shown, the drawer 90 includes first relay contacts that respectively come into contact with contacts of the memories 68 of the developing cartridges 60 and a second relay contact that is electrically connected to the controller 2 of the main body. The first relay contacts and the second relay contacts are respectively connected by wiring. Thus, the memories 68 can communicate with the controller 2 via respective first relay contacts and second relay contacts.
The image forming apparatus 1 includes a plurality of separation mechanisms each configured to move a corresponding developing roller 61 between a contact position where the developing roller 61 contacts a corresponding photosensitive drum 50 and a separated position where the developing roller 61 is separated from the photosensitive drum 50. The separation mechanisms are provided for yellow, magenta, cyan, and black, respectively.
Specifically, each separation mechanism includes a cam 150 (150Y, 150M, 150C, 150K) that rotates about an axis parallel to a rotation axis 61X (see
The cam 150 has a first cam part 152 protruding in a direction of the rotation axis 61X of the developing roller 61 (hereinafter, simply referred to as a “rotation axis direction”).
The support shaft 179 is a shaft extending long in the left-right direction. The support shaft 179 is provided to a not-shown side frame of the housing 10.
The cam follower 170 has a slide shaft part 171 into which the support shaft 179 is inserted. The cam follower 170 is slidable along an axial direction of the support shaft 179 and rotatable about an axis of the support shaft 179 in a state in which the support shaft 179 is inserted into the slide shaft part 171. The cam follower 170 has a contact part 172 that can come into contact with the first cam part 152.
Specifically, the cam follower 170 is guided by the first cam part 152 as the cam 150 rotates, and is slidable between a protruding position shown in
When at the protruding position, the cam follower 170 is in the second opening 91A and presses the developing cartridge 60 to position the developing roller 61 at the separated position, and when at the standby position, the cam follower 170 is outside the second opening 91A to position the developing roller 61 at the contact position.
Referring back to
The drawer 90 is provided with contacted parts 94 that come into contact with slide members 64, which will be described later, at top portions of the side frames 91R and 91L. The contacted part 94 consists of, for example, a roller rotatable about an axis along a third direction (up-down direction) orthogonal to both a first direction parallel to the axial direction of the photosensitive drums 50 and a second direction along which the photosensitive drums 50 are arranged.
Further, the drawer 90 includes pressing members 95 provided to correspond to respective developing cartridges 60. The pressing members 95 are provided at both end portions of the photosensitive drum 50 in the axial direction for each developing cartridge 60. Each pressing member 95 is biased rearward by a spring 95A (see
As shown in
The coupling 65 engages with a coupling shaft 119 which will be described later and receives rotational driving force from the coupling shaft 119.
The slide member 64 is a member capable of sliding in the rotation axis direction with respect to the case 63. The slide member 64 is slidable in the rotation axis direction by being pressed by the cam follower 170.
As shown in
The shaft 191 is disposed to penetrate through a hole formed to the case 63 and extending in the rotation axis direction, and is slidably supported by the case 63.
The first contact member 192 has a pressing surface 192A, which is an end surface in the rotation axis direction, and an inclined surface 192B inclined with respect to the rotation axis direction. The pressing surface 192A is a surface to be pressed by the cam follower 170. When the slide member 64 is pressed in the rotation axis direction by the cam follower 170, the inclined surface 192B comes into contact with the contacted part 94 of the drawer 90 to urge the developing cartridge 60 in a direction parallel to the moving direction of the sheet S, thereby moving the developing cartridge 60 (see
The second contact member 193 has an inclined surface 193B that is inclined in the way similar to the inclined surface 192B of the first contact member 192. When the slide member 64 is pressed in the rotation axis direction by the cam follower 170, the inclined surface 193B also comes into contact with the contacted part 94 of the drawer 90 to urge the developing cartridge 60 in a direction parallel to the moving direction of the sheet S, thereby moving the developing cartridge 60 (see
A spring 194 is disposed between the first contact member 192 and the case 63 to bias the slide member 64 toward one side in the rotation axis direction, that is, the left side in the present embodiment. The spring 194 is a compression coil spring and is disposed outside the shaft 191 such that the shaft 191 passes through the coil.
