The present invention relates to an image forming apparatus and a foam application device.
Conventionally, an inkjet recording device has been known as an image forming apparatus such as a printer, a facsimile machine, a copier, and a multifunctional peripheral having those functions, the image forming apparatus employing the liquid-ejection recording method in which, for example, a recording head ejecting ink droplets is used. The image forming apparatus employing the liquid-ejection recording method is capable of ejecting droplets from its recording head onto a fed sheet (or an OHP sheet or any medium on which ink droplets or other liquid can be applied, and may be referred to as a recording medium, a recording paper, a recording sheet, or the like) to form (the terms “form”, “record”, “type”, “image”, and “print” may be regarded as synonymous with each other) an image on the fed sheet. The image forming apparatuses employing the liquid-ejection recording method include a serial-type image forming apparatus in which its recording head moves in the main scanning direction and ejects droplets to form an image, and a line-type image forming apparatus in which its recording head ejects droplets to form an image without moving.
In this description, the term “image forming apparatus” employing the liquid ejection recording method refers to an apparatus capable of forming an image by ejecting a fluid onto a medium such as a piece of paper, strings, fibers, silk fabric, metal, plastics, glass, wood, and ceramics. Further, the term “image forming” refers not only to forming an image having significant information such as letters or figures onto a medium but also to forming an image having no significant meaning such as patterns onto a medium (including a case where ink droplets are just discharged onto a medium). Further, the term “ink” is not limited to a material generally called ink but refers to any material which becomes a fluid upon being ejected such as DNA samples, resists, and pattern materials.
In such an image forming apparatus employing the liquid ejection recording method, ink droplets are formed out of ink including coloring material. Because of this feature, such image forming apparatus may have a drawback causing problems such as the feathering in which dots formed by droplets have an irregular (beard) shape, and color bleeding in which when ink droplets having different colors are applied adjacent to each other on a sheet, the ink droplets having different colors are mixed on the boundary between the droplets, thereby blurring the color on the boundary. In addition, there is another problem that it takes time to dry the droplets after being applied to the sheet.
To overcome the problems, according to, for example, Patent Document 1, a heating unit is provided for heating before or after the printing to control ink bleeding and dry the ink droplets quickly after being applied to the sheet. According to Patent Document 2, a pretreatment fluid is applied to the sheet by using an application roller so that the pretreatment fluid reacts with the ink droplets to control ink bleeding. According to Patent Document 3, a pretreatment fluid is ejected in a mist form from a fluid ejection head, and according to Patent Document 4, a treatment fluid is applied before or after printing to improve ink fixing performance.
[Patent Document 1] Japanese Laid-Open Patent Application No. H8-323977
[Patent Document 2] Japanese Laid-Open Patent Application No. 2002-137378
[Patent Document 3] Japanese Laid-Open Patent Application No. 2005-138502
[Patent Document 4] Japanese Laid-Open Patent Application No. 2003-205673
However, when a heating unit is added as described in Patent Document 1, energy consumption may be increased. Further, when the pretreatment fluid is applied by using the application roller or the fluid ejection head, the fluid may not be uniformly applied. In addition, since the fluid is additionally applied, it may become more difficult to quickly dry the sheet after the fluid reacts with the ink droplets on the sheet, and the sheet may be more likely to be curled or bent, which may cause problems such as jamming.
The present invention is made in light of the above circumstances and may provide an image forming apparatus in which a foam-like fluid, gel, or fluid and gel may be uniformly applied and the supply amount of the foam may be easily adjusted to maintain the quality of the foam to be applied. In addition, the inventors of the present invention have found a new problem that when a treatment fluid is foamed to prepare the treatment fluid in foam form and then the treatment fluid in foam form is applied, not all the treatment fluid in foam form may be applied. Namely, there is generated a residual treatment fluid in foam form (extra foam). In this case, when the extra foam is not applied to a process, the extra foam may be dried, and the dried component of the treatment fluid may be adhered. As a result, there may be some problems which may deteriorate the performance of applying the foam-like fluid (gel) (the fluid (gel) may not be uniformly applied) and the performance of a driving system.
The present invention is made in light of the above problems as well and may provide an image forming apparatus capable of solving the problems and maintaining the quality of the foam to be applied.
