The present invention relates to an image forming apparatus such as a copying machine, a printer, a facsimile machine, a multifunctional machine capable of performing as one or more of the preceding apparatus, etc. It also relates to a method for controlling an image forming apparatus.
There have been proposed various electrophotographic color image forming apparatuses. For high speed operation, some of them are provided with multiple image formation stations. They are color image forming apparatuses of the so-called tandem type. More concretely, they sequentially transfer yellow (Y), magenta (M), cyan (C) and black (Bk) developer (toner) images onto their intermediary transfer belt or a sheet of recording medium on their recording medium conveyance belt.
A color image forming apparatus of the tandem type, which is provided with multiple image formation stations for higher operational speed suffers from the following problem. That is, it suffers from color deviation. That is, its multiple image bearing members and/or intermediary transfer belt become unstable in speed because of mechanical imprecision or the like, which in turn makes the multiple image formation stations different in the positional relationship between the image on an image bearing member, and the area of the intermediary transfer belt, onto which the image is transferred. Therefore, the multiple monochromatic developer images, different in color, fail to precisely align as they are sequentially transferred in layers onto the intermediary transfer belt. There have been proposed various methods for minimizing this color deviation. Generally speaking, most of them form multiple marks, different in color, on an intermediary transfer belt or recording medium as soon as an image forming apparatus is turned on, or for every preset number of sheets of recording medium. Then, they detect the amount of color deviation, and change each image formation station in exposure timing based on the detected amount of color deviation.
Japanese Laid-open Patent Application 2004-279823 discloses one of the abovementioned methods. According to this application, electrostatic latent images are formed as the color deviation detection marks, and an image forming apparatus is corrected in color deviation using the electrostatic latent marks.
As a result, electrostatic latent marks 45, 46, 47 and 48 are formed on the recording medium conveyance member 32; the number of electrostatic latent marks is optional (preset). Then, a non-contact potentiometer 49 (surface potentiometer) is used to measure the amount of potential of each of electrostatic latent marks to detect the position of the marks on the recording medium conveyance member 32, based on the changes in the potential of the marks. Then, the detected position of the electrostatic latent marks is used to prevent the image forming apparatus from forming an image which suffers from color deviation. However, in order to detect the “electrostatic latent mark” of the electrostatic latent image on the recording medium conveyance member 32 with the use of a surface potentiometer, the latent mark has to be no less than roughly 5 mm in diameter. Therefore, this method is not suitable for highly precisely aligning in layers multiple monochromatic color images which are different in color.
Even if the positional relationship between a sensor for detecting an electrostatic latent mark and the electrostatic latent marks formed on the image bearing member and/or recording medium conveyance member of a color image forming apparatus, is perfect when the apparatus is brand-new, the positional relationship sometimes changes due to the changes which occur to the apparatus with the elapse of time, impacts to which the apparatus is subjected, adhesion of foreign substances, and the like. As the positional relationship changes, the sensor reduces in output, which results in increase in error in the detection of an electrostatic latent mark, or sometimes makes it impossible to detect the electrostatic latent mark. It is possible to adjust (readjust) the sensor in position and/or attitude according to the amount of changes in the positional relationship between the sensor and an electrostatic latent mark. However, the mechanism for adjusting the sensor in position and/or attitude is complicated, and also, it takes a substantial length of time to adjust the sensor in position and/or attitude, which results in cost increase.
According to an aspect of the present invention, there is provided an image forming apparatus comprising a first image forming station including a first photosensitive member, a first electrostatic image forming device configured to form an electrostatic image on said first photosensitive member and a first developing device configured to develop the electrostatic image on said first photosensitive member to form a first toner image with first color toner; a second image forming station including a second photosensitive member, a second electrostatic image forming device configured to form an electrostatic image on said second photosensitive member and a second developing device configured to develop the electrostatic image on said second photosensitive member to form a second toner image with second color toner of which color is different from color of the first color toner; an intermediate transfer member configured to receive the first toner image from said first photosensitive member and the second toner image from said second photosensitive member sequentially in this order so as to superimpose the second toner image on the first toner image; a first sensor configured to detect a first index electrostatic image, on said intermediate transfer member, formed by said first electrostatic image forming device and transferred from said first photosensitive member; a second sensor configured to detect a second index electrostatic image on said second photosensitive member formed by said second electrostatic image forming device; a controlling device configured to control a peripheral speed of said second photosensitive member so that the second index electrostatic image is superimposed on the first index electrostatic image at a transfer position where the second toner image is transferred from said second photosensitive member to said intermediate transfer member, in accordance with detection result of said first sensor and detection result of said second sensor; and an executing device configured to execute a test mode in which a first test index electrostatic image which is inclined relative to a moving direction of said first photosensitive member is formed on said first photosensitive member and then the first test index electrostatic image transferred on said intermediate transfer member from said first photosensitive member is detected by said first sensor, and a second test index electrostatic image which is inclined relative to a moving direction of said second photosensitive member is formed on said second photosensitive member and then the second test index electrostatic image is detected by said second sensor; wherein said controlling device controls an electrostatic image forming condition for the first index electrostatic image in accordance with detection result of said first sensor in the test mode, and an electrostatic image forming condition for the second index electrostatic image in accordance with detection result of said second sensor in the test mode.