Referring back to
A belt cleaner 75 that cleans the surface of the conveying belt 73 is provided below the conveying belt 73. The belt cleaner 75 includes a case 75A and a cleaning roller 75B. The cleaning roller 75B is in contact with the surface of the conveying belt 73 and removes foreign substances such as toner from the surface of the conveying belt 73. The foreign substances removed by the cleaning roller 75B is accumulated in the case 75A.
The fuser 80 is provided behind the photosensitive drums 50 and the conveyer 70. The fuser 80 includes a heating roller 81 and a pressing roller 82 disposed to face the heating roller 81. A heater 81A (in the present embodiment, a halogen lamp) configured to heat the heating roller 81 is provided inside the heating roller 81. Temperature of the heating roller 81 can be controlled by controlling output of the heater 81A. As shown in
Referring back to
In the image formation engine 30 configured as described above, first, the surface of each photosensitive drum 50 is uniformly charged by the charger 52 and then exposed to light emitted from the exposure device 40. Thus, an electrostatic latent image based on image data is formed on each photosensitive drum 50.
The toner in the case 63 is carried by the surface of the developing roller 61, and is supplied to the electrostatic latent image formed on the photosensitive drum 50 when the developing roller 61 faces and contacts the photosensitive drum 50. Thus, a toner image is formed on the photosensitive drum 50.
Next, when the sheet S supplied onto the conveying belt 73 passes between each photosensitive drum 50 and each transfer roller 74, the toner image formed on each photosensitive drum 50 is transferred onto the sheet S. When the sheet S passes between the heating roller 81 and the pressing roller 82, the toner image transferred onto the sheet S is thermally fixed to the sheet S.
The sheet S ejected from the fuser 80 is accumulated on a sheet ejection tray 13 on an upper surface of the housing 10 by the conveying roller 15 and the ejection roller 16.
Now referring to
The image forming apparatus 1 includes a first motor 3D, a second motor 3P, a third motor 3F, and a driving force transmission mechanism 100.
The first motor 3D drives the developing rollers 61, the agitators 67, the cams 150 that are parts of the separation mechanisms, and the nip pressure adjusting mechanism 85 of the fuser 80. The first motor 3D can rotate in a first direction and a second direction opposite to the first direction, and the rotation direction and a rotation speed of the first motor 3D are controlled by the controller 2. The first direction is a rotation direction for forming an image. in the present specification, the rotation of the first motor 3D in the first direction is also referred to as “forward rotation.” The second direction is an exceptional rotation direction for moving each developing roller 61 to the separated position in response to the image forming apparatus 1 being turned on or in response to the cover 11 being moved from the open position to the closed position. In the present specification, the rotation of the first motor 3D in the second direction is also referred to as “reverse rotation.”
The second motor 3P is a motor that rotates the plurality of photosensitive drums 50 and the conveying belt 73 of the conveyer 70 and transmits driving force to the feeding mechanism 22.
The third motor 3F is a motor that rotates the heating roller 81 of the fuser 80.
The driving force transmission mechanism 100 includes a first gear train 100A capable of transmitting driving force of the first motor 3D to the cams 150Y, 150M and 150C, a second gear train 100K capable of transmitting driving force of the first motor 3D to the K cam 150K, and a third gear train 100D capable of transmitting driving force of the first motor 3D to the developing rollers 61. The cam 150Y, the cam 150M and the cam 150C are mechanically connected via gears, and are provided so as to be simultaneously rotationally driven by the driving force of the first motor 3D.
The first gear train 100A includes a YMC clutch 140A. The YMC clutch 140A is an electromagnetic clutch and can be switched between a transmission state for transmitting the driving force of the first motor 3D to the cams 150Y, 150M and 150C and a disconnection state for not transmitting the driving force of the first motor 3D to the cams 150Y, 150M and 150C. The second gear train 100K includes a K clutch 140K. The K clutch 140K is an electromagnetic clutch and can be switched between a transmission state for transmitting the driving force of the first motor 3D to the K cam 150K and a disconnection state for not transmitting the driving force of the first motor 3D to the K cam 150K. It is noted that in
The third gear train 100D includes a plurality of mechanical clutches 120, one for each of the plurality of developing rollers 61. As will be described in detail later, the mechanical clutch 120 is configured to transmit the driving force from the first motor 3D to the developing roller 61 at the contact position and not to transmit the driving force from the first motor 3D to the developing roller 61 at the separated position.