According to an aspect of the present invention, an image forming apparatus includes an image forming unit forming an image on a recording medium; and a foam application unit applying foam to the recording medium or an intermediate member for applying the foam to the recording medium, the foam being prepared by forming at least one of a liquid and a gel. The foam application unit includes a foam forming unit forming the foam; an application unit applying the foam to the recording medium or the intermediate member; and a supplying unit introducing the foam from the foam forming unit and supplying the foam to the application unit through a supply opening. In this configuration, the supplying unit includes a discharge opening through which the foam that has not been supplied to the application unit is discharged, and the amount of foam introduced into the supplying unit is greater than that of foam supplied to the application unit.
Further, the fluid resistance of the foam at the discharge opening on the supplying unit when the foam is being discharged may be greater than the fluid resistance of the foam at the supply opening on the supplying unit when the foam is being supplied.
Further, the image forming apparatus may further includes a unit for varying a fluid resistance of the foam at the discharge opening on the supplying unit when the foam is being discharged.
Further, the image forming apparatus may further include a unit for varying the fluid resistance of the foam at the supply opening on the supplying unit when the foam is being supplied.
Further, the discharge opening may be positioned lower than the supply opening.
Further, the discharge opening may be disposed outside the application unit with respect to the width direction of the recording medium or the intermediate member.
According to another aspect of the present invention, an image forming apparatus includes an image forming unit forming an image on a recording medium; and a foam application unit applying foam to the recording medium or an intermediate member for applying the foam to the recording medium, the foam being prepared by forming a treatment liquid which is in at least one of a liquid form and a gel form. The foam application unit includes an application unit applying the foam; a channel collecting extra foam remaining without having been applied; and a heat unit heating the extra foam on the channel to return the extra foam to a liquid form.
Further, the heat unit may be in first-mode or second-mode operations; the heat unit heats the extra foam in the first-mode and the heat unit does not heat the extra foam in the second-mode.
Further, the image forming apparatus may further include a foam forming unit forming the foam out of the treatment liquid; and a treatment liquid container containing the treatment liquid to be supplied to the foam forming unit, or a waste liquid container. In this configuration, the channel may be in communication with the foam forming unit and the treatment liquid container or the waste liquid container.
Further, the heating unit may include plural surfaces each in contact with the extra foam.
Further, the extra foam refers to the foam that has not been supplied to the application unit.
According to another aspect of the present invention, a foam application device applies foam to a target application member, the foam being prepared by foaming at least one of a fluid or a gel. The foam application device includes a foam forming unit forming the foam; an application unit applying the foam to the target application member; and a supplying unit introducing the foam from the foam forming unit and supplying the foam to the application unit through a supply opening. In this configuration, the supplying unit includes a discharge opening through which the foam that has not been supplied to the application unit is discharged, and the amount of foam introduced into the supplying unit is greater than that of foam supplied to the application unit.
According to another aspect of the present invention, a foam application device applies foam to a target application member, the foam being prepared by foaming at least one of a fluid or a gel. The foam application device includes an application unit applying the foam; a channel collecting extra foam remaining without the foam having been applied; and a heat unit heating the extra foam on the channel to return the extra foam to a liquid form.
It should be noted that in the description, the term “foam” (may be also referred to as “foam-like fluid”, or “foam-like gel”) may refer to a fluid or a gel in foam form in which a large number of air bubbles are dispersed in the fluid or the gel so as to form the fluid or the gel with compressibility (aggregation of micro-bubbles) when the foam is being applied. In other words, the term “foam” may refer to a fluid or a gel bubble having a round shape and containing gas such as air inside the round shape, and is formed due to the surface tension of the fluid or the gel containing the gas inside so that a cubic (three-dimensional) shape of the foam can be sustained for a certain period of time. It should be noted that to sustain the cubic shape for the certain period of time, preferably, the foam has a bulk density equal to or less than 0.05 g/cm3, the distribution range of the foam bubble diameters is between 10 μm and 1 mm, and an average foam bubble diameters is equal to or less than 100 μm. Further, the shape of a foam bubble is spherical when the foam bubble independently exists. However, when plural foam bubbles are aggregated together, each shape of the foam bubbles may become polyhedral due to their surface tensions. Further, the term “gel” refers to a semi-consolidated material having a net or honeycomb shape in which colloidal solution and high-molecular components dispersed in a disperse medium lose their independent mobility due to their mutual interactions and the particles of the material are in contact with each other.
