The present invention relates to an image forming apparatus and a fixing device which include an air blowing means for suppressing non-sheet-passing portion temperature rise.
In recent years, a copying machine and a printer which use an electrophotographic process have been used not only in a large office but also by various users in a wide variety of markets such as a small office and personal use. For that reason, as regards a recording material used in the copying machine and the printer, those having not only various kinds but also various sizes have been used.
Here, when small-width recording materials (small-size paper) narrower in width than maximum-size paper having a maximum width and passed through the copying machine and the printer and on which a toner image is fixable by a fixing device incorporated in the copying machine and the printer are not continuously passed through the fixing device, a so-called non-sheet-passing portion temperature rise occurs. That is, due to a difference in heat consumption between a passing portion and a non-passing portion of the recording materials in the fixing device, a degree of temperature rise at the non-passing portion of the recording materials becomes large.
In order to avoid this phenomenon, a fixing device in which an air blowing port (opening) through which cooling air from a cooling fan blows out is provided at each of non-sheet-passing portions which are longitudinal end portions of a fixing member of the fixing device and thus the non-sheet-passing-portions are cooled has been proposed. Further, a fixing device in which a widthwise size of an air blowing port (opening width) is made variable so as to be compatible with sizes of various recording materials with respect to a widthwise direction has also been proposed.
For example, a fixing device in which in addition to a shutter for adjusting a width of an air blowing part (opening width) depending on a width of a recording material used, the shutter is provided with a temperature detecting means in order to detect a temperature rise at a boundary between a non-sheet-passing portion and a sheet-passing portion and in which ON/OFF control of a cooling fan is carried out depending on a detection temperature has been proposed (Japanese Laid-Open Patent Application (JP-A) 2008-032903). Thus, a constitution in which both end portions which are non-sheet-passing portions are cooled correspondingly to a detection result of a widthwise size of the recording material used for printing is employed.
In addition, an image forming apparatus in which shift detection of a recording material is carried out and then opening and closing of shutters are performed has been proposed (JP-A 2012-252194). Specifically, a sub-thermistor for detecting a temperature of a fixing (device) heater is provided at each of end portions within a maximum-size-sheet-passing region with respect to a widthwise direction of a recording material. During shift sheet passing, a shutter close to a sub-thermistor opposite from a sub-thermistor detecting a heater temperature which continuously increases and which exceeds a predetermined temperature is closed and thereafter a cooling fan is driven. As a result, a constitution in which safety at a non-sheet-passing portion is enhanced and on the other hand, a fixing property is not impaired is presented. A constitution in which thus although a shift of the recording material can be indirectly detected by detecting non-sheet-passing portion temperature rise, an opening width with respect to a widthwise direction of the recording material is divided between one end portion and the other end portion depending on a degree of the non-sheet-passing portion temperature rise and thus the non-sheet-passing portion is cooled is employed.
In these constitutions, with respect to the widthwise direction of the recording material, in the case where a center of the recording material is deviated from a position (ideal position) where the recording material center overlaps (coincides) with a center of the fixing device, on one side of longitudinal end portions of the fixing device (on the same side as a side where the recording material is shifted), the cooling air is also blown to a region through which the recording material passes. As a result a new problem such that a lowering in fixing property at a portion where the cooling air is blown thereto is caused to arise. On the other hand, on the other side of the longitudinal end portions of the fixing member (on a side opposite from the side where the recording material is shifted with respect to the widthwise direction of the recording material), the cooling air can be blown to an entirety of the non-sheet-passing portion with respect to the longitudinal direction, so that a problem that a suppressing effect of the non-sheet-passing portion temperature rise lowers arises.
Thus, a temperature of a fixing nip where the recording material passes is not uniformized, and therefore, it would be considered that a method in which a gap between recording materials (i.e., a recording material feeding interval) is increased in view of the lowering in fixing property and a method in which a recording material feeding speed itself is showed and temperature rise of the fixing device is a waited are employed. However, in this case, a problem such that productivity per unit time lowers arises.
A principal object of the present invention is to provide an image forming apparatus and a fixing device which are capable of suppressing occurrences of non-sheet-passing portion temperature rise and improper fixing without lowering productivity even in the case where a feeding position of a recording material is deviated with respect to a widthwise direction of the recording material.
According to an aspect of the present invention, there is provided an image forming apparatus comprising: an image forming portion configured to form toner images on recording materials having a first size and a second size smaller than the first size with respect to a longitudinal direction; a fixing unit configured to form a nip in which the toner image is fixed by nipping and feeding the recording material, wherein the fixing unit is capable of fixing the toner image on the recording material having the first size which is a maximum fixable size of the recording material, wherein the fixing unit includes, an elongated heater extending in the longitudinal direction perpendicular to a feeding direction of the recording material, air blowing means configured to blow air toward one end portion and the other end portion of the heater with respect to the longitudinal direction when the recording material having the second size is inserted into the fixing unit, a first opening through which air blown from the air blowing means toward the one end portion of the heater passes, a first shielding member configured to change an opening width of the first opening with respect to the longitudinal direction, a second opening through which air blown from the air blowing means toward the other end portion of the heater passes, a second shielding member configured to change an opening width of the second opening with respect to the longitudinal direction, detecting means configured to detect a deviation amount of the recording material in a widthwise direction with respect to the feeding direction of the recording material, and a controller configured to control, on the basis of an output of the detecting means and size information of the recording material, the opening widths of the first and second openings so as to be different from each other by moving the first and second shielding members, respectively.