The image forming apparatus 1 further includes a fourth gear train 200 capable of transmitting the driving force of the first motor 3D to the nip pressure adjusting cam 87. The fourth gear train 200 includes a nip pressure adjusting clutch 220. The nip pressure adjusting clutch 220 is an electromagnetic clutch and can be switched between a transmission state for transmitting the driving force of the first motor 3D to the nip pressure adjusting cam 87 and a disconnection state for not transmitting the driving force to the nip pressure adjusting cam 87. It is noted that in
As shown in
The disk part 151 has a substantially disk shape and is rotatably supported by the housing 10.
The gear part 150G is formed on an outer periphery of the disk part 151.
The first cam part 152 is an end surface cam for moving the developing roller 61 and is protruding in a rotation axis direction of the cam 150 from a first surface 151A which is one surface of the disk part 151. The first cam part 152 is formed integrally with the disk part 151. The first cam part 152 has a shape extending in a circumferential direction about the rotation axis of the cam 150. The first cam part 152 has a cam surface 152F on an end surface in the rotation axis direction of the cam 150.
The cam surface 152F has a first holding surface F1, a second holding surface F2, a first guide surface F3 and a second guide surface F4. The first holding surface F1 holds the cam follower 170 at the standby position. The second holding surface F2 holds the cam follower 170 at the protruding position. The first guide surface F3 is a surface connecting the first holding surface F1 and the second holding surface F2 and is inclined with respect to the first holding surface F1. The second guide surface F4 is a surface connecting the second holding surface F2 and the first holding surface F1 and inclined with respect to the first holding surface F1. In
The second cam part 153 is a portion that operates the mechanical clutch 120 in cooperation with a lever 160 to switch the mechanical clutch 120 between a transmission state and a disconnection state. The second cam part 153 is a plate cam projecting in the rotation axis direction of the cam 150 from a second surface 151B which is the other surface of the disk part 151. That is, the second cam part 153 projects from a side surface of the disk part 151 opposite to the side surface on which the first cam part 152 is disposed. The second cam part 153 extends in an arc shape when viewed from the rotation axis direction of the cam 150. The second cam part 153 is formed integrally with the disk part 151. Therefore, the second cam part 153 rotates together with the first cam part 152.
The phase detection wall 154 is a wall that is formed integrally with the disk part 151. The phase detection wall 154 extends in the circumferential direction about the rotation axis of the cam 150 and blocks light emitted by a light emitting element of a separation sensor 4 (see
The housing 10 is provided with separation sensors 4 corresponding to black and cyan. The separation sensors 4 are phase sensors capable of detecting phases of the cams 150C and 150K. The separation sensor 4 includes a photo interrupter having a light emitting element and a light receiving element. The separation sensor 4 outputs an ON signal to the controller 2 when the first slit 154A or the second slit 154B is positioned between the light emitting element and the light receiving element and the light-receiving element receives light emitted by the light-emitting element, and outputs an OFF signal to the controller 2 when the phase detection wall 154 is between the light emitting element and the light receiving element to block the light emitted by the light emitting element and the light receiving element does not receive the light.
The light emitted from the light emitting element of the separation sensor 4 passes through the first slit 154A and the second slit 154B when the corresponding developing roller 61 is at the separated position and when the developing roller 61 is at the contact position, respectively. Therefore, the separation sensor 4 outputs the ON signal to the controller 2 when the corresponding developing roller 61 is at the separated position and the light emitted by the light emitting element passes through the first slit 154A and is received by the light receiving element. The separation sensor 4 outputs the ON signal to the controller 2 when the corresponding developing roller 61 is at the contact position and the light emitted by the light emitting element passes through the second slit 154B and is received by the light receiving element.
In the present embodiment, for the sake of convenience, the state of the separation sensor 4 in which the light receiving element is receiving the light is referred to as “ON,” and the state of the separation sensor 4 in which the light receiving element is not receiving the light is referred to as “OFF.” Either of a voltage for the ON signal or a voltage for the OFF signal may be higher.
Next, a configuration and function of the mechanical clutch 120 will be described.
As shown in
The sun gear 121 includes a disk part 121B that rotates integrally with a gear part 121A, and a plurality of hook parts 121C provided on an outer periphery of the disk part 121B. The hook part 121C has a pointed tip, and the pointed tip is inclined in one rotation direction in the circumferential direction.