In an image forming apparatus and a foam application device according to an embodiment of the present invention, a discharge opening is formed on the supplying unit supplying the foam through the supply opening to the application unit applying foam to the target application member; and the amount of foam introduced into the supplying unit is greater than the amount of foam supplied to the application unit. By having these features, it may become possible to uniformly apply a fluid, a gel, or a fluid and a gel so as to form a film having a substantially even thickness, control the supply amount easily, and maintain the quality of the foam to be applied at a certain level.
Further, an image forming apparatus and a foam application device according to an embodiment of the present invention include the application unit applying the foam; the channel collecting extra foam remaining without having been applied; and the heat unit heating the extra foam on the channel to return the extra foam to a liquid form. By having these features, it may become possible to uniformly apply a fluid, a gel, or a fluid and a gel so as to form a film having a substantially even thickness, collect the extra foam, and waste the collected extra foam when necessary to maintain the quality of the foam to be applied at a certain level.
In the following, embodiments of the present invention are described with reference to the accompanying drawings. First, an example of an image forming apparatus having a foam application device according to a first embodiment of the present invention is described with reference to
The recording head unit 101 has the line-type fluid ejection heads for ejecting droplets. Each of the line-type fluid ejection heads has plural nozzles arranged along the width direction of the sheet 100. Namely, the recording head unit 101 includes recording heads 101y, 101m, 101c, and 101k for ejecting yellow (Y), magenta (M), cyan (C), and black (K) ink-droplets, respectively. It should be noted that the recording heads may be mounted on a carriage as the serial-type image forming apparatus.
The feeding belt 102 is an endless belt extended between a feeding roller 121 and a tension roller 122 to rotate between the rollers. The sheet 100 may held to the feeding belt 102 by using electrostatic attraction, vacuum suction, or other known holding means.
The sheets 100 stacked in the sheet feed tray 103 are picked up one by one by a pickup roller 131, and fed through a feeding path 135 and held onto the feeding belt 102 by a feeding roller pair 132 and another feed roller pair not shown).
Next, in the foam application device 200, foam bubbles 210 are applied to the sheet (hereinafter may be also referred to as a “recording target medium”) 100 as the application target member fed on the feeding belt 102. The foam bubbles 210 applied to the sheet 100 are rapidly dried, and the droplets of each color are ejected from the recording head unit 101 to form an image on the sheet 100. Then, the sheet 100 is discharged to a discharge tray (not shown).
On the other hand, as shown in
Further, the reservoir section 211 may adjust the amount of the foam bubbles 210 to be supplied to the application roller 212 (accordingly, an amount of the foam bubbles 210 applied from the application roller 212 to the recording target medium 100) by varying the fluid resistance of the foam bubbles 210 at a supply opening 232 (shown in
Further, in the foam application device 200, there is provided a discharge channel 401 by which there is communication between the discharge opening 234 and the container 202. An adjusting valve 403 and a discharging pump 402 are provided on the discharge channel 401. The adjusting valve 403 controls the amount of foam bubbles 210 to be discharged through the discharge opening 234 by varying the fluid resistance of the foam bubbles 210 at the discharge opening 234. The discharging pump 402 not only assists the discharge of the foam bubbles 210 from the discharge opening 234 to the container 202 but also defoams the foam bubbles 210 by compressing the foam bubbles 210. It should be noted that the foam bubbles 210 may be discharged to another tank such as a waste tank.
The foam application device 200 further includes a thickness control section 214 and a cleaning member 215. The thickness control section 214 controls the film thickness (application film thickness) of the foam bubbles 210 applied to the outer surface of the application roller 212. The cleaning member 215 removes the applied foam bubbles 210 remaining on the outer surface of the application roller 212.
Herein, the treatment fluid 201 that is formable may be a reforming agent reforming the surface of the sheet 100 upon being applied to the surface. For example, by uniformly applying the foam (fluid) 210 to the sheet 100 (not limited to paper as a material, as described), it becomes possible to promote the penetration of the water component of the ink, thicken the ink color components, and accelerate the drying of the ink, thereby serving as a fixing agent (a setting agent) capable of avoiding blurs (such as feathering and bleeding) and strike-through and improving the productivity (increasing the number of output sheets per unit time).