According to another aspect of the present invention, there is provided a controlling method for an image forming apparatus including,
a first image forming station including a first photosensitive member, a first electrostatic image forming device configured to form an electrostatic image on said first photosensitive member and a first developing device configured to develop the electrostatic image on said first photosensitive member to form a first toner image with first color toner; a second image forming station including a second photosensitive member, a second electrostatic image forming device configured to form an electrostatic image on said second photosensitive member and a second developing device configured to develop the electrostatic image on said second photosensitive member to form a second toner image with second color toner of which color is different from color of the first color toner; an intermediate transfer member configured to be transferred the first toner image from said first photosensitive member and the second toner image from said second photosensitive member sequentially in this order so as to superimpose the second toner image on the first toner image; a first sensor configured to detect a first index electrostatic image, on said intermediate transfer member, formed by said first electrostatic image forming device and transferred from said first photosensitive member; and a second sensor configured to detect a second index electrostatic image on said second photosensitive member formed by said second electrostatic image forming device; a controlling device configured to control a peripheral speed of said second photosensitive member so that the second index electrostatic image is superimposed on the first index electrostatic image at a transfer position where the second toner image is transferred from said second photosensitive member to said intermediate transfer member, in accordance with detection result of said first sensor and detection result of said second sensor,
said controlling method comprising:
a first step of forming a first test index electrostatic image, on said first photosensitive member, which is inclined relative to a moving direction of said first photosensitive member; a second step of transferring the first test index electrostatic image from said first photosensitive member to said intermediate transfer member; a third step of detecting the first index electrostatic image on said intermediate transfer member by said first sensor; a fourth step of forming a second test index electrostatic image, on said second photosensitive member, which is inclined relative to a moving direction of said second photosensitive member; a fifth step of detecting the second test index electrostatic image on said second photosensitive member by said second sensor; and a sixth step of controlling an electrostatic image forming condition for the first index electrostatic image in accordance with detection result of said first sensor, and an electrostatic image forming condition for the second index electrostatic image in accordance with detection result of said second sensor.
These and other objects, features, and advantages of the present invention will become more apparent upon consideration of the following description of the preferred embodiments of the present invention, taken in conjunction with the accompanying drawings.
a)-2(d) are drawings for describing the principle based on which an electrostatic latent mark is detected.
a)-4(c) are schematics of the sensor formed on a flexible substrate to detect an electrostatic latent mark.
a) and 6(b) are schematic drawings of the color deviation reduction system which uses an electrostatic latent mark (scale).
a)-7(c) are drawings for describing how the electrostatic latent marks on the drum are detected.
a)-12(e) are drawings of the electrostatic latent marks which were made different in patterns to provide them with pseudo angles in order to deal with the changes which occur to the angle of the sensor.
a) is a schematic plan view of the latent mark detection sensor having multiple (three) detection wires which are different in position and are parallel to each other.
a) is a sectional drawing of the latent mark sensor and the portion of the peripheral surface of the photosensitive drum 4 adjacent to the sensor, and shows that the latent image detection wire 20(b), which is in perfect alignment with one of the latent marks, was selected as the one which makes the sensor optimal in output.
b) also is a sectional drawing of the latent mark sensor and the portion of the peripheral surface of the photosensitive drum 4 adjacent to the sensor, and shows that the area of contact between the sensor and the photosensitive drum has changed in position, and therefore, the detection wires 20C was selected as the one which makes the sensor optimal in output.