The ring gear 122 has an inner gear 122A provided on an inner peripheral surface thereof and an input gear 122B provided on an outer peripheral surface thereof.
The carrier 123 has four shaft parts 123A that rotatably support the planetary gears 124. The carrier 123 is also provided with an output gear 123B on an outer peripheral surface thereof.
Four planetary gears 124 are provided and are respectively rotatably supported by the shaft parts 123A of the carrier 123. The planetary gears 124 mesh with the gear part 121A of the sun gear 121 and the inner gear 122A of the ring gear 122.
In the mechanical clutch 120, the input gear 122B meshes with a not-shown idle gear that receives the driving force of the first motor 3D and rotates, and the output gear 123B meshes with a coupling gear 117 shown in
Next, operation of the mechanical clutch 120 will be described while referring back to
As shown in
In cooperation with the cam 150, the lever 160 engages with the sun gear 121 which is one element of the planetary gear mechanism to regulate the sun gear 121 so as not to rotate, thereby bringing the mechanical clutch 120 into the transmission state, or separates from the sun gear 121 to bring the mechanical clutch 120 into the disconnection state. The lever 160 switches the mechanical clutch 120 between the transmission state and the disconnection state when the cam 150 rotates in the forward direction, and maintains the mechanical clutch 120 in the disconnection state when the cam 150 rotates in the reverse direction.
Specifically, as shown in
The first lever 161 is swingable about a swing axis X2 which is a center axis of the support shaft 102A, and can contact with the second cam part 153. The first lever 161 includes a rotation support part 161A having a hole 161B that fits to the support shaft 102A, a first arm 161C extending from the rotation support part 161A, and a projection 161D projecting from the rotation support part 161A to a side opposite to the first arm 161C.
The second lever 162 is swingable about the swing axis X2. The second lever 162 is engageable with the sun gear 121 which is one element of the mechanical clutch 120. The second lever 162 is combined with the first lever 161 and, as shown in
The second lever 162 includes a rotation support part 162A having a hole 162B that fits to the support shaft 102A, a second arm 162C extending from the rotation support part 162A, a rotation regulating part 162D and a spring hooking part 162E. The rotation regulating part 162D projects from the second arm 162C in a direction in which the swing axis X2 extends. As shown in
The second spring 163 is a torsion spring, and biases the first lever 161 with respect to the second lever 162 in a direction in which the projection 161D comes into contact with the rotation regulating part 162D. In other words, the second spring 163 generates a biasing force that makes the rotation regulating part 162D provided on the second lever 162 contact with the projection 161D of the first lever 161 so that the first lever 161 does not rotate with respect to the second lever 162.
In a state in which the first lever 161 and the second lever 162 are combined, a tip of the second arm 162C extends toward an outer peripheral surface of the disk part 121B of the sun gear 121. As shown in
A tip of the first arm 161C can contact an outer peripheral surface of the second cam part 153. The lever 160 is movable between a transmitting position shown in
In a state in which each lever 160 is at the transmitting position as shown in
In a state in which each lever 160 is at the transmitting position as Shown in
In a state in which each lever 160 is at the non-transmitting position as shown in
In a state in which each lever 160 is at the non-transmitting position as shown in
When the first motor 3D rotates in the second direction and each first lever 161 is pressed by the corresponding second cam part 153 in a state in which each second lever 162 is in contact with each hook part 121C of each sun gear 121 which is one element of the planetary gear mechanism, as shown in
In a state in which the first motor 3D rotates in the second direction and the tip of each second lever 162 is in contact with the corresponding hook part 121C, each sun gear 121 rotates clockwise in the drawing. In this case, since the inclined surface of each hook part 121C comes into contact with the tip of the corresponding second lever 162, each hook part 121C pushes the corresponding second lever 162 in the radial direction due to the rotation of the corresponding sun gear 121. Therefore, each sun gear 121 rotates clockwise while flicking the corresponding second lever 162. Since each second lever 162 does not stop the rotation of the corresponding sun gear 121 in the manner described above, each mechanical clutch 120 is in the disconnected state. That is, when the first motor 3D rotates in the second direction, the mechanical clutches 120 are in the disconnected state and therefore the developing rollers 61 and the agitators 67 do not rotate.