According to another aspect of the present invention, there is provided an image forming apparatus comprising: an image forming portion configured to form toner images on recording materials having a first size and a second size smaller than the first size with respect to a longitudinal direction; a fixing unit configured to form a nip in which the toner image is fixed by nipping and feeding the recording material, wherein the fixing unit is capable of fixing the toner image on the recording material having the first size as a maximum fixable size of the recording material, wherein the fixing unit includes, an elongated heater extending in the longitudinal direction perpendicular to a feeding direction of the recording material, air blowing means configured to blow air toward one end portion and the other end portion of the heater with respect to the longitudinal direction when the recording material having the second size is inserted into the fixing unit, a first opening through which air blown from the air blowing means toward the one end portion of the heater passes, a first shielding member configured to change an opening width of the first opening with respect to the longitudinal direction, a second opening through which air blown from the air blowing means toward the other end portion of the heater passes, a second shielding member configured to change an opening width of the second opening with respect to the longitudinal direction, detecting means configured to detect temperatures of the one and the other end portions of the heater, and a controller configured to control, on the basis of an output of the detecting means and size information of the recording material, the opening widths of the first and second openings so as to be different from each other by moving the first and second shielding members, respectively.
According to another aspect of the present invention, there is provided a fixing device for fixing toner images on recording materials in a nip by nipping and feeding the recording materials in the nip, wherein the recording materials have a first size and a second size smaller than the first size with respect to a longitudinal direction, the first size being a maximum size of the recording material on which the toner image is fixable by the fixing device, the fixing device comprising: an elongated heater extending in the longitudinal direction perpendicular to a feeding direction of the recording material; air blowing means configured to blow air toward one end portion and the other end portion of the heater with respect to the longitudinal direction when the recording material having the second size is inserted into the fixing device; a first opening through which air blown from the air blowing means toward the one end portion of the heater passes; a first shielding member configured to change an opening width of the first opening with respect to the longitudinal direction; a second opening through which air blown from the air blowing means toward the other end portion of the heater passes; a second shielding member configured to change an opening width of the second opening with respect to the longitudinal direction; and detecting means configured to detect a deviation amount of the recording material in a widthwise direction with respect to the feeding direction of the recording material, wherein the opening widths of the first and second openings are made different from each other by moving the first and second shielding members, respectively, on the basis of an output of the detecting means and size information of the recording material.
According to a further aspect of the present invention, there is provided a fixing device for fixing toner images on recording materials in a nip by nipping and feeding the recording materials in the nip, wherein the recording materials have a first size and a second size smaller than the first size with respect to a longitudinal direction, the first size being a maximum size of the recording material on which the toner image is fixable by the fixing device, the fixing device comprising: an elongated heater extending in the longitudinal direction perpendicular to a feeding direction of the recording material; air blowing means configured to blow air toward one end portion and the other end portion of the heater with respect to the longitudinal direction when the recording material having the second size is inserted into the fixing device; a first opening through which air blown from the air blowing means toward the one end portion of the heater passes; a first shielding member configured to change an opening width of the first opening with respect to the longitudinal direction; a second opening through which air blown from the air blowing means toward the other end portion of the heater passes; a second shielding member configured to change an opening width of the second opening with respect to the longitudinal direction; and detecting means configured to detect temperatures of the one and the other end portions of the heater, wherein the opening widths of the first and second openings are made different from each other by moving the first and second shielding members, respectively, on the basis of an output of the detecting means and size information of the recording material.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a), (b) and (c) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Embodiments of the present invention will be specifically described with reference to the drawings.
An outline of a general structure of an image forming apparatus 1 will be described with reference to
In the image forming apparatus 1 shown in
Similarly, above the cassette sheet feeding means 80, a laser scanner unit 30 for forming an electrostatic latent image on a photosensitive member as an image bearing member is provided. Immediately on the laser scanner unit 30, a scanner frame 31 is provided and the laser scanner unit 30 is fixed to the scanner frame 31.
Above the scanner frame 31, four process cartridges 10 (10Y, 10M, 10C and 10Bk) are provided. On the process cartridges 10 (10Y, 10M, 10C and 10Bk), an intermediary transfer unit 40 is provided so as to oppose the process cartridges 10 (10Y, 10M, 10C and 10Bk). The intermediary transfer unit 40 includes an intermediary transfer belt 41. Inside the intermediary transfer belt 41, primary transfer rollers 42 (42Y, 42M, 42C and 42Bk), a driving roller 43, a secondary transfer opposite roller 44 and a tension roller 45 are provided, and outside the intermediary transfer belt 41, a cleaning means 46 is provided.