The treatment fluid 201 may be a solution including as components a surface active agent (one of anionic, cationic, and nonionic agents, or any combination thereof), a cellulose derivative (such as hydroxypropylcellulose) promoting the penetration of water, and a base such as talc particles. Fine particles may be added to the treatment fluid 201.
Preferably, as the foam content, the foam bubbles 210 have a bulk density of from about 0.01 g/cm3 to about 0.1 g/cm3.
By applying the foam bubbles 210 including a large amount of air to the sheet 100 as described above, it becomes possible to uniformly apply a small amount of fluid, that dries quickly, and obtain a high-quality image without causing blur, strike-through, uneven density, and the like.
Namely, when compared with a case where a treatment fluid in a fluid or mist form is applied, the application of the foamed treatment fluid may have the following advantages (effects):
(1): Foam includes a large amount of air. Therefore, applying only a small amount of fluid may be enough.
(2): Characteristics of foam are similar to those of solid materials. Therefore, the film thickness of applied foam may be easily controlled by, for example, cutting off the foam bubbles that have been applied. Further, when the foam bubbles are applied from an applying section to a sheet, the foam bubbles exhibit an excellent detachability from the applying section. Therefore, the foam can be uniformly applied.
(3) The water component of the applied foam hardly penetrates into the fibers of the sheet. Therefore, a wrinkle or a curl of the sheet may hardly occur.
Such advantages of applying foam may be commonly observed when any type of treatment fluid is used. Preferably, the treatment fluid 201 may further have the effects of controlling the generation of paper powder from the sheet 100 and changing the background color of the sheet 100.
On the other hand, in order to uniformly apply foam along the width direction with respect to the recording target medium (or may be an intermediate medium for further applying the applied foam to its recording target medium), it is necessary to sufficiently elongate and develop the foam bubbles in the above direction before the foam bubbles are applied. However, as described above, the characteristics of the foam bubbles are similar to those of solid materials. Therefore, it may not be easy to elongate and develop the foam bubbles along the width direction of the recording target medium or the intermediate medium. In addition, it may be difficult to control the amount of foam bubbles to be supplied to the applying section and to substantially maintain the bulk density, the foam density, and the diameters of the foam bubbles at certain target levels.
To overcome the difficulties, according to an embodiment of the present invention, in the foam supplying section supplying foam bubbles to the applying section through the supply opening so that the foam bubbles can be supplied from the applying section to the target application member, the discharge opening is formed to discharge the foam bubbles that have not been applied to the applying section, so that a larger number of foam bubbles than is necessary to be supplied to the applying section are introduced into the foam supplying section. By having this configuration, it becomes possible to allow the treatment fluid to be uniformly applied to form a film of the applied foam bubbles having a substantially even thickness, easily control the amount of foam bubbles to be applied, and maintain the quality of the foam bubbles to be applied at a certain level, thereby enabling improving the quality of the images formed on the sheet.
First, an exemplary configuration of the foam forming section 205 in the foam application device 200 is described with reference to
In this foam forming section 205, the foam bubbles 210 are formed out of the treatment fluid 201 by supplying air inside the porous member 222. While gas is being supplied, the formed foam bubbles 210 move (are fed) inside the supply channel 206 due to their own driving power (kinetic energy) to the reservoir section 211. When the air supply is stopped, the formation of the foam bubbles 210 is stopped, and accordingly, the movement of the foam bubbles 210 is stopped. As is described above, foam bubbles 210 move due to their own driving power. Therefore, the foam bubbles 210 can be moved and stopped without any additional moving means for moving foam bubbles.
Next, an exemplary configuration of the reservoir section 211 in the foam application device 200 is described with reference to
As shown in
In the reservoir section 211, the foam bubbles 210 supplied from the foam forming section 205 through the introduction opening 231 into the foam reservoir container 300 are pushed toward the side of the application roller 212 through the supply opening 232. When the adjusting valve 403 is closed and the foam bubbles 210 are supplied to the reservoir section 211, pressure is generated by the supply of the foam bubbles 210. Due to the pressure, the foam bubbles 210 in the reservoir section 211 are elongated and developed along the width direction of the sheet 100. In this case, the adjusting valve 403 is controlled to adjust the pressure so that the foam bubbles 210 be distributed throughout the reservoir section 211.