That is, in a state in which the YMC clutch 140A and the K clutch 140K are ON, when the first motor 3D rotates in the second direction, the driving force transmission mechanism 100 does not transmit the driving force to the agitators 67 and the developing rollers 61 but can transmit the driving force to the separation mechanism. On the other hand, in a state in which the YMC clutch 140A and the K clutch 140K are OFF, when the first motor 3D rotates in the second direction, the driving force transmission mechanism 100 does not transmit the driving force to the agitators 67, the developing rollers 61 and the separation mechanisms.
Next, a control method by the controller 2 will be described.
The controller 2 is a device that controls the overall operation of the image forming apparatus 1. The controller 2 includes a CPU, a ROM, a RAM, an input/output interface and the like, and executes each process by executing one or more programs stored therein.
In the present embodiment, the controller 2 controls the YMC clutch 140A and the K clutch 140K based on the signals from the separation sensors 4 to control the contact and separation of the developing roller 61 with respect to the photosensitive drum 50.
When forming an image on the sheet S, the controller 2 rotates the first motor 3D at a first speed to rotate the agitators 67 at a third speed, and executes an image forming process. In the image forming process, the controller 2 rotates the photosensitive drums 50, the conveying belt 73, the heating roller 81 and the pressing roller 82.
In response to the image forming apparatus 1 being turned on or in response to the cover 11 being moved from the open position to the closed position, the controller 2 executes an initial separation process of rotating the first motor 3D at the first speed to position the developing rollers 61 of the plurality of developing cartridges 60 at the separated position, and then executes a determination process of determining whether one or more new developing cartridges 60 are included in the plurality of developing cartridges 60. That is, the controller 2 executes the initial separation process before the determination process.
In the initial separation process, the controller 2 rotates the first motor 3D in the second direction. When executing the initial separation process, the controller 2 rotates the first motor 3D in a state where the second motor 3P and the third motor 3F are stopped. That is, the controller 2 executes the initial separation process without rotating the photosensitive drums 50, the conveying belt 73, and the heating roller 81.
The controller 2 executes the determination process by reading, from each memory 68, identification data indicating whether the developing cartridge 60 to which the memory 68 is provided is new.
As a result of the determination process, when one or more new developing cartridges 60 are included in the plurality of developing cartridges 60, the controller 2 executes an initial stirring process of stirring the toner with the agitators 67. In the initial stirring process, the controller 2 rotates the agitators 67 at a fourth speed slower than the third speed by rotating the first motor 3D in the first direction at a second speed slower than the first speed. The first speed is a maximum speed of the first motor 3D and is also referred to as “full speed.” The second speed is half of the first speed and is also referred to as a “half speed.” Rotation speeds of the second motor 3P and the third motor 3F are also referred to as “full speed” when they rotate at their maximum speeds.
When executing the initial stirring process, the controller 2 rotates the first motor 3D in a state where the second motor 3P and the third motor 3F are stopped. That is, in the initial stirring process, the controller 2 rotates the agitators 67 without rotating the photosensitive drums 50, the conveying belt 73 and the heating roller 81.
On the other hand, when no new developing cartridge 60 is not included in the plurality of developing cartridges 60, the controller 2 does not execute the initial stirring process but executes a subsequent process such as cleaning of the conveying belt 73, initialization of the fuser 80 or the like.
An example of a specific process by the controller 2 that realizes the control described above will be described with reference to
As shown in
After the initial separation process, the controller 2 executes a memory reading process (S200). As shown in
Then, the controller 2 reads the identification information from the memory 68 of the N-th developing cartridge 60 (S220), and determines whether the read identification information indicates that the cartridge is new (S230). When it is determined that the identification data indicates that the cartridge is new (S230: Yes), the controller 2 increments the variable F (S240) and rewrites the identification datum of the memory 68 of the N-th developing cartridge 60 to the data indicating that the cartridge is used (S250).
After step S250 or when it is determined in step S230 that the identification information does not indicate that the cartridge is new (S230: No), the controller 2 increments the variable N (S260).
The controller 2 determines whether or not the variable N is larger than 4 (i.e., whether or not the memory reading for all the cartridges is completed) (S270), and when it is determined that the variable N is not larger than 4 (S270: No), the process returns to step S220 to repeat the processes. On the other hand, when it is determined that the variable N is larger than 4 (S270: Yes), the controller 2 terminates the memory reading process (S200).