The four image formation stations have rotatable photosensitive members 41-44, which are image bearing members, and are in the form of a drum. On the image formation area of the photosensitive member 41, a monochromatic yellow (Y) image is formed of yellow developer (toner). On the image formation area of the photosensitive member 42, a monochromatic magenta (M) image is formed of magenta developer (toner). On the image formation area of the photosensitive member 43, a monochromatic cyan (C) image is formed of cyan developer (toner). Further, on the image formation area of the photosensitive member 44, a monochromatic black (Bk) image is formed of black developer (toner).
More concretely, the peripheral surface of each photosensitive drum 4 (41-44) is uniformly charged to a preset potential level (−500 V, for example) by a charge roller 51 (52, 53 or 54) as a charging device. Then, the uniformly charged area of the peripheral surface of the photosensitive drum 4 is exposed to a beam 61 (62, 63 or 64) of laser light emitted, while being modulated with image formation signals, from an exposing device made up of a light source 87, a polygon mirror 88, etc., (
The electrostatic latent images on the photosensitive drums 41-44 are developed by the developing devices 71-74, into visible images (toner images) made up of yellow, magenta, cyan and black toners, respectively. Then, the four toner images, different in color, are sequentially transferred in layers (primary transfer) by primary transfer rollers 101-104 (transferring members), onto the intermediary transfer belt 81, which is movably in contact with the peripheral surface of each of the four photosensitive drums 41-44, in such a manner that as the toner images are layered on the intermediary transfer belt 81, they align in the direction perpendicular to the intermediary transfer belt 81. Thereafter, the layered four toner images, different in color, on the intermediary transfer belt 81 are transferred together (secondary transfer) by the secondary transfer roller 84, onto a sheet 82 of recording medium delivered from the sheet feeder cassette 83. Then, the toner images are fixed to the sheet 82 of recording medium by the fixing device 85. Then, the sheet 82 is discharged into the delivery tray 86 of the image forming apparatus.
(Color Deviation Prevention System which Uses Electrostatic Latent Marks (Scales))
The image forming apparatus can be controlled in the movement of its photosensitive drums 4a-4d, movement of the intermediary transfer belt 81, exposure timing, etc., by using a combination of electrostatic latent marks (scale) and a sensor (detecting means) for detecting the electrostatic latent marks. With the use of this combination, it is possible to highly precisely (no more than 0.1 mm, for example, in error) align the four toner images, different in color, as they are transferred in layers (secondary transfer) onto the intermediary transfer belt 81. Therefore, the combination can prevent the electrophotographic image forming apparatus from outputting images which suffer from color deviation (attributable to misalignment of monochromatic toner images different in color). Therefore, in the case of a system which corrects an electrophotographic image forming apparatus with the use of the above-mentioned combination, how precisely a sensor for detecting an electrostatic latent mark can detect the position of an electrostatic latent mark 1 in
Referring to
As for the electrostatic latent marks for the belt 81, they are formed on the area of the belt 81, which is outside the image formation area of the intermediary transfer belt 81, in terms of the direction intersectional to the moving direction of the belt 81, with the use of the following method. That is, the electrostatic latent marks 1a formed on the most upstream drum 4a are transferred as electrostatic latent marks 40 onto the intermediary transfer belt 81, and become the second electrostatic latent marks, that is, the electrostatic latent marks for the belt 81. It is at the same time as when an image is transferred onto the intermediary transfer belt 81 by the primary transfer roller 101 (transferring member) that the electrostatic latent marks 1a are transferred onto the intermediary transfer belt 81 by the second transferring member. Incidentally, in this embodiment, the primary transfer roller 101 doubles as the member for transferring the electrostatic latent marks 1a onto the intermediary transfer belt 81. However, this embodiment is not intended to limit the present invention in scope in terms of the member for transferring the electrostatic latent image 1a onto the intermediary transfer belt 81. For example, the image forming apparatus may be provided with a member dedicated to the transfer of the electrostatic latent marks 1a onto the intermediary transfer belt 81.
Thus, the electrostatic latent marks 40 and developer (toner) image on the intermediary transfer belt 81 meet with the developer (toner) image and electrostatic latent marks 1b on the drum 4b, in the transfer station between the drum 4b and intermediary transfer belt 81.
The sensor 11 for the drum 4 is the first detecting means for detecting an electrostatic latent mark, and is for obtaining the information about the position of the electrostatic latent mark on the drum 4b. The sensor 10 (
b) is an enlarged schematic sectional view of the portion of the sensor 11, by which the sensor 11 is kept pressed upon the image bearing member 4b by a combination of a spring 17 and a pressing member 18. The side of the sensor 11, which faces the image bearing member 4b, is covered with a sheet 16 of film which is thinner than the substrate 6. Therefore, it is possible for the sensor 11 to be placed as close as possible to the electrostatic latent mark 1b to make the sensor 11 as strong as possible in output signal. That is, the sensor 11 for the drum 4b is positioned so that it presses upon the peripheral surface of the drum 4b, near the area of contact between the drum 4b and intermediary transfer belt 81 as shown in
3) Principle Based on which Electrostatic Latent Mark is Detected
Here, the principle based on which an electrostatic latent mark is detected by the sensors 10 and 11 is described.
