Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
The following is an explanation of a transport unit 22 according to a preferred embodiment of the present invention with reference to the drawings. In addition, an example of a guide unit 24 according to the present invention is described.
First, the overall structure of a photocopier that uses the transport unit according to the present embodiment is explained.
Also, the photocopier in
Further, in the photocopier a laser scan unit (hereafter referred to as the LSU) 15 is disposed below the four image forming units 3, 4, 5, and 6. The laser scan unit 15 forms an electrostatic latent image on each photosensitive drum by scanning the surface of the photosensitive drum of each of the four image forming units 3, 4, 5, and 6.
Also, the photocopier includes a pair of secondary transfer rollers 8 to transfer toner images formed on the intermediate transfer belt 7 to sheets supplied from the sheet supply cassette 2, a fixing unit 9 to fix the transferred toner images onto the sheets, and a discharge tray 16 to discharge sheets on which the toner images have been fixed by the fixing unit 9.
Next, the sheet transport path is explained.
Sheets housed in the sheet supply cassette 2 are supplied by a pair of sheet supply rollers 18 disposed above the sheet supply cassette 2. The sheets are then transported via a pair of registration rollers 23 where any slanting of the sheets is corrected, the pair of secondary transfer rollers 8, and the fixing unit 9, to the discharge tray 16. Here, the pair of sheet supply rollers 18, the pair of secondary transfer rollers 8, and the fixing unit 9 are disposed along a side surface 1a of the main body 1, so a transport path 19 on which sheets are transported is formed along the side surface 1a.
Next, the pair of secondary transfer rollers 8 is explained.
The pair of secondary transfer rollers 8 includes a secondary transfer roller 20 disposed on the side surface 1a side sandwiching the transport path 19, and an opposing roller 21 disposed in a position in opposition to the secondary transfer roller 20 and sandwiching the intermediate transfer belt 7. The secondary transfer roller 20 presses against the opposing roller 21, and in this nip area the toner image formed on the intermediate transfer belt 7 is transferred to the sheet.
Next, a transport unit 22 supported so that it can be freely opened and closed with respect to the main body of the photocopier 1 is explained.
Using the transport path 19 as criterion, a portion on the side surface 1a side is formed as the transport unit 22. The transport unit 22 is shown hatched in
As shown in
At both ends in the lengthwise direction of the support member 26, projections 26c are formed, each projecting outwards. The guide unit 24 is installed in the transport unit 22 by fitting the projections 26c into through holes 22c formed in installation plates 22b of the transport unit 22 (see
Also, spring members 28 are installed on the rear surface of the support member 26 near both ends in the lengthwise direction (see
Also, a transfer device according to the present invention includes the secondary transfer roller 20 according to the present embodiment. The transfer unit according to the present embodiment includes the transfer device, the supply rollers 18, registration rollers 23, and guide unit 24. The intermediate transfer belt 7 according to the present embodiment is equivalent to the image carrier according to the present invention. Also, the secondary transfer roller 20 according to the present embodiment is equivalent to an example of a transfer roller according to the present invention. Also, the blade spring member 30 according to the present embodiment is equivalent to an example of the connecting member according to the present invention. The varistor 31 according to the present embodiment is equivalent to an example of the non-linear element according to the present invention. Also, the image forming units 3, 4, 5, and 6, the LSU 15, and the opposing roller 21 are equivalent to an example of the image forming unit according to the present invention.
The following is an explanation of the operation of the transport unit 22 according to the present embodiment with the structure as described above. At the same time an example of the operation of the guide unit 24 is also explained.
In the photocopier shown in
Then, if the transported sheet is transported slanted with respect to the transport direction, this is corrected at the pair of registration rollers 23. Then the toner image formed on the intermediate transfer belt 7 based on the document that was read is transferred onto the sheet by the voltage applied to the secondary transfer roller 20.
Next, the toner image that was transferred onto the sheet is fixed in the fixing unit 9, and discharged to the discharge tray 16.
When transfer is being carried out by the secondary transfer roller 20, even if, for example, a sheet is transported when the humidity is high, the guide plate 25 is connected to ground via the varistor 31. Therefore, it is possible to suppress the flow of transfer current through the sheet to the guide plate 25, so it is possible to reduce the occurrence of transfer defects. This is because during transfer, a voltage of about 1.5 kV is applied to the secondary transfer roller 20. However, as the sheet is interposed, the voltage between the guide plate 25 and the ground plate 33, in other words, the voltage between both ends of the varistor 31, is less than the predetermined value 470V. Therefore the resistance value of the varistor 31 remains large, and little current flows.
On the other hand, if the guide plate 25 is charged by friction between a sheet and the guide plate 25 during sheet transport, if the charging causes a potential difference between the guide plate 25 and the ground plate 33 of 470V or more, the resistance value of the varistor 31 becomes smaller so that current can flow. Therefore the charge on the guide plate 25 is dissipated by discharge via the varistor 31.
In this way, in the present embodiment, transfer defects caused by the flow of transfer current to the guide plate 25 are suppressed. In addition, it is possible to suppress charging of the guide plate 25.
In the present embodiment, a varistor with a predetermined value of 470V was used; however, the value may be changed as appropriate to suit the location of installation of the photocopier. In other words, if the photocopier is installed in a high temperature high humidity area, transfer current can easily flow to the guide plate. Therefore it is necessary to use a varistor with a high predetermined value.
Also, as stated above, the guide unit 24 according to the present embodiment is installed in the transport unit 22 by just the projections 26c. Therefore it is easy to remove each varistor 31. Therefore, if the predetermined value of the varistor installed during manufacture is not suitable for the actual environment in which the photocopier is installed, just the guide unit 24 needs to be changed. Therefore adjustment to suit the environment is easy.
The present embodiment was explained for a case in which the guide unit 24 is used in a tandem type color photocopier. However, a one-drum type color photocopier, or a monochrome photocopier may also be used. If a monochrome type photocopier is used, there is no need to provide an intermediate transfer belt. Therefore, the guide unit 24 is disposed between the transfer roller which is disposed in opposition to the photosensitive drum and the registration rollers. In this case, the photosensitive drum is equivalent to an example of the image carrier according to the present invention.
Also, in the present embodiment, paper was used as an example of the sheet onto which toner images are transferred in the present invention. However, OHP sheets may also be used.
The guide unit and transport unit according to the present invention are effective for suppressing the flow of transfer current to the guide plate, and are useful in image forming apparatus such as facsimile machines, printers, photocopiers, and so on.
The term “configured” as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function.
Moreover, terms that are expressed as “means-plus function” in the claims should include any structure that can be utilized to carry out the function of that part of the present invention.
In understanding the scope of the present invention, the term “configured” as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function. In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers, and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including,” “having,” and their derivatives. Also, the terms “part,” “section,” “portion,” “member,” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. As used herein to describe the present invention, the following directional terms “forward, rearward, above, downward, vertical, horizontal, below, and transverse” as well as any other similar directional terms refer to those directions of an image forming apparatus equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to an image forming apparatus equipped with the present invention as normally used. Finally, terms of degree such as “substantially,” “about,” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. For example, these terms can be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
JP 2006-126402 | Apr 2006 | JP | national |