Referring back to
On the other hand, when it is determined in step S140 that the variable F is not larger than 0 (S140: No), the controller 2 does not execute the initial stirring process (S150) but rotates the first motor 3D, the second motor 3P and the third motor 3F at full speeds (i.e., maximum speeds of respective motors), executes cleaning of the conveying belt 73 and initialization of the fuser 80 (S180), and terminates the initial operation.
An exemplary initial operation of the image forming apparatus 1 by the above-described process will be described with reference to
After the cover 11 is moved to the closed position or after the image forming apparatus 1 is turned on, the controller 2 rotates the first motor 3D backward at the first speed and turns on the heater 81A of the fuser 80 at the same time to start pre-heating (t2), and switches the YMC clutch 140A to ON (t3). The cams 150 thereby rotate backward. In the backward rotation of each cam 150, the second slit 154B is detected by the separation sensor 4 and the long ON signal is output from the separation sensor 4 (t6 to t7). When the cam 150 further rotates backward, as shown in
Then, the controller 2 rotates the first motor 3D forward at the first speed (t13) and switches the YMC clutch 140A to ON (t14) to slightly rotate the cams 150 forward. After each cam 150 rotated forward by a particular angle and a particular period of time T2 elapsed after the first slit 154A reached the separation sensor 4 and the separation sensor 4 is switched to ON, the controller 2 switches the YMC clutch 140A to OFF (t15). Then, the controller 2 stops the first motor 3D (t16). At this time, as shown in
After the initial separation process, the controller 2 turns off the heater 81A of the fuser 80 to interrupt the pre-heating (t20), and rotates the first motor 30D forward at the second speed (t20 to t21) while keeping the YMC clutch 140A at OFF to execute the initial stirring process. In the initial stirring process, the second motor 3P and the third motor 3F remain stopped. As a result, the agitators 67 rotate at the fourth speed slower than the third speed for forming an image and agitate the toner in the storage chambers. Since the first motor 3D rotates at the second speed, the agitators 67 can be rotated with large torque. Therefore, even if the toners in one or more new developing cartridges 60 are solidified, the toners can be loosened and stirred with the agitators 67.
After the initial stirring process is executed for a particular period of time (for example, for 30 seconds), the controller 2 turns on the heater 81A of the fuser 80 to restart the pre-heating (t21), rotates the first motor 3D forward at the first speed (t30 to t31), and then rotates the first motor 3D backward at the first speed (t34 to t35) to operate the nip pressure adjusting mechanism 85 of the fuser 80 to execute an operation of separating the pressing roller 82 from the heating roller 81 and an operation of returning the pressing roller 82 to the original position.
At t30, the controller 2 rotates the second motor 3P and the third motor 3F at full speed (t30 to t33) in synchronization with the start of forward rotation of the first motor 3D. As a result, the conveying belt 73 is cleaned, and the heating roller 81 and the pressing roller 82 rotate in a state in which the heater 81A of the fuser 80 is on. By rotating the heating roller 81 and the pressing roller 82 in the state in which the heater 81A of the fuser 80 is on, temperatures of surfaces of the heating roller 81 and the pressing roller 82 are uniformed. In addition, since the heating roller 81 and the pressing roller 82 are in contact with each other, it is possible to remove crease (nip mark) such as unevenness and wrinkle generated on the pressing roller 82.
Thereafter, although not shown, correction process using the patch pattern is executed, and the initial operation ends.
On the other hand, in a case where no new developing cartridge 60 is included in the plurality of mounted developing cartridges 60, as shown in
As described above, according to the image forming apparatus 1 of the present embodiment, when one or more new developing cartridges 60 are mounted, since the first motor 3D is rotated at the second speed slower than the speed for forming an image so that the agitators 67 rotate at the fourth speed slower than the speed for forming an image to execute the initial agitating process, the torque of the first motor 3D can be increased, and the toners can be easily loosened even when the toners are solidified. In addition, in a case where only the used developing cartridges 60 are mounted, since the initial stirring process is not executed, unnecessary stirring of the toners is suppressed. As a result, deterioration of the toners can be suppressed, and wasteful power consumption can also be suppressed.
Since the controller 2 reads the identification information from the memories 68 to perform the determination process, it is not necessary to operate the first motor 3D in the determination process and therefore unnecessary stirring of the toner is suppressed.