While the peripheral surface of the photosensitive drum 4b moves, the distance between the wire 2 and the peripheral surface of the photosensitive drum 4b remains the same. In
Next, referring to
As the electrostatic latent mark 1 nears the wire 2, the amplification circuit 5 becomes stronger in output. Then, as the electrostatic latent mark 1 moves into where the wire 2 is on top of the electrostatic latent mark 1 (distance between electrostatic latent mark 1 and wire 2 is smallest), the induction current reduces to zero for a moment. Then, as the electrostatic latent mark 1 moves away from the wire 2, the output of the amplification circuit 5 becomes negative. Then, as the electrostatic latent mark 1 moves further away from the wire 2, the amplification circuit 5 gradually reduces in the strength of its output signal, reducing eventually to zero. This is the principle based on which the position of the electrostatic latent mark 1 can be detected.
The vertical portion of the wire 2 in
An example of the amplification circuit 5 is the amplification circuit, shown in
Further, the output side of the amplification circuit 5 is in connection to a low-pass circuit which is 4420 Hz in cut-off frequency. The opposite side of the L-shaped wire 2 from the side which is in connection to the amplification circuit 5 functions as the wire 2 in
Next, the arrangement for detecting the electrostatic latent marks on the drum 4, which are linear, straight, and low in potential level, with the use of the electrostatic latent mark sensor is described. Referring to
Thus, as the surface potential of the electrostatic latent image formation area 13 is detected by the sensor 11, the relationship between the detected voltage and elapsed length of time becomes sinusoidal as shown in
1) Formation of Electrostatic Latent Image Marks Different in Angle
In the test mode, in order to deal with the angle of the sensor 11 (detection wire 2) relative to the electrostatic latent mark, multiple electrostatic latent marks different in angle are drawn (formed) as the electrostatic latent marks for the test mode. Referring to
Exposed points of the charged area of the peripheral surface of the photosensitive drum 4 change in potential level (to −100 V, for example). Thus, the electrostatic latent image 89 is formed on the image formation area 12 of the drum 4, and electrostatic latent marks 1 are formed on the electrostatic latent mark formation area 13 of the drum 4.
2) Formation of Electrostatic Latent Marks Different in Angle
Electrostatic latent marks 1 different in angle are formed as electrostatic latent marks with pseudo angle by controlling a preset number of adjacent scanning lines in terms of the secondary scan direction, in exposure timing (expose to form electrostatic latent marks). For example, in the case of the angled electrostatic latent mark 1 shown in
With the exposing device being controlled in exposure timing as described above, a pseudo angled electrostatic latent mark, which is a combination of the above described top-right portion and bottom-left portion is formed; the pseudo angled electrostatic latent mark can be taken for an angled straight electrostatic latent mark. Similarly, the pseudo electrostatic latent mark in
Concerning the placement of the sensor 11 in contact with the peripheral surface of the photosensitive drum 4, since the photosensitive drum 4 is rotated, the sensor 11 is desired to be placed in such an attitude that its base portion is on the upstream side of the area of contact between the sensor 11 and the peripheral surface of the photosensitive drum 4. Conventionally, the electrostatic latent marks 1 to be detected by the sensor 11 are the same in angle (perpendicular to moving direction of peripheral surface of photosensitive drum 4). In this embodiment, however, multiple electrostatic latent marks different in angle are drawn to deal with the changes in the angle of the sensor 11.
3) Selection of Electrostatic Latent Mark which is Optimal in Angle
The combination of the sensor 11 and electrostatic latent mark 1, which makes largest the output of the amplification circuit 5, is selected. That is, the electrostatic latent mark 1, the angle of which relative to the sensor 1 is zero, is selected.
