1. Technical Field
The present invention relates to an image forming apparatus and an image density controlling method, and in particular to an image forming apparatus that forms an image using toner to form a latent image on a photoconductor that has been exposed in accordance with image data and an image density controlling method for the image forming apparatus.
2. Related Art
Image forming apparatus have image quality requirements, and there have been demands to improve image formation speed and to make such apparatus compact.
As a result of attempts to satisfy such demands, when images with high image density are continuous, it is common for image forming apparatus to be configured such that toner is supplied to developing units from one end in the fast-scanning direction to the other end. For this reason, sometimes there are drawbacks, such as the image forming apparatus becoming unable to maintain uniformity in the supply of the toner in the fast-scanning direction to the developing units, and image density differences in the fast-scanning direction arise.
According to an aspect of the invention, an image forming apparatus, forming an image by two-dimensionally fast and slow-scanning and exposing with light that has been modulated in accordance with image data representing an image and visualizing an electrostatic latent image with toner, includes a calculating unit that divides an image region in a fast-scanning direction into plural regions and calculates image data amounts to be used for image formation in the image data per each of the plural regions, and a correcting unit that corrects, on the basis of the calculation result of the calculating unit, unevenness of density in the fast-scanning direction in the toner image resulting from a distance between a position where the toner is supplied to a developing roll and a position where the toner is supplied to each of the plural regions.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
An exemplary embodiment of the present invention will be described in detail below with reference to the drawings.
As shown in
Each of the image recording units 44 includes a photoconductor drum 46 that is rotatably supported on an unillustrated apparatus body frame. A cleaner 48, an erase lamp (not shown), a charger 50, a laser scanner 12, a developing unit 52, and a first transfer roll 54 are disposed around each of the photoconductor drums 46 in order along the drum rotational direction (clockwise direction in
That is, toner remaining on the photoconductor drums 46 is removed by the cleaners 48, and the surfaces of the photoconductor drums 46 are destaticized by the destaticization-use erase lamps, charged by the chargers 50 and irradiated with light by the laser scanners 12 such that latent images are formed on the surfaces of the photoconductor drums 46. Then, toner images are formed by the developing units 52 from the latent images formed by the laser scanners 12, and the toner images are transferred to the intermediate transfer belt 40 by the first transfer rolls 54. It will be noted that slow-scanning is conducted by the photoconductor drums 46 and fast-scanning is conducted is conducted by the laser scanners 12.
The image forming apparatus 10 also includes an auto density control (ADC) sensor 34 that is disposed downstream of the black (K) image recording unit 44K in the belt traveling direction X. The ADC sensor 34 is for detecting the density of the toner images of the respective colors of cyan, magenta, yellow, and black formed on the intermediate transfer belt 40 and conducting feedback of the light amount of the laser scanners 12. It will be noted that the ADC sensor 34 may be a reflective photosensor.
Each of the developing units 52 includes a magnetic permeability sensor (auto toner control sensor, or ATC sensor) 14 for measuring the toner density (=(toner/toner+carrier)×100) of a developing agent and conducting toner supply feedback.
Paper serving as the target of image recording is housed in an unillustrated paper supply cassette, and the paper is removed one sheet at a time by a pickup roll 56 disposed at the side of the paper supply cassette from which the paper is removed. The removed paper is conveyed along a path indicated by the dotted line in
Here, the developing units 52 and the positional relationship between the ADC sensor 34 and the ATC sensors 14 in the fast-scanning direction will be described.
As shown in
The toner supply unit 52D is disposed on the fast-scanning direction end portion of the stirring auger 52C. The fast-scanning direction end portion of the stirring auger 52C where the toner supply unit 52D is disposed (below, the fast-scanning direction end portion where the toner supply unit 52D is disposed will be called the OUT side, and the other end portion will be called the IN side) is positioned on the front side of the tandem color printer 10, and the toner is supplied from the toner supply unit 52D by opening and closing an unillustrated door. Specifically, the toner supply unit 52D includes an unillustrated cartridge and is configured such that the toner can be replaced by replacing this cartridge.
The toner supplied from the toner supply unit 52D is conveyed from the OUT side to the IN side while being stirred by the stirring auger 52C and is moved to the supply auger 52B at the IN side. Then, the toner supplied from the supply auger 52B is supplied to the developing roll 52A.