In addition, since the controller 2 executes the initial stirring process in a state in which each developing roller 61 is at the separated position, it is possible to reduce load on the first motor 3D in the initial stirring process. Furthermore, since the determination process is executed in a state in which each developing roller 61 is at the separated position, even when a user does not correctly mount the developing cartridges 60, positions of the developing cartridges 60 are corrected before the determination process by the operation of moving the developing cartridges 60 to move the developing rollers 61 to the separated positions. Therefore, connections between contact points of the memories 68 and contact points of the drawer 90 are ensured before the determination process and identification data in the memories 68 can be read correctly.
In addition, since the controller 2 does not rotate the agitators 67 and the developing rollers 61 in the initial separation process, it is possible to reduce the load on the first motor 3D in the initial separation process and to suppress deterioration of the toners and the developing rollers 61.
Hereinabove, the illustrative embodiments according to aspects of the present disclosure have been described. The present disclosure can be practiced by employing conventional materials, methodology and equipment. Accordingly, the details of such materials, equipment and methodology are not set forth herein in detail. In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present disclosure. However, it should be recognized that the present disclosure can be practiced without reapportioning to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present disclosure.
Only exemplary illustrative embodiments of the present disclosure and but a few examples of their versatility are shown and described in the present disclosure. It is to be understood that the present disclosure is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein.
The configuration of the driving force transmission mechanism 100 in the above-described embodiment is merely an exemplary configuration that enables execution of the initial separation process. Therefore, another configuration that enables execution of the initial separation process may be adopted. For example, in the above-described embodiment, the driving force transmission mechanism 100 is configured such that the initial separation process is executed by rotating the first motor 3D in the second direction, but a driving force transmission mechanism that is configured such that the initial separation process is executed by rotating the first motor 3D in the first direction may be adopted.
The above-described embodiment is configured such that the mechanisms of the image forming apparatus 1 is driven using three motors (the first motor 3D, the second motor 3P and the third motor 3F). However, the mechanism does not necessarily have to be driven using three motors. For example, by providing a motor dedicated to the initial separation process separately, the initial separation process can be executed without providing a cam mechanism such as the one provided in the above-described embodiment.
The initial stirring process may also be performed without performing the initial separation process. In this case, the load on the first motor 3D cannot be reduced, and the second motor 3P is also driven. However, it is possible to suppress unnecessary stirring of the toners in a case where only used developing cartridges 60 are mounted.
In the above-described embodiment, the initialization of the fuser 80 is executed after the initial stirring process is completed. However, with a configuration in which the nip pressure adjusting mechanism 85 of the fuser 80 is driven using a motor different from the first motor 3D, the initialization of the fuser 80 may be executed simultaneously with the initial stirring process. The cleaning of the conveying belt 73 may also be performed simultaneously with the initial stirring process.
In the above-described embodiment, as shown in
In the above-described embodiment, as shown in
In the above-described embodiment, as shown in
In the above-described embodiment, the conveying belt 73 is adopted as an example of a belt, but the belt may be an intermediate transfer belt.
In the above-described embodiment, the developing cartridge 60 is adopted as an example of a cartridge, but the cartridge may be a process cartridge including a photosensitive drum.
In the above-described embodiment, the heating roller 81 is adopted as an example of a rotating body, but the rotating body may be an endless belt.
In the above-described embodiment, the image forming apparatus 1 that prints a color image using toners of four colors is illustrated as an example of an image forming apparatus, but the image forming apparatus may be an apparatus that prints a color image using toners of two colors, three colors or five or more colors, or an apparatus that performs monochrome printing using a toner of one color.
The image forming apparatus may be a multifunction peripheral or a copier.
The elements described in the above-described embodiment and variations can be implemented in appropriate combinations.
The plurality of developing cartridges 60 in the above-described embodiment is an example of a plurality of cartridges according to aspects of the present disclosures. The conveying belt 73 in the above-described embodiment is an example of a belt according to aspects of the present disclosures. The heating roller 81 in the above-described embodiment is an example of a rotating body according to aspects of the present disclosures.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-141423 | Aug 2020 | JP | national |
JP2020-171055 | Oct 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20130051811 | Kawashima | Feb 2013 | A1 |
20160091858 | Shiraki | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2003-186369 | Jul 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20220066354 A1 | Mar 2022 | US |