Then, at a prescribed timing, the adjusting valve 403 is open, so that while more foam bubbles 210 than is necessary to be supplied to the application roller 212 are being introduced (supplied) into the inside of the foam reservoir container 300, the extra foam bubbles 210 are discharged to the discharge channel 401 through the discharge opening 234. By doing this, it becomes possible to sufficiently apply the foam bubbles 210 along the prescribed width direction of the sheet 100. It should be noted that by controlling the adjusting valve 403, it becomes possible to vary the fluid resistance of the foam bubbles 210 at the discharge opening 234 so that the foam bubbles 210 in the reservoir section 211 be preferentially supplied to the application roller 212.
The application amount/application area adjusting section 233 may include an adjustment plate 233a moving in the vertical direction to open/close the supply opening 232 as shown in
In the case of
Further, the thickness control section 214 provided as shown in
Next, other examples of an image forming apparatus having a foam application device according to other embodiments of the present invention are described with reference to
When the foam bubbles are heated by the heating device 501, the films of the foam bubbles are dried and the thickness of the films becomes thinner. In addition, the internal part of the foam bubbles is thermally expanded and accordingly the internal pressure of the foam bubbles is increased. As a result, the thickness of the films becomes further thinner, thereby sufficiently defoaming the foam. After being defoamed, the foam bubbles becomes a discharge liquid (herein referred to as a “reduction treatment liquid”). This reduction treatment liquid may be collected in the container 202 to be used as the foam again.
In this example, the discharge channel 401 is in communication with the container 202 which is a treatment liquid containing section for containing the treatment fluid 201. However, as shown in
As described above, the foam bubbles 210 is a fluid or a gel having a round shape and containing gas such as air inside the round shape, and is formed due to the surface tension of the fluid or the gel containing the gas inside so that a cubic (three-dimensional) shape of the foam can be maintained for a certain period of time. Preferably, the foam has a bulk density equal to or less than 0.05 g/cm3, the distribution range of the foam bubble diameter is between 10 μm and 1 mm, and an average foam bubble diameter is equal to or less than 100 μm. Further, the shape of a foam bubble is spherical when the foam bubble exists alone. However, when plural foam bubbles are aggregated together, each shape of the foam bubbles becomes polyhedral due to their surface tensions.
Next, another example of an image forming apparatus having a foam application device according to a second embodiment of the present invention is described with reference to
Further, as shown in
Next, still another example of an image forming apparatus having a foam application device according to a third embodiment of the present invention is described with reference to
Next, still another example of an image forming apparatus having a foam application device according to a fourth embodiment of the present invention is described with reference to
Preferably, each of the discharge openings 234 is disposed outside the application roller 212 (outside of the supply opening 232) with respect to the width direction of the sheet 100. By having this structure, residual foam bubbles 210 may be avoided and the defoamed foam lacking uniformity may be discharged more easily.
Next, exemplary configurations of the heating device 501 are described with reference to
As shown in
In the example of
Next, an example (in
The discharging pump 402 is provided on the upstream side of the heating device 501, so that the extra foam bubbles are discharged toward the downstream side. On the downstream side of the discharging pump 402, the extra foam bubbles are heated by the heating device 501 to be defoamed and returned to a liquid form.
Further, on the downstream side of the heating device 501, the discharge channel 401 is divided into two channels 506 and 508, and valves 505 and 507 are provided on the channels 506 and 508, respectively. On the downstream side of the valve 505, the channel 506 is in communication with the inside of the porous member 222 having a cylindrical shape. On the downstream sides of the valve 507, the channel 508 is provided to the inside of the container 221, so that the channel 508 is in communication with the atmosphere above the liquid surface or the inside of the treatment fluid 201 in the container (foam foaming container) 221. Further, an atmosphere communication channel 510 is provided to cause communication between the inside of the container 221 and the atmosphere outside the container 221. On the atmosphere communication channel 510, an atmosphere open valve 509 for opening/closing the atmosphere communication channel 510 is provided so that the air inside of the container 221 is released to outside the container 221.