On a right side of the intermediary transfer unit 40, a secondary transfer unit 90 is provided. The secondary transfer unit 90 includes a secondary transfer roller 91 as a part of an image forming portion so as to oppose the secondary transfer opposite roller 44. Here, the primary transfer rollers 42 (42Y, 42M, 42C and 42Bk), the intermediary transfer belt 41 and the secondary transfer roller 91 constitute the image forming portion.
Above the intermediary transfer unit 40 and the secondary transfer unit 90, a fixing unit (fixing device) 20 is provided. Inside the fixing unit 20, a heating unit 21 for heating the recording material P and a pressing roller (nip-forming member) 22 for pressing (urging) the recording material P against the heating unit 21 are provided so as to form a nip in which the recording material P is nipped and fed.
As shown in
As shown in
Leftward above the fixing unit 20, a sheet discharging unit 60 is provided. The sheet discharging unit 60 includes a sheet discharging roller pair 61, a both-side feeding portion 62, a reversing roller pair 63 and a both-side flapper 64 which is a branching means. An image formation controller 2 collectively controls an image forming operation of the image forming apparatus 1.
As shown in
During image formation on a first sheet, the recording material P once stops in front of the secondary transfer roller 91 in a state of being nipped between the registration roller 51 and the registration opposite roller 52 for synchronization between feeding timing thereof and a forming operation of an image formed on the intermediary transfer belt 41. Then, the recording material P is fed after awaiting until image formation is carried out, but a second sheet and later sheets are continuously fed without being once stopped.
In synchronism with an operation of feeding the recording material P, developer images of respective colors which are developed from electrostatic latent images by the process cartridges (10Y, 10M, 10C and 10Bk) are successively transferred onto the intermediary transfer belt 41. The developer images (color image) superposed and transferred on the intermediary transfer belt 41 are moved together with the intermediary transfer belt 41 to a position of the secondary transfer opposite roller 44. Then, the once stopped recording material P is started to be fed by rotation of the registration roller 51 and the registration opposite roller 52, and enters a nip between the secondary transfer roller 91 and the intermediary transfer belt 41 in synchronism with the developer images, so that secondary transfer of the developer images onto the recording material P is carried out.
The color image transferred on the recording material P is heated by the heating unit 21 at a temperature set depending on a kind of the recording material P by the heater 24 and is melt-fixed on the recording material P by being pressed by the pressing roller 22. At this time, all the disposed temperature detecting elements 23 measure temperatures of the heater 24 at a predetermined sampling interval. The temperature detecting elements 23 send, to the image formation controller 2, temperature values from before the recording material P reaches a nip between the heating unit 21 and the pressing roller 22 until a trailing end of the recording material P comes out of the nip. The recording material P after fixing is discharged onto a discharge tray 65 by a sheet discharging roller pair 61, and then a normal color image forming operation is ended.
On the intermediary transfer belt 41, a cleaning means 46 is provided, and the developer remaining on the intermediary transfer belt 41 is scraped off by a cleaning member such as a cleaning blade, so that the image forming apparatus 1 prepares for subsequent image formation.
In the following, a shift (deviation) amount detection of the recording material P with respect to the widthwise direction by the sheet position detecting means in this embodiment will be described. In part (a) of
Here, ideal positions of the recording material at both end portions with respect to the widthwise direction in the case where the recording material does not shift in the widthwise direction are stored together with values of respective sizes of recording materials in advance in the image forming apparatus depending on the respective sizes of the recording materials P. As a result, in the case where the recording material P shifts in the widthwise direction, a shift amount of the recording material from an ideal position is detected.
A detecting means for detecting the shift amount of such a recording material in the widthwise direction is provided inside the cassette sheet feeding means 80 (
Incidentally, the shift amount detection of the recording material with respect to the widthwise direction may also be carried out using a transmission type, not a reflection type in which the LED arrays Q (Q1 and Q2) and the linear image pick-up elements R (R1 and R2) are disposed on the same side, with respect to the recording material. That is, the LED arrays Q (Q1 and Q2) and the linear image pick-up elements R (R1 and R2) are may also be disposed on opposite sides with respect to the recording material.
As shown in
Part (a) of
The shielding unit 110 includes a shielding frame 116. The shielding frame 116 holds (supports) an F-side driving motor 115 provided with an F-side pinion 115a and an R-side driving motor 117 provided with an R-side pinion 117a. The shielding frame 116 is provided with an inlet port 116a for receiving the outside air sent from the duct 102 and exhaust ports 116b and 116c as openings for blowing the outside air to a heating roller 21.
A shielding member 111 capable of changing an opening width of the opening at one end portion with respect to the longitudinal direction of the fixing member is attached to the shielding frame 116. Further, a shielding member 112 capable of changing an opening width of the opening at the other end portion with respect to the longitudinal direction of the fixing member is attached to the shielding frame 116.