Next, how to optimize the detection signal in the test mode is described. The normal electrostatic latent marks are formed by moving the beam 61 of laser light in the thrust direction of the drum 4 (direction of rotational axis of drum 4). As the photosensitive drum 4 is rotated one full turn after the formation of the electrostatic latent marks on the peripheral surface of the photosensitive drum 4, the electrostatic latent marks are erased by the exposure during the next rotation of the photosensitive drum 4. The size of an electrostatic latent mark is affected by the resolution of the laser driver and the rotational speed of the photosensitive drum 4. For example, when the resolution is 600 dpi, the smallest width for an electrostatic latent mark is 42 μm (≈25,400 μm/600).
The less in width an electrostatic latent mark, the higher in resolution the electrostatic latent mark. However, the strength of the signal detected by the wire 2, which is W in width (
As described above, in a case where the output from the sensor 11 becomes less in strength than a preset value, the sensor 11 can be increased in the strength of its output by drawing such electrostatic latent marks that are angled relative to the thrust direction of the drum 4 as shown in
The detection wire 2 was 10 μm in width W, and 2 mm in length L. The drum 4 was rotated at 140 mm/sec in peripheral velocity. In
The probability that the angle between the detection wire 2 and the edge line of an electrostatic latent mark will become virtually zero is proportional to the “length of time the entirety of the detection wire 2 is on an electrostatic latent mark”. Shown in
In comparison, if electrostatic latent marks are drawn so that they are made up of two sections which are 105.8 μm in length (equivalent to 25 dots) and are displaced from each other in the moving direction of the peripheral surface of the photosensitive drum 4 by 42 μm (equivalent to 1 dot) as shown in
These numerical values are for a case where the exposing device is 600 dpi in resolution; the photosensitive drum 4 is 140 mm/sec in peripheral velocity; the detection wire 2 is 2 mm in length, and 10 μm in width; and electrostatic latent marks are 169 μm (equivalent to 4 dots) in width. That is, the optimal value for the output is affected by the desired level of preciseness at which an image forming apparatus is to be corrected in color deviation, and the structure of the apparatus.
The block diagram of the system, in this embodiment, for selecting the optimal electrostatic latent mark is as shown in
If four electrostatic latent marks, for example, are formed for each pattern, the value obtained by averaging the detection signal values stored in the registers A1-A4 of the memory block A is stored in the register B1 of the memory block B. Similarly, the value obtained by averaging the detection signal values stored in the registers A5-A8 of the memory block A is stored in the register B2 of the memory block B, and so on. The CPU compares in value the detection signals in the registers B1, B2, B3 and so on, and stores in the register C1 of the memory block C, the electrostatic latent mark pattern which made strongest the detection output in the latent image mark selection section. At the same time, the CPU stores the value of the output signal, which corresponds to this electrostatic latent mark pattern in the register C2 of the memory block C.
The register C3 is for storing the degree of tolerance (preset) for the difference between the idealistic value for the detection output and the value obtained by actual measurement (detection). Thus, when the CPU draws electrostatic latent marks, it reads the electrostatic latent mark pattern in the register C1 of the memory block C, and generates electrostatic latent marks having the pattern from the register C1, with the use of the electrostatic latent mark generation control section, and writes the electrostatic latent marks having the pattern from the register C1, on the peripheral surface of the photosensitive drum 4, with the use of the exposing section.
(Control Sequence for Correcting Image Forming Apparatus in Color Deviation, which Includes Timing with which Test Mode is to be Carried Out)
The following three points in time can be considered as the timing for carrying out the control sequence which is for correcting the electrophotographic image forming apparatus in color deviation with the use of the electrostatic latent marks, and includes the test mode.
(a) Period between the starting of an image forming operation and the starting of the printing on the first sheet of recording medium;
(b) While the image forming apparatus is being idled; and
(c) Period between when a finished print (sheet of recording medium to which four monochromatic developer images, different in color, have just been fixed) is discharged from the main assembly of the image forming apparatus, and when the image formation on the next sheet of recording medium is started.
In the case of the timings (a) and (c), the output value is checked each time an image is formed. In the case of timing (b), it is necessary to check the output value with a preset length of chronological interval according to the condition of the image forming apparatus, and the environment in which the apparatus is being used. As the control sequence for correcting the image forming apparatus in color deviation with the use of the electrostatic latent marks, first, the CPU reads the electrostatic latent mark pattern stored in the register C1 of the memory block C (S1), and generates the electrostatic latent mark pattern for exposure, with the use of the electrostatic latent mark generation control section (S2).