In the present exemplary embodiment, since the toner supply amount is reduced at the moment the toner reaches the OUT side because the toner is supplied to the developing roll 52A from the IN side to the OUT side, the ATC sensor 14 is disposed at the IN side of the stirring auger 52C in order to properly control the toner supply amount. In contrast, the ADC sensor 34 is disposed in the substantial center of the fast-scanning direction in order to detect a patch image formed on the intermediate transfer belt 40.
Next, the configuration of a control system of the tandem color printer 10 pertaining to the exemplary embodiment of the invention will be described.
The entire tandem color printer 10 pertaining to the present exemplary embodiment is controlled by a print controller 16, and image data from which an image is to be formed is inputted to the print controller 16.
Further, the tandem color printer 10 includes an image processing unit 18, a pulse width modulation circuit 20, a laser driver 22, and a laser light source 24. The formation of images on the photoconductor drums 46 is conducted by these.
When image data is inputted to the print controller 16, the image data is outputted to the image processing unit 18, where the image data undergoes predetermined image processing, and is then outputted to the pulse width modulation circuit 20.
In the pulse width modulation circuit 20, modulation data for emitting modulated light corresponding to the image data is generated and outputted to the laser driver 22.
The laser driver 22 drives the laser light source 24 on the basis of the modulation data and scans and exposes the photoconductor drums 46. Thus, scanning and exposure are conducted in the fast-scanning direction on the photoconductor drums 46, slow-scanning is conducted by the rotation of the photoconductor drums 46, and images are formed on the photoconductor drums 46.
As mentioned above, because the tandem color printer 10 pertaining to the present exemplary embodiment is configured such that the toner is supplied to the developing rolls 52A from the IN side to the OUT side, there is a tendency for the toner supply amount at the OUT side to become reduced such that density differences in the fast-scanning direction arise. For this reason, the tandem color printer 10 is configured to prevent density differences in the fast-scanning direction by conducting density control, and this density control is conducted by an image density control unit 26.
The image density control unit 26 includes an image counting unit 28, an image count region-specific calculating unit 30, a fast-scanning density difference calculating unit 35, an exposure correction amount control unit 36, a toner supply amount control unit 66, and an image density target value storage unit 38.
The image counting unit 28 inputs the image data from the print controller 16 and counts the image data amount. For example, the image counting unit 28 calculates, as the image data amount, the number of effective signals with which an image is to be formed in the image data. It will be noted that the counting of the image data amount is conducted by counting, in the smallest unit of the image data, the image data amount with which an image is to be formed, or by counting the accumulation of image data amounts with which an image is to be formed in one job. For example, as shown in
As shown in
The fast-scanning density difference calculating unit 35 calculates the density difference in the fast-scanning direction by calculating the corrected image data amount count per region (image data amount corresponding to the amount of toner consumed per region at the time of toner supply) using a predetermined correction coefficient per region (region nos. 1 to 6) and calculating the density decrease amount per region corresponding to the calculated corrected image data amount count. In the present exemplary embodiment, the correction coefficients are set such that they become larger in order from region no. 1 to region no. 6 in consideration of toner consumption at the time of supply because the toner is supplied to the developing rolls 52A from the IN side to the OUT side. An example of the correction coefficients is shown in
The exposure correction amount control unit 36 calculates the exposure amount increase distribution and controls the laser driver 22 in accordance with the calculation result by calculating the exposure amount increase per region from the density decrease amount per region calculated by the fast-scanning density difference calculating unit 35. That is, the exposure correction amount control unit 36 controls density unevenness in the fast-scanning direction resulting from the distance from the position where the toner is supplied to the developing rolls 52A to each region by controlling the exposure amount. Specifically, the density decrease distribution in the fast-scanning direction becomes as shown in
The toner supply amount control unit 66 detects the toner density with the ATC sensors 14 disposed in the developing units 52 and controls the toner supply amount.
The detection results of the ATC sensors 14 are inputted to the toner supply amount control unit 66 after predetermined signal processing is conducted by a toner density detection signal processing unit 68.
The image density target value storage unit 38 stores a target value of toner density for controlling the toner supply detected by the ATC sensors 14 and a target value of the patch image detected by the ADC sensor 34.
Moreover, the tandem color printer 10 pertaining to the present exemplary embodiment includes a control/density detection pattern data generating unit 72. Pattern data for detecting the density of the toner image of each color is generated, the patch image is generated on the intermediate transfer belt 40 on the basis of the pattern data generated by the control/density detection pattern data generating unit 72, and the density of the patch image is detected by the ADC sensor 34.