The F-side shielding member 111 includes a driven portion 111a, for the F-side shielding member 111, having a shape such that drive is transmittable from the F-side pinion 115a and, in addition, includes an F-side cap portion (shielding portion) 111b, provided separately from the driven portion 111a, for shielding the exhaust port 116b. The F-side cap portion 111b is provided with F-side rails 111c having a projection shape.
On the other hand, R-side shielding member 112 includes a driven portion 112a, for the R-side shielding member 111, having a shape such that drive is transmittable from the R-side pinion 117a and, in addition, includes an F-side cap portion (shielding portion) 112b, provided separately from the driven portion 112a, for shielding the exhaust port 116c. The R-side cap portion 112b is provided with R-side rails 112c having a projection shape.
Here, in
Similarly, as shown in part (b) of
An actual operation of the shielding unit 110 will be described with reference to
First, the case where the positions of the end portions of the recording material P with respect to the widthwise direction control with the predetermined values (reference positions) will be described. In the case where the recording material P is disposed and set at the predetermined position (in the case where detection that the recording material P is not shifted in the widthwise direction is made in
The F-side pinion 115a is rotated in an arrow A direction and drive is transmitted to the driven portion 111a for the F-side shielding member 111, so that the F-side shielding member 111 is moved in an arrow B direction. Simultaneously, the R-side pinion 117a is rotated in an arrow C direction and drive is transmitted to the driven portion 112a for the R-side shielding member 112, so that the R-side shielding member 112 is moved in an arrow D direction.
At this time, from the image formation controller 2 to the F-side driving motor 115 and the R-side driving motor 117, an instruction for moving the F-side shielding member 111 and the R-side shielding member 112 together by a movement amount x depending on the width of the recording material P is provided. As a result, both of opening amounts of the exhaust ports 116b and 116c are x (i.e., the opening widths are controlled so as to be equal to each other). As regards the movement amount x depending on the width of the recording material P, when the width of the recording material P is W and a length of the shielding unit 110 with respect to the longitudinal direction is U, in part (a) of
U=W+2x
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c are caused to coincide with each other, so that the outside air sent from the cooling fan 101 can be blown to positions of the heating roller 21 outside the both end positions of the width of the recording material P, and thus only necessary portions can be cooled.
Next, the case where the positions (for example, both end portion positions (both end positions)) with respect to the widthwise direction of the recording material P do not coincide with the predetermined values (reference positions) and are shifted toward the rear side (R side) of the image forming apparatus by a shift amount y will be described.
First, depending on a widthwise position of the recording material P, an operation instruction is provided from the image formation controller 2 to the F-side driving motor 115 and the R-side driving motor 117.
As shown in part (b) of
At this time, from the image formation controller 2 to the F-side driving motor 115, an instruction for moving the F-side shielding member 111 by a total amount of the predetermined movement amount x and the shift amount y depending on the width position of the recording material P is provided, and from the image formation controller 2 to the R-side driving motor 117, an instruction for moving the R-side shielding member 112 by an amount obtained by subtracting the shift amount y from the predetermined movement amount x depending on the width position of the recording material P is provided. As a result, on the basis of an output of the detecting means for detecting the shift amount of the recording material P from a reference position with respect to the widthwise direction and a size of the recording material P with respect to the widthwise direction, the opening amount of the exhaust port 116b is x+y, and the opening amount of the exhaust port 116c is x−y (i.e., the opening widths are controlled so as to be different from each other).
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c can be changed corresponding to shifted positions of the recording material P relative to the fixing device. As a result, the outside air sent from the cooling fan 101 can be blown to positions of the heating roller 21 outside the both (side) and positions of the width of the recording material P, so that only necessary portions (non-sheet-passing regions) can be cooled.
Here, in the case where the widthwise end portion positions of the recording material P are shifted toward an opposite side 8the front side of the fixing device), the opening amount of the exhaust port 116b is x−y, and the opening amount of the exhaust port 116c is x+y.
As described above, in this embodiment, the longitudinal (widthwise) end portion positions of the openings corresponding to first and second end portions of the fixing member with respect to the longitudinal direction can be caused to coincide with the associated end portion positions (side end positions) of the recording material P with respect to the widthwise direction. As a result, at each of the first and second end portions, the non-sheet-passing width and the opening width can be caused to coincide with each other.
As a result, in this embodiment, even in the case where a widthwise center of the recording material when passing through the fixing device does not coincide with a reference position, the non-sheet-passing portion temperature rise can be properly prevented irrespective of the recording material size. Further, a deterioration of a fixing property on a side where the recording material widthwise center is shifted is suppressed and temperature rise in a region through which the recording material does not pass in the fixing member can be suppressed with reliability. Further, a lowering in fixing property is prevented, so that productivity can be maintained.