The exposing section exposes the peripheral surface of the photosensitive drum 4 in the generated electrostatic latent mark pattern; it writes electrostatic latent marks on the peripheral surface of the photosensitive drum 4 (S3). Then, the electrostatic latent mark detecting section (electrostatic image detecting section) detects the electrostatic latent marks on the peripheral surface of the photosensitive drum 4 (S4). The output of the electrostatic latent mark detecting section, which are analog signals, is sent to the CPU 200 (controlling device, executing device), through the A/D conversion section, that is, the amplification circuit shown in
If the CPU determines that the output is less than the preset value, it places the image forming apparatus in the electrostatic latent mark selection mode as the test mode. On the other hand, if the CPU determines that the output is equal or more than the preset value, it places the image forming apparatus in the normal electrostatic latent image alignment mode. First, the electrostatic latent mark selection mode is described. As the CPU places the image forming apparatus in the electrostatic latent mark selection mode, it commands the latent electrostatic latent mark generation control section to generate multiple electrostatic latent mark patterns, and therefore, the exposing section exposes the peripheral surface of the photosensitive drum 4 so that multiple electrostatic latent marks which are different in pattern are written on the peripheral surface of the photosensitive drum 4 (S7).
Then, the electrostatic latent mark detecting section (electrostatic latent image detecting section) detects the multiple electrostatic latent marks different in pattern (S8), and the output of the electrostatic latent mark detecting section is sent to the A/D conversion section (which converts an analog signal into a digital signal) through the amplification circuit shown in
As the image forming apparatus is operated in the electrostatic latent mark selection mode up to Step S10, the step S1 to the step S5 are repeated. If the value of the output is equal to, or larger than, the preset value, the electrostatic latent image alignment control sequence is carried out (S11). The image forming apparatus carries out a printing operation while carrying out the electrostatic latent image alignment control sequence, ending thereby the control sequence for correcting the image forming apparatus in color deviation.
In this embodiment, the number of the patterns in which multiple electrostatic latent marks are generated in the electrostatic latent mark selection mode is set to five (−4°, −2°, 0°, 2° and 4°) so that the image forming apparatus is placed in the electrostatic latent mark selection mode as the detection output falls below 90%. Shown in
When the electrostatic latent mark which was −2° in relative angle is detected, the detection signal was 100% in strength, which is the initial strength. Therefore, the CPU selects “−2°” as the new electrostatic latent mark pattern, and stores “−2°” and 100% in the registers C1 and C2, respectively. In this embodiment, when the relative angle was −2°, the detection signal strength was 100%, or the initial strength. Therefore, “−2°” was selected as the new electrostatic latent mark pattern. However, even if the detection signal strength is less than 100% when an electrostatic latent mark with a given pattern is detected, the given pattern may be selected as the new electrostatic latent mark pattern as long as the selection does not affect the electrostatic latent image alignment control. For example, an electrostatic latent mark pattern which can make the sensor 11 no less than 90% (preset value) in output signal strength may be selected as the new electrostatic latent mark pattern. This value is affected by the resolution of the exposing system, sensitivity of the photosensitive drum 4, peripheral velocity of the photosensitive drum 4, detection wire size, etc.
The selection of the optimal electrostatic latent mark ends the electrostatic latent mark selection mode. Thus, the CPU places the image forming apparatus in the electrostatic latent image alignment mode, in which the CPU controls in rotational speed the downstream photosensitive drums 4 to reduce the sensors 11 and 10 in the detection errors which might occur when they detect the electrostatic latent marks on the photosensitive drum 4 and the electrostatic latent marks on the intermediary transfer belt 81, respectively. By controlling the downstream photosensitive drums 4 in rotational speed real-time during an image forming operation, it was possible to reduce the misalignment of the monochromatic developer images, different in color, to no more than 0.1 mm, preventing thereby the image forming apparatus from outputting images which suffer from color deviation.
Although this embodiment was described with reference to the electrostatic latent marks on the photosensitive drum 4, it is needless to say that the image forming apparatus can be controlled in color deviation by transferring the electrostatic latent marks formed on the photosensitive drum 4 onto the intermediary transfer belt 81, and carrying out the control sequence for preventing the image forming apparatus from outputting images suffering from color deviation, with the use of the electrostatic latent marks on the intermediary transfer belt 81.
(Effects of this Embodiment)
When the sensors 11 and 10 are aligned (positioned) relative to the drum 4 and intermediary transfer belt 81, respectively, for the first time immediately while an image forming apparatus is assembled, the image forming apparatus may be operated in the test mode in this embodiment. Such a practice can make it unnecessary to realign (reposition) the sensor, and therefore, not only can it make the alignment (adjustment) mechanism simpler, but also, can automate the alignment (adjustment).