When the density of the patch image is detected by the ADC sensor 34, the detection result of the ADC sensor 34 is outputted to the exposure correction amount control unit 36 after predetermined signal processing is administered thereto by an image density detection signal processing unit 70. Then, in the exposure correction amount control unit 36, the target value of the density of the patch image stored in the image density target value storage unit 38 and the density of the detection result of the ADC sensor 34 are compared and density control is conducted.
Next, an example of the operation conducted by the tandem color printer 10 pertaining to the exemplary embodiment of the present invention configured as described above will be described.
First, image density correction in the fast-scanning direction conducted at the time of image formation will be described.
When image data is inputted to the print controller 16, first, in step 100, the image data amount of the inputted image data is counted by the image counting unit 28. Then, the flow moves to step 102.
In step 102, the image data amount per region in the fast-scanning direction is calculated by the image count region-specific calculating unit 30. Then, the flow moves to step 104. The image data amount of each region is counted as shown in
In step 104, the density difference in the fast-scanning direction is calculated by the fast-scanning density difference calculating unit 35 by calculating the density decrease amount per region. Specifically, the fast-scanning density difference calculating unit 35 calculates the density difference in the fast-scanning direction by calculating the accumulated image data amount count of each region, using the predetermined correction coefficients per region to calculate the corrected image data amount count corresponding to the amount of toner consumed per region at the time of toner supply, and calculating the density decrease amount corresponding to the corrected image data amount count. For example, in the case of
Next, in step 106, the exposure correction amount per region (exposure amount increase distribution) is calculated by the exposure correction amount control unit 36 on the basis of the density calculation results. Then, the flow moves to step 108, where the laser driver 22 is driven by the exposure correction amount control unit 36 in accordance with the calculated exposure correction amounts. Then, the flow moves to step 110. For example, assuming that the exposure correction amount of each region (exposure amount increase) in the case of
In step 110, whether or not image formation has ended is determined by the image density control unit 26. This determination is done by determining whether or not there is image data to be inputted from the print controller 16. When the determination is NO, then the flow returns to step 100 and the above-described processing is repeated. The series of processing ends when the determination in step 110 is YES.
Here, the aforementioned image density correction will be described using an example (
The image data amount of the image data is calculated by the image counting unit 28, and the image data amount per region is calculated by the image count region-specific calculating unit 30. In the case of
Next, the accumulated image data amount count of each region is calculated. In the case of
Further, with respect to the predetermined correction coefficients (
Then, the density decrease amounts are calculated from the corrected image data amount counts. In the case of
Finally, the exposure amount increases are calculated from the density decrease amounts. In the case of
In this manner, in the present exemplary embodiment, the fast-scanning direction is plurally divided, the image data amount of each region is calculated, the predetermined correction coefficients are used per region, the corrected image data amount counts corresponding to the amount of toner consumed per region at the time of toner supply are calculated, the density decrease amounts of each region are calculated from the calculated corrected image data amount counts, and the exposure amounts for correcting the densities corresponding to the calculated density decrease amounts are calculated to correct the exposure amounts.
Next, image density control that is conducted at a predetermined timing and forms the patch image and controls image density will be described.
The image density control forms the patch image at a predetermined timing on the intermediate transfer belt 40, detects the density of the patch image, and conducts control such that the detection result becomes a target density.
In step 200, the patch image formed on the intermediate transfer belt 40 on the basis of the pattern data representing the patch image generated by the control/density detection pattern data generating unit 72 is detected by the ADC sensor 34. Then, the flow moves to step 202. That is, the detection result of the ADC sensor 34 is inputted to the exposure correction amount control unit 36 after predetermined signal processing is conducted by the image density detection signal processing unit 70.
In step 202, the detection result of the ADC sensor 34 that has been signal-processed and the target value stored in the image density target value storage unit 38 are compared by the exposure correction amount control unit 36.
Next, in step 204, whether or not the density of the patch image is lower than the target value is determined by the exposure correction amount control unit 36 from the comparison result of step 202. When the determination is YES, then the flow moves to step 206. When the determination is NO, then the flow moves to step 208. It will be noted that the determination in step 204 is conducted by determining whether or not the density is substantially Δ0.05 lower than the target value, for example.
In step 206, the laser driver 22 is controlled by the exposure correction amount control unit 36 to increase the exposure amount. Then, the flow moves to step 208.