In First Embodiment, a constitution in which the widthwise positions of the recording material P are detected by the sheet position detecting means and the shielding unit 110 is operated depending on a detection result was employed. However, the present invention is not limited thereto, and a constitution in which the shielding unit 110 is operated on the basis of values sent from the plurality of temperature detecting elements 23 and values which are stored in the image formation controller 2 in advance and which depend on the kind (size information) of the recording material P may also be employed. In the following, a constitution in which the shielding unit 110 is operated on the basis of the values sent from the plurality of the temperature detecting elements 23 and values which are stored in the image formation controller 2 in advance and which depend on the kind of the recording material P will be described.
Next, an actual operation of the shielding unit 110 will be described. When a printing operation is started by the user, the recording material P is started to be subjected to the above-described printing operation. The heater 24 is heated so that a temperature thereof is a predetermined temperature. The temperature of the heater 24 when the recording material P reaches the nip between the heating unit 21 and the pressing roller 22 is detected by the plurality of the temperature detecting elements 23, and detected values are sent to the image formation controller 2. The image formation controller 2 compares the values sent from the temperature detecting elements 23 with the preliminarily stored values depending on the kind (size information) of the recording material P and discriminates whether or not a difference therebetween falls within a tolerable value.
First, the case where the values sent from the temperature detecting elements 23 and the values which are stored in the image formation controller 2 in advance and which depend on the kind of the recording material P falls within a tolerable value, i.e., the case where the widthwise positions of the recording material P coincide with predetermined positions determined in advance will be described.
Depending on the width of the recording material P, an operation instruction is provided from the image formation controller 2 to the F-side driving motor 115 and the R-side driving motor 117.
The F-side pinion 115a is rotated in an arrow A direction and drive is transmitted to the driven portion 111a for the F-side shielding member 111, so that the F-side shielding member 111 is moved in an arrow B direction. Simultaneously, the R-side pinion 117a is rotated in an arrow C direction and drive is transmitted to the driven portion 112a for the R-side shielding member 112, so that the R-side shielding member 112 is moved in an arrow D direction.
At this time, from the image formation controller 2 to the F-side driving motor 115 and the R-side driving motor 117, an instruction for moving the F-side shielding member 111 and the R-side shielding member 112 together by a movement amount x depending on the width of the recording material P is provided.
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c are caused to coincide with each other, so that the outside air sent from the cooling fan 101 can be blown to positions of the heating roller 21 outside the both end positions of the width of the recording material P, and thus only necessary portions can be cooled.
Next, the case where the values sent from the temperature detecting elements 23 and the values which are stored in the image formation controller 2 in advance and which depend on the kind (size information) of the recording material P exceeds the predetermined range will be described.
Thus, in the case where the value sent from the temperature detecting element 23R is lower than the predetermined range depending on the kind of the recording material P, the image formation controller 2 discriminates that with respect to the widthwise direction of the recording material P, an associated end of the recording material P is closer to the temperature detecting element 23R than the end of the recording material P when the recording material P is in an ideal position is. This is because it would be considered that a detection temperature of the temperature detecting element 23R lowers since the associated end of the recording material P approaches the temperature detecting element 23 compared with that when the recording material P is in the ideal position and heat of the heater 24 is conducted to the recording material P in a larger amount.
Similarly, in the case where the value sent from the temperature detecting element 23F is higher than the predetermined range depending on the kind of the recording material P, the image formation controller 2 discriminates that with respect to the widthwise direction of the recording material P, an associated end of the recording material P is remotor from the temperature detecting element 23F than the end of the recording material P when the recording material P is in an ideal position is. This is because it would be considered that a detection temperature of the temperature detecting element 23F increases since the associated end of the recording material P is spaced away from the temperature detecting element 23 compared with that when the recording material P is in the ideal position and heat of the heater 24 is not dissipated without being conducted to the recording material P.
Further, with respect to the widthwise direction of the recording material P, the image formation controller 2 not only discriminates that a center position of the recording material P is shifted (deviated) from a position (ideal position) where the recording material center position overlaps (coincides) with a center position of the fixing unit 20 (the heater 24) but also predicts the shift amount (deviation amount) from the difference between the value depending on the kind of the recording material P and each of the values sent from the temperature detecting elements 23F and 23R.
Further, depending on a widthwise position of the recording material P, an operation instruction is provided from the image formation controller 2 to the F-side driving motor 115 and the R-side driving motor 117.
As shown in part (b) of
At this time, by the image formation controller 2, the F-side driving motor 115 is driven so that the F-side shielding member 111 is moved in a total amount of the predetermined movement amount x and the shift amount y depending on the width position of the recording material P, and by the image formation controller 2, the R-side driving motor 117 is driven so that the R-side shielding member 112 is moved in an amount obtained by subtracting the shift amount y from the predetermined movement amount x depending on the width position of the recording material P. As a result, on the basis of an output of the detecting means for detecting the shift amount of the recording material P from a reference position with respect to the widthwise direction and size information of the recording material P with respect to the widthwise direction, the opening amount of the exhaust port 116b is x+y, and the opening amount of the exhaust port 116c is x−y (i.e., the opening widths are controlled so as to be different from each other).