Further, an image forming apparatus may be equipped with a communication device so that the information about the color deviation prevention control sequence based on the detection of the electrostatic latent marks, information about the on-going printing operation, information about the performance of each component of the apparatus, and the like information can be continuously upload to a server to accumulate and analyze the information, and also, to maintain an image forming apparatus from a location away from the image forming apparatus.
In the first embodiment, the multiple patterns in which the electrostatic latent marks are formed in the test mode (electrostatic latent mark pattern selection mode) were preset. In this embodiment, however, an optimal electrostatic latent mark pattern is generated according to the results of the electrostatic latent mark detection. In other words, an optimally patterned electrostatic latent mark is detected, and therefore, the detection output is as strong as possible.
(a) Comparison step in which the value of the stored signal strength is compared with the value of the strongest signal obtained by generating multiple electrostatic latent mark patterns (S12),
(b) Pattern generation step which is carried out if the difference is below a preset value, and in which multiple electrostatic latent mark patterns which are different by a preset amount are generated (S13).
Next, the color deviation prevention control sequence in this embodiment is described. The steps S1-S9 in this embodiment, which are carried out as the color deviation prevention control sequence based on electrostatic latent marks is started, are the same as the steps S1-S9 in the first embodiment (
If the difference is greater than the preset amount of tolerance, the CPU generates multiple electrostatic latent marks which are different in pattern by a preset angle from the multiple electrostatic latent marks having the initially generated patterns (S13). Whether the pattern is to be changed in the positive or negative direction is determined based on a principle that the change is to be made to increase the output in value. Then, the CPU generates multiple electrostatic latent mark patters different by a preset amount (angle) (S13), and then, carries out the steps S7-S9.
An image forming apparatus may be structured so that if the answer in S12 consecutively fails to become Yes because of the damage to the sensor (wire 2), a warning is issued to inform a user of the occurrence of an anomaly. In this embodiment, the number of the initial patterns in which electrostatic latent marks are formed in the electrostatic latent mark selection mode is set to only five (−4°, −2°, 0°, 2° and 4°), and the image forming apparatus was set up so that if the detection output falls below 90%, the image forming apparatus is placed in the electrostatic latent mark selection mode. Further, the value of the preset amount of tolerance, which is used for the comparison in step S12 was set to 15%. Further, the amount (angle) by which an electrostatic latent mark pattern in the multiple electrostatic latent mark patterns is made different from its closest electrostatic latent mark pattern was set to 2°.
While a printing operation was continued with the relative angle being zero, the output of the sensor fell to 62% (S5), and therefore, the image forming apparatus was placed in the electrostatic latent mark selection mode. The sensor outputs (S8) which corresponds to the multiple electrostatic latent mark patterns, the relative angle of which were −4°, −2°, 0°, 2° and 4°, one for one, are shown in
Shown in
The first and second embodiments are related to the case in which the angle between the electrostatic latent mark and the electrostatic latent mark detection wire 2 deviated from the preset one. However, it is possible that the sensor (electrostatic latent mark detection wire 2) which is in contact with the peripheral surface of the photosensitive drum 4 will slightly shift in the rotational direction of the photosensitive drum 4. In this embodiment, the multiple sets of electrostatic latent marks, the electrostatic latent marks of which are different in the position relative to the electrostatic latent mark detection wire 2 (parallel to electrostatic latent mark), which is the means (electrostatic latent mark detection wire 2) for detecting the electrostatic latent marks, are formed.
Shown in
a) and 18(b) are sectional views of the electrostatic latent mark sensor at the plane Y-Y in
In the test mode, the electrostatic latent marks on the image bearing member are detected by the multiple electrostatic latent mark detection wires of the electrostatic latent mark sensor, and the electrostatic latent mark-electrostatic latent mark detection wire combination which is strongest in output is selected. That is, if the electrostatic latent mark detection wire 20(c), for example, is selected, the electrostatic latent mark sensor is positioned so that the electrostatic latent marks on the image bearing members are detected by the electrostatic latent mark detection wire 20(c) during the following image formation mode.