Next, in the example where the reduction treatment liquid is collected into the foam forming section 205, an operation controlled by a foam controlling section described below during the foam application is described with reference to a flowchart of
In this operation during the foam application, the atmosphere open valve 509 for the foam foaming container 221 is closed; the discharging pump 402 is activated to operate; the valve 507 is closed, the valve 505 is open; and the heating device 501 is deactivated.
Namely, during the foam application, the foam bubbles 210 foamed in the foam forming section 205 are fed to the reservoir section 211 and applied to the application roller 212 for the foam application. Then, the extra foam bubbles remaining in the reservoir section 211 without being applied to the application roller 212 are fed toward the foam forming section 205 by the discharging pump 402 through the discharge channel 401. Then, since the valve 507 on the channel 508 is closed and the valve 505 on the channel 506 is open, the extra foam bubbles are fed to the inside of the porous member 222 having a cylindrical shape through the channels 506 so that the extra foam bubbles may be used for another foam forming.
Then, during the foam application, since the extra foam bubbles are used for another foam forming, it is not necessary to defoam the extra foam bubbles. Therefore, the heating device 501 is deactivated. Namely, the extra foam bubbles are fed and collected in the foam forming section 205 without being heated by the heating device 501 to be returned to a liquid form. Further, the atmosphere open valve 509 is closed to maintain the pressure in the container 221 substantially constant. In this description, the operation during the foam application is referred to as a first mode operation.
Next, a control in a case where the process of the foam application is finished and the extra foam bubbles are collected and cleaned is described with reference to a flowchart of
In the foam collection and cleaning operation, the atmosphere open valve 509 for the foam foaming container 221 is open, the pump 203 is reversely rotated so that the treatment fluid 201 is fed toward the container 202 from the foam foaming container 221. After the surface height of the treatment fluid 201 in the foam foaming container 221 is lowered to a prescribed level, the heating device 501 is activated for heating; the discharging pump 402 is activated for pumping; the valve 505 is closed; and the valve 507 is open.
Namely, to collect the extra foam bubbles, the atmosphere open valve 509 is open to maintain the atmosphere pressure in the foam foaming container 221 substantially equal to the atmosphere outside the foam foaming container 221, the treatment fluid 201 in the foam foaming container 221 is fed into the container 202 to lower the surface height of the treatment fluid 201 in the foam foaming container 221 to the level where foam bubbles cannot be formed (lower than that of the first slits 224). In this state, by operating the discharging pump 402, a negative pressure is generated in the supply channel 206, and gas is introduced into the supply channel 206 through the first slits 224, so that the foam bubbles in the entire supply channel 206 may be substantially fully pushed out to the reservoir section 211.
Then, the heating device 501 is activated and the discharging pump 402 is operated. By doing this, the extra foam bubbles are discharged from the reservoir section 211 to the discharge channel 401. and the discharged extra foam bubbles are heated by the heating device 501, so that the extra foam bubbles are exploded and separated into fluid and gas. During this process, the valve 505 is closed and the valve 507 is open. Therefore, a liquid defoamed from the foam bubbles (reduction treatment liquid) is discharged to the fluid surface of the treatment fluid 201 in the foam foaming container 221 from the upper side of the foam foaming container 221 through the channel 508. In this description, this foam collection and cleaning operation is referred to as a second mode operation.
In this case, a mixture of gas and liquid is discharged from the outlet of the divided channel 508. If the mixture is discharged from the outlet of the divided channel 508 directly in the treatment fluid 201, the treatment fluid 201 may be foamed again when the gas rises in the treatment fluid 201 from the outlet of the divided channel 508. To avoid the foaming of the treatment fluid 201 again, as described above, the liquid surface of the treatment fluid 201 in the container 221 is lowered and the mixture is discharged above the liquid surface of the treatment fluid 201.
Next, the control section of the above image forming apparatus is briefly described with reference to the block diagram of
As shown in
In this case, the various sensors 805 include a liquid end detector detecting whether the treatment fluid 201 is present in the container 202; the various motors 806 include motors for driving the pump 203, the application amount/application area adjusting section 233, and the thickness control section 214, and rotating the application roller 212, the feeding roller 121, the feeding roller pair 132, the pickup roller 131, and the like.