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c can be changed corresponding to shifted positions of the recording material P relative to the fixing device. As a result, the outside air sent from the cooling fan 101 can be blown to positions of the heating roller 21 outside the both (side) and positions of the width of the recording material P, so that only necessary portions (non-sheet-passing regions) can be cooled.
Here, in the case where the value sent from the temperature detecting element 23F is low and the value sent from the temperature detecting element 23R is high, the image formation controller 2 can discriminate that the recording material P shifts toward the temperature detecting element 23F side, so that the opening amount of the exhaust port 116b is x−y, and the opening amount of the exhaust port 116c is x+y.
Thus, in this embodiment, the longitudinal (widthwise) end portion positions of the openings corresponding to first and second end portions of the fixing member with respect to the longitudinal direction can be caused to coincide with the associated end positions of the recording material P with respect to the widthwise direction by detecting the temperature of the heater 24 by the plurality of temperature detecting elements 23 and then by predicting the shift amount from a detection result. As a result, at each of the first and second end portions, the non-sheet-passing width and the opening width can be caused to coincide with each other.
As a result, in this embodiment, even in the case where a widthwise center of the recording material when passing through the fixing device does not coincide with a reference position, the non-sheet-passing portion temperature rise can be properly prevented irrespective of the recording material size. Further, a deterioration of a fixing property on a side where the recording material widthwise center is shifted is suppressed and temperature rise in a region through which the recording material does not pass in the fixing member can be suppressed with reliability. Further, a lowering in fixing property is prevented, so that productivity can be maintained.
In First Embodiment, the driving motors and the pinions which correspond to those for F side and the R side are separately provided, but in this embodiment, a driving motor and a pinion are common to the F side and the R side. Incidentally, constituent elements and operations which are similar to those in First Embodiment are represented by the same reference numerals or symbols and will be omitted from description.
Part (a) of
As shown in
Part (b) of
That is, in this embodiment, the driving motor 220 as a common driving source for changing widths of the openings corresponding to the first and second end portions, respectively, of the fixing member with respect to the longitudinal direction is provided. Further, a moving mechanism portion including a movement dead region such that only a first predetermined amount is not changed when the opening width for one of the first and second end portions is intended to be changed with respect to a first direction of the longitudinal direction and that only a second predetermined amount is not changed when the opening width for one of the first and second end portions is intended to be changed with respect to a second direction opposite to the first direction of the longitudinal direction is provided. Here, the first predetermined amount and the second predetermined amount can be made the same value t.
Further, the F-side cap member 214 is connected with the F-side driving member 213 as a drive transmitting portion to which drive (driving force) is transmitted from the driving source, and the F-side driving member 213 is provided with the elongated hole 213a extending in the longitudinal direction. Further, the F-side cap member 214 includes the shaft 214a forming play on both sides thereof relative to the elongated hole 213a.
An actual operation of the shielding unit 210 in this embodiment will be described.
When detection that the recording material P is disposed and set at a predetermined position is made by the sheet position detecting means of
At this time, from the image formation controller 2 to the driving motor 220, an instruction for moving the R-side shielding member 112 in a distance corresponding to a sum of a movement amount x portion the width of the recording material P and a gap t is provided. For that reason, as shown in part (a) of
On the other hand, the F-side driving member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Here, an unshown spring (urging means) provided on the shielding frame 116 always urges the F-side cap member 214 including the shaft 214a and thus prevents the F-side cap member 214 from moving. That is, a brake (braking force) is exerted on the F-side cap member 214, and due to friction generating at a contact portion between the longitudinal end of the elongated hole 213a and the shaft 214a, the F-side cap member 214 is prevented from moving together with the F-side driving member 213.
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driving member 213 including the elongated hole 213a (part (b) of
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c are caused to coincide with each other (part (b) of
Next, the case where detection that the recording material P moved toward the rear side (R side) of the fixing device with respect to the widthwise direction of the recording material P is made by the sheet position detecting means of
First, the widthwise positions (for example, both end portion positions (both side end positions) of the recording material P does not coincide with the predetermined positions (reference positions) and where the recording material P moved toward the rear side (R side) of the fixing device with respect to the widthwise direction of the recording material P in a distance corresponding to the shift amount deviation amount y will be described. As shown in part (a) of
At this time, from the image formation controller 2 to the driving motor 220, an instruction for moving the R-side shielding member 112 in a distance corresponding to a sum of a movement amount x portion the width of the recording material P, the gap t and the shift amount y is provided. For that reason, as shown in part (a) of
On the other hand, the F-side driving member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driving member 213 moves in a distance corresponding to the sum of the gap t and twice the shift amount y in the arrow B direction. However, the associated end of the elongated hole 213a is merely spaced from the shaft 214a, and as regards a sum of the left and right gaps t (twice the gap t) of the shaft 214a, the other end of the elongated hole 213a does not contact the shaft 214a, and therefore, the F-side cap member 214 is not moved. Therefore, the opening amount of the F-side exhaust port 116b is kept unchanged at x+y when twice the gap t is made larger than the sum of the gap t and twice the shift amount y, i.e., when the gap t is made larger than twice the shift amount y.