When the output of the electrostatic latent mark sensor is smaller than a preset value, the CPU places the image forming apparatus in the electrostatic latent mark wire section mode, in which patterns for an electrostatic latent mark which are the same as the conventional patterns are generated by the electrostatic latent mark formation control section (S6). Then, the exposing section writes electrostatic latent marks on the peripheral surface of the photosensitive drum by exposing the peripheral surface of the photosensitive drum 4 (and intermediary transfer belt 81) in the pattern generated by the electrostatic latent mark formation control section (S7). Before the reading of the electrostatic latent marks on the photosensitive drum by the electrostatic latent mark sensor, all the electrostatic latent mark detection wires are enabled to detect the electrostatic latent marks on the photosensitive drum (S15). Then, the electrostatic latent marks on the photosensitive drum are read by all the electrostatic latent mark detection wires of the electrostatic latent mark sensor (S16).
In the first embodiment, the CPU 200 stored in the register block B, the average value of the outputs of the electrostatic latent mark sensor, which correspond to the multiple electrostatic latent marks different in relative angle. In this embodiment, the CPU 200 stored in the register block B, the average value of the outputs of the electrostatic latent mark sensor which correspond to the multiple electrostatic latent mark detection wires, one for one. Then, the CPU 200 compares the values in the registers B1-B5, one for one, and selects the electrostatic latent mark detection wire which corresponds to the strongest detection signal (S17). After the selection of the electrostatic latent mark detection wire which is the strongest in detection signal, the CPU 200 grounds the other detection wires in order to prevent them from outputting detection signals (S18).
Then, the CPU 200 stores the identification of the electrostatic latent mark detection wire which is optimal (strongest) in detection signal, and its signal strength, in the registers C1 and C2, respectively (S10). As the steps S1-S10 in the electrostatic latent mark selection mode are carried out, the steps S1-S5 are repeated. If the output of the electrostatic latent mark sensor is equal to, or greater than, a preset value, a printing operation is started and continued while carrying out the electrostatic latent image alignment control sequence, ending thereby the control sequence for preventing the image forming apparatus from outputting images which suffer from color deviation.
In this embodiment, the electrostatic latent image sensor is provided with multiple sets of detection wires (parallelly positioned as in third embodiment), which are different in detection wire angle. More concretely, referring to
The color deviation prevention system in this embodiment is a combination of the third embodiment, the electrostatic latent mark sensor, in
As for the order of optimization, both a case in which the electrostatic latent mark is optimized in angle after the optimization of the electrostatic latent mark sensor, and a case in which the electrostatic latent image sensor is optimized after the optimization, in angle, of the electrostatic latent mark, are possible.
In the preceding embodiments of the present invention, the first sets which are different in the positioning of the third electrostatic latent mark (which corresponds to first electrostatic latent mark (for drum) relative to the first detecting means (for drum) are formed in the test mode, and the first set which made the first detecting means highest in output was selected, or the second sets which are different in the positioning the fourth electrostatic latent mark (which corresponds to second electrostatic latent mark (for belt) relative to the second detecting means (for belt) are formed in the test mode. Then, the first set which made the first detecting means strongest in output, or second set which made the second detecting means strongest in output, was selected.
In addition to selecting the first set (for drum) or the second set (for belt) which made the first and second detecting means, respectively, strongest in output, it is possible to select the set which made both the first and second detecting means strongest in output. In such a case, selection has to be made among the second detecting means while keeping the second electrostatic marks fixed, because the second electrostatic latent mark (for belt) is commonly used by the downstream drums, unlike the first electrostatic latent marks (for drum).
It is desired that the third marks (for drum), which are for the test mode, and/or the fourth marks (for belt), which are for the test mode, are formed outside the image formation area, like the first marks (for drum) and second marks (for belt). However, they may be formed within the image formation area in the test mode, and erased at the start of the image formation subsequent to the test mode. In such a case, the adjusted electrostatic latent marks are to be drawn on the area outside the image formation area before the starting of the image forming operation subsequent to the test mode.
The preceding embodiments were described assuming that the member which moves in contact with each of the four drums is the intermediary transferring member. However, these embodiments are also compatible with an electrophotographic image forming apparatus which has a recording medium bearing member instead of the intermediary transferring member, that is, an electrostatic latent image forming apparatus structured so that toner images are sequentially transferred from its four image bearing members onto the sheet of recording medium (paper, for example) on the recording medium bearing member, and the images are layered on the recording medium; the toner image formed each drum is directly transferred onto the recording medium.
In the preceding embodiments, it was when the output of the electrostatic latent mark sensor (electrostatic latent image detecting means) failed to exceed the preset value that the image forming apparatus was placed in the test mode. However, the image forming apparatus may be designed so that it is operated in the test mode with preset intervals.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth, and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
This application claims priority from Japanese Patent Application No. 114804/2011 filed May 23, 2011, which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2011-114804 | May 2011 | JP | national |