Further, in addition to the control of the foam application, the foam application control section 814 performs other controls during the foam application and the control of the foam collection and cleaning operation as described with reference to
An exemplary printing operation in the image forming apparatus is described with reference to the flowcharts in
Referring to
Then, as shown in
Then, the recording target medium (sheet) 100 is fed from the sheet feed section (sheet feed tray 103) to the feeding belt 102. The foam bubbles 210 are applied to the fed recording target medium 100 by the application roller 212, and a printing operation starts when the recording section of the recording target medium 100 reaches the recording head unit 101. On the other hand, when the amount of the foam bubbles 210 applied to the application roller 212 reaches the necessary amount for the printing area of the sheet 100, the supply opening 232 is closed by the movement of the amount/application area adjusting section 233 of the reservoir section 211 to stop the supply of the foam bubbles 210 to the application roller 212.
After the printed recording target medium 100 is discharged, the same process from feeding the sheet is repeated until all necessary sheets are printed. When the all necessary sheets are printed, the supply of the gas to the foam forming section 205 is stopped to stop forming the foam bubbles. Then, the operations of the feeding roller 121 and the feeding roller pair 132 are stopped. Then, after a prescribed time period necessary for the successful completion of the cleaning operation, the feeding belt 102 and the application roller 212 are stopped.
On the other hand, in the process of
In this process, the application roller 212 is being rotated. This is because the maximum gap between the application roller 212 and the feeding belt 102 is narrower than the of total thickness of the thickness of the sheet 100 and the thickness of the foamed setting agent (foam) 210. Therefore, application roller 212 is rotated so as not to obstruct the feeding of the recording target medium 100.
It should be noted that in the above embodiment, the foam application device 200 applies foam bubbles to the sheet on which an image is to be formed. However, for example, the foam application device 200 may be disposed on the downstream side of the recording head unit so that the foam bubbles are applied to the sheet on which an image has been formed already. Further, in the above embodiment, the foam bubbles are formed of a liquid that can be foamed. However, for example, the present invention may also be applied to a device capable of applying the foam bubbles to an application member, the foam bubbles being formed of a gel that can be foamed, and an image forming apparatus including the device.
Further, in the above embodiment, a case is described where the extra foam bubbles that have not been supplied to the application member (application means such as the application roller) are collected. However, the foam bubbles remaining on the application member may be scraped off and cleaned by a cleaning member, so that the foam bubbles scraped off by the cleaning member are collected through a channel, and a heating device may be provided on the channel.
Further, the foam application device according to an embodiment of the present invention may be applied to an electrophotographic-type image forming apparatus, and a fixing method, a fixing device, an image forming method, and an image forming apparatus using a foam-like fixing liquid for fixing resin fine particles to a medium by applying a small amount of the foam-like fixing liquid to the medium without leaving residual oil on the applied medium, the foam-like fixing liquid being capable of being rapidly fixed to the medium on which resin fine particles are adhered after being applied to the medium without disturbing the fine particles including resin such as toner on the medium such as a sheet.
Therefore, as an example, a case is described where the present invention is applied to an electrophotographic-type image forming apparatus with reference to
First, the case is described where the relatively high pressure is applied on the contact surface between the application roller 1011 and the recording medium 1010.
On the other hand,
Because of the feature, in the case where a relatively high pressure is applied on the contact surface between the application roller 1011 and the recording medium 1010, it may become possible to reliably prevent the toner offset in which the unfixed resin fine particles 1015 are adhered to the application surface of the application roller 1011, by measuring the average size of the bubbles 1013 in advance and controlling the film thickness of the layer of the foam-like fixing liquid 1012 formed on the application surface of the application roller 1011 so that the film thickness of the layer of the foam-like fixing liquid 1012 is equal to plural times of the thickness of a single layer of the bubbles 1013.
Next, the case is described where the relatively low pressure is applied on the contact surface between the application roller 1011 and the recording medium 1010.
On the other hand,
Therefore, the toner offset in a case where a relatively low pressure is applied on the contact surface between the application roller 1011 and the recording medium 1010 (under a low-pressure condition) may be reliably prevented by measuring the average size of the bubbles 1013 in advance and controlling the film thickness of the layer of the foam-like fixing liquid 1012 formed on the application surface of the application roller 1011 so that the film thickness of the layer of the foam-like fixing liquid 1012 is equal to the thickness of a single layer of the bubbles 1013. However, when the thickness of the layer of the bubbles 1013 on the application surface of the application roller 1011 is too thick, the bubbles 1013 are likely to move in the area between the application roller 1011 and the recording medium 1010, thereby causing the accompanying movement of the toner particles. As a result, the image may be moved. Therefore, it is preferable to adequately control the film thickness of the layer of the foam-like fixing liquid 1012 so that the toner offset and the movement of the image can be prevented.