By the above-described operation, even when the side end positions of the recording material P shift in the widthwise direction from the reference positions where the recording material P should be originally located, the positions of the exhaust ports 116b and 116c can be changed so that opening regions of the exhaust ports 116b and 116c control with end portion regions of the fixing member deviated from the reference positions of the recording material P. That is, the outside air sent from the cooling fan 101 can be blown to the both end regions deviated from the (original) widthwise regions of the recording material P on the heating roller 21, so that only necessary portions can be cooled.
First, the widthwise positions (for example, both end portion positions (both side end positions) of the recording material P does not coincide with the predetermined positions (reference positions) and where the recording material P moved toward the front side (F side) of the fixing device with respect to the widthwise direction of the recording material P in a distance corresponding to a shift amount deviation amount z will be described using
As shown in part (a) of
At this time, from the image formation controller 2 to the driving motor 220, an instruction for moving the R-side shielding member 112 in a distance corresponding to an amount obtained by subtracting the shift amount z from the sum of the movement amount x portion the width of the recording material P and the gap t is provided. For that reason, as shown in part (a) of
On the other hand, the F-side driving member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driving member 213 moves in a distance corresponding to the amount obtained by subtracting twice the shift amount z from the gap tin the arrow B direction. However, the associated end of the elongated hole 213a is merely spaced from the shaft 214a, and the sum of the left and right gaps t (twice the gap t) is larger than the amount obtained by subtracting twice the shift amount z from the gap t, so that the shaft 214a. For this reason, the opening amount of the F-side exhaust port 116b is kept unchanged at x−z.
By the above-described operation, even when the side end positions of the recording material P shift in the widthwise direction from the reference positions where the recording material P should be originally located, the positions of the exhaust ports 116b and 116c can be changed so that opening regions of the exhaust ports 116b and 116c control with end portion regions of the fixing member deviated from the reference positions of the recording material P. That is, the outside air sent from the cooling fan 101 can be blown to the both end regions deviated from the (original) widthwise regions of the recording material P on the heating roller 21, so that only necessary portions can be cooled.
As described above, in the above-described embodiments, even in the case where widthwise centers of the recording materials do not coincide with each other when the recording materials pass through the fixing device, the non-sheet-passing portion temperature rise can be properly prevented irrespective of the size of the recording material. Further, deterioration of the fixing property on a side the widthwise center of the recording material is deviated is suppressed, so that temperature rise in a region through which the recording material does not pass in the fixing member can be suppressed with reliability. Further, a lowering in fixing property is prevented, so that productivity can be maintained.
In Fourth Embodiment, similarly as in third Embodiment, while employing the constitution including the shielding unit 110 in which the driving motor and the pinion are common to the F side and the R side, similarly as in Second Embodiment, the constitution in which the shielding unit 110 is operated on the basis of the values sent from the plurality of temperature detecting elements 23 and the preliminarily stored values portion the kind of the recording material P is employed. This constitution will be described below. Incidentally, constituent elements and operations which are similar to those in First Embodiment are represented by the same reference numerals or symbols and will be omitted from description.
An actual operation of the shielding unit 210 in this embodiment will be described.
As shown in part (a) of
At this time, the image formation controller 2 causes the driving motor 220 to be driven so that the driven portion 112a for the R-side shielding member 112 and the F-side driven member 213 are moved in a distance corresponding to a sum of a movement amount x portion the width of the recording material P and a gap t is provided. For that reason, the R-side shielding member 112 moves in the distance corresponding to the sum of the movement amount x and the gap t, so that an opening amount of the R-side exhaust port 116c is x+t.
On the other hand, the F-side driven member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Incidentally, in this embodiment, a constitution in which an unshown spring (urging means) is provided on the shielding frame 116 is employed, and the spring always urges the F-side cap member 214 against the shielding frame 116 and thus prevents the F-side cap member 214 from moving relative to the shielding frame 116. That is, a braking force is exerted by the spring on the F-side cap member 214 so as not to move limitlessly while ensuring a state in which the F-side cap member 214 is supported by the shielding frame 116, and due to a frictional force generating during sliding between an inner surface of the elongated hole 213a and the projection portion 214a, the F-side cap member 214 is prevented from moving.
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driven member 213 moves in a distance corresponding to the gap tin the arrow B direction shown in part (b) of
By performing such an operation, the opening amounts of the exhaust ports 116b and 116c are caused to coincide with each other (part (b) of
Next, the case where detection that the recording material P moved toward the rear side (R side) of the fixing device with respect to the widthwise direction of the recording material P is made on the basis of differences between the values sent from the temperature detecting elements 23F and 23R and the values depending on the kind of the recording material P and the case where detection that the recording material P moved toward the front side (F side) of the fixing device with respect to the widthwise direction of the recording material P is made on the basis of the differences between the values sent from the temperature detecting elements 23F and 23R and the values depending on the kind of the recording material P will be described in a named order.