As described above, by controlling the film thickness of the layer of the foam-like fixing liquid in accordance with the size of the bubbles included in the foam-like fixing liquid and the applied pressure, it may become possible to prevent the toner offset to contact application means such as the application roller and the movement of the image and fix the unfixed resin fine particles (unfixed toner) to the recording medium with a small amount of application of the foam-like fixing liquid.
Namely, according to an embodiment of the present invention, a method is provided in which resin fine particles on a recording medium are fixed to the recording medium by applying a fixing liquid to the resin fine particles by using contact application means, the resin fine particles having been softened with a softener for dissolving or swelling at least a part of the resin fine particles. In this case, the fixing liquid is in foam form including bubbles when the fixing liquid is applied to and in contact with the resin fine particles. Further, by controlling the film thickness of the layer of the fixing liquid in accordance with the applied pressure, it may become possible to prevent the toner offset to contact application means such as the application roller and the movement of the image and fix the unfixed resin fine particles (unfixed toner) to the recording medium with a small amount of application of the fixing liquid. Further, the method may be effective for resin fine particles such as toner fine particles used in an electrophotographic technique. Further, by controlling the film thickness of the layer of the foam-like fixing liquid in accordance with the film thickness of the layer of the resin fine particles, it may become possible to prevent toner offset and the movement of the image.
The present application is based on and claims the benefit of priority of Japanese Patent Application Nos. 2007-320952, filed on Dec. 12, 2007 and 2008-229693, filed on Sep. 8, 2008, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-320952 | Dec 2007 | JP | national |
2008-229693 | Sep 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/072581 | 12/4/2008 | WO | 00 | 5/25/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/075339 | 6/18/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4158076 | Wallsten | Jun 1979 | A |
4203837 | Hoge et al. | May 1980 | A |
4308105 | Schiffers et al. | Dec 1981 | A |
4474110 | Rosner | Oct 1984 | A |
4620983 | Zimmer | Nov 1986 | A |
6000784 | Takemoto et al. | Dec 1999 | A |
6183079 | Meade et al. | Feb 2001 | B1 |
6257716 | Yanagawa et al. | Jul 2001 | B1 |
6402317 | Yanagawa et al. | Jun 2002 | B2 |
6439713 | Noguchi et al. | Aug 2002 | B1 |
6623816 | Tanikawa et al. | Sep 2003 | B1 |
6627015 | Takemoto et al. | Sep 2003 | B1 |
6837578 | Tanikawa et al. | Jan 2005 | B2 |
7070269 | Tanikawa et al. | Jul 2006 | B2 |
7334858 | Kogure et al. | Feb 2008 | B2 |
7434927 | Sakuma et al. | Oct 2008 | B2 |
7621632 | Imoto et al. | Nov 2009 | B2 |
7682016 | Sakuma et al. | Mar 2010 | B2 |
20070051832 | Jones et al. | Mar 2007 | A1 |
20080106566 | Kogure et al. | May 2008 | A1 |
20090052917 | Kogure et al. | Feb 2009 | A1 |
20100165016 | Ichimura et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0089616 | Sep 1983 | EP |
59-69179 | Apr 1984 | JP |
62-241572 | Oct 1987 | JP |
03162894 | Jul 1991 | JP |
7-100415 | Apr 1995 | JP |
8-323977 | Dec 1996 | JP |
8-327788 | Dec 1996 | JP |
2002-137378 | May 2002 | JP |
2003-205673 | Jul 2003 | JP |
2004-330569 | Nov 2004 | JP |
2005-138502 | Jun 2005 | JP |
WO2007094245 | Aug 2007 | WO |
WO2009008490 | Jan 2009 | WO |
Entry |
---|
Jan. 21, 2011 European search report in connection with counterpart European patent application No. 08 86 0317. |
Number | Date | Country | |
---|---|---|---|
20100245460 A1 | Sep 2010 | US |