First, as shown in
At this time, the image formation controller 2 causes the driving motor 220 to be driven so that the R-side shielding member 112 is moved in a distance corresponding to a sum of a movement amount x portion the width of the recording material P, the gap t and the shift amount y is provided. For that reason, as shown in part (a) of
On the other hand, the F-side driven member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driven member 213 moves in a distance corresponding to the sum of the gap t and twice the shift amount y in the arrow B direction. However, the associated end of the elongated hole 213a is merely spaced from the projection portion 214a, and as regards a sum of the left and right gaps t (twice the gap t) of the projection portion 214a, the other end of the elongated hole 213a does not contact the projection portion 214a, and therefore, the F-side cap member 214 is not moved. Therefore, the opening amount of the F-side exhaust port 116b is kept unchanged at x+y when twice the gap t is made larger than the sum of the gap t and twice the shift amount y, i.e., when the gap t is made larger than twice the shift amount y.
By the above-described operation, even when the side end positions of the recording material P shift in the widthwise direction from the reference positions where the recording material P should be originally located, the positions of the exhaust ports 116b and 116c can be changed so that opening regions of the exhaust ports 116b and 116c control with end portion regions of the fixing member deviated from the reference positions of the recording material P. That is, the outside air sent from the cooling fan 101 can be blown to the both end regions deviated from the (original) widthwise regions of the recording material P on the heating unit 21, so that only necessary portions can be cooled.
Next, the values sent from the temperature detecting elements 23 and the preliminarily stored values depending on the kind of the recording material P exceed the tolerable range and where the recording material P moved toward the front side (F side) of the fixing device with respect to the widthwise direction of the recording material P in a distance corresponding to a shift amount deviation amount z will be described using
As shown in part (a) of
At this time, the image formation controller 2 causes the driving motor 220 to be driven so that the R-side shielding member 112 is moved in a distance corresponding to an amount obtained by subtracting the shift amount z from the sum of the movement amount x portion the width of the recording material P and the gap t is provided. For that reason, as shown in part (a) of
On the other hand, the F-side driven member 213 moves in the arrow C direction, but as described above with reference to part (b) of
Next, the image formation controller 2 provides an instruction for moving the pinion 220a from the above-described state of part (a) of
On the other hand, the F-side driven member 213 moves in a distance corresponding to the amount obtained by subtracting twice the shift amount z from the gap tin the arrow B direction. However, from the state of part (c) of
By the above-described operation, even when the side end positions of the recording material P shift in the widthwise direction from the reference positions where the recording material P should be originally located, the positions of the exhaust ports 116b and 116c can be changed so that opening regions of the exhaust ports 116b and 116c control with end portion regions of the fixing member deviated from the reference positions of the recording material P. That is, the outside air sent from the cooling fan 101 can be blown to the both end regions deviated from the (original) widthwise regions of the recording material P on the heating unit 21, so that only necessary portions can be cooled.
As described above, in the above-described embodiments, even in the case where widthwise centers of the recording materials do not coincide with each other when the recording materials pass through the fixing device, the non-sheet-passing portion temperature rise can be properly prevented irrespective of the size of the recording material. Further, deterioration of the fixing property on a side the widthwise center of the recording material is deviated is suppressed, so that temperature rise in a region through which the recording material does not pass in the fixing member can be suppressed with reliability. Further, a lowering in fixing property is prevented, so that productivity can be maintained.
In the above-described embodiments, preferred embodiments of the present invention were described, but the present invention is not limited thereto and can be variously modified within the scope of the present invention.
In the above-described embodiments, shown in
In the above-described embodiments, the fixing device using the heating roller and the pressing roller as the first and second fixing members for forming the nip in which the recording material carrying the toner image thereon is nipped and fed was described, but the present invention is not limited thereto. A fixing device of a film heating type in which an endless belt for rotating one or both of the first and second fixing members may also be used.
In the above-described embodiments, recording paper (sheet) was described as the recording material, but the recording material in the present invention is not limited to the paper (sheet). In general, the recording material is a sheet-like member on which the toner image is formed by the image forming apparatus and includes, for example, regular-shaped or irregular-shaped recording materials such as plain paper, thick paper, thin paper, an envelope, a postcard, a seal, a resin sheet, an OHP sheet and glossy paper. Incidentally, in the above-described embodiments, for convenience, handling of the recording material P (sheet) was described using terms such as sheet passing, but by this, the recording material in the present invention is not limited to the paper.
In the above-described embodiments, the fixing device for fixing the unfixed toner image on the sheet was described as an example, but the present invention is not limited thereto. The present invention is also similarly applicable to a device for heating and pressing a toner image temporarily fixed on the sheet (also in this case, the device is referred to as the fixing device).
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications Nos. 2017-181187 filed on Sep. 21, 2017, and 2018-130867 filed on Jul. 10, 2018, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-181187 | Sep 2017 | JP | national |
2018-130867 | Jul 2018 | JP | national |