In step 208, whether or not the density of the patch image is higher than the target value is determined by the exposure correction amount control unit 36 from the comparison result of step 202. When the determination is YES, then the flow moves to step 210. When the determination is NO, then the image density control ends. It will be noted that the determination in step 208 is conducted by determining whether or not the density is substantially Δ0.05 higher than the target value, for example.
In step 210, the laser driver 22 is controlled by the exposure correction amount control unit 36 to reduce the exposure amount. Then, the series of processing ends.
In this manner, stable image formation becomes possible by controlling the exposure amount such that the density of the patch image becomes a predetermined target value.
Next, control pertaining to image density that is conducted by controlling the toner supply and stirring for the developing units 52 will be described.
In step 300, the developing units 52 are driven by the toner supply amount control unit 66. Then, the flow moves to step 302. The toner supply amount control unit 66 drives the developing units 52 at a timing when image data is inputted to the print controller 16, for example.
In step 302, whether or not a predetermined amount of time has elapsed is determined by the toner supply amount control unit 66. This determination is done by determining whether or not an amount of time (e.g., 1 sec) until the developing agent inside the developing units 52 is stable has elapsed. The toner supply amount control unit 66 stands by until this determination becomes YES, and then the flow moves to step 304.
In step 304, the detection results of the ATC sensors 14 are acquired by the toner supply amount control unit 66. That is, the detection results of the ATC sensors 14 are inputted to the toner supply amount control unit 66 after predetermined signal processing has been administered thereto by the toner density detection signal processing unit 68.
In step 306, the detection results of the ATC sensors 14 that have been signal-processed and the target value stored in the image density target value storage unit 38 are compared by the toner supply amount control unit 66. Then, the flow moves to step 308.
In step 308, whether or not the toner density inside the developing units 52 is lower than the target value is determined by the toner supply amount control unit 66 from the comparison result in step 306. When the determination is NO, then the flow returns to step 304 and the above-described processing is repeated. When the determination is YES, then the flow moves to step 310. It will be noted that the determination in step 308 is conducted by determining whether or not the toner density weight ratio is substantially Δ0.2% lower than the target value, for example.
In step 310, whether or not the toner has already been stirred in the developing units 52 is determined by the toner supply amount control unit 66. When the determination is NO, then the flow moves to step 312. When the determination is YES, then the flow moves to step 314.
In step 312, the toner is stirred inside the developing units 52 while being supplied by the toner supply amount control unit 66. Then, the flow moves to step 316. That is, the toner supply units 52D are controlled by the toner supply amount control unit 66 such that the toner is supplied, and the developing units 52 are controlled by the toner supply amount control unit 66 such that the stirring augers 52C rotate and stir the toner.
In step 314, the toner density is lower than the target value even if toner supply and toner stirring are conducted. Thus, the toner supply amount control unit 66 conducts control such that a message or the like prompting toner cartridge replacement is displayed on an unillustrated display unit, whereby notification is given to replace the toner cartridge. Then, the flow moves to step 316.
In step 316, whether or not the developing units 52 have stopped is determined by the toner supply amount control unit 66. For example, the determination is YES and the series of toner density control ends when the formation of all images corresponding to the image data inputted to the print controller 16 ends or when an instruction for the apparatus to stop image formation has been given. When the determination is NO, then the flow returns to step 304 and the above-described processing is repeated.
That is, in the tandem color printer 10 pertaining to the present exemplary embodiment, when the toner density inside the developing units 52 is lower than a target value, the toner is stirred to stabilize the toner density and the toner is supplied inside the developing units 52 to stabilize the toner density.
It will be noted that the toner density control of the tandem color printer 10 pertaining to the preceding exemplary embodiment is configured such that the toner is stirred while the toner is supplied when the toner density is lower than the target value. However, the toner density control may also be configured such that just toner stirring is conducted, or such that just toner supply is conducted, or such that the toner is supplied inside the developing units 52 when the toner density inside the developing units 52 is low after stirring has been conducted.
The foregoing description of the exemplary embodiment of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiment was chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-008649 | Jan 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3881446 | Kurita et al. | May 1975 | A |
6750892 | Suzuki | Jun 2004 | B2 |
7218871 | Ogata | May 2007 | B2 |
7283756 | Suzuki | Oct 2007 | B2 |
7412194 | Okuda et al. | Aug 2008 | B2 |
Number | Date | Country |
---|---|---|
B2-2885680 | Feb 1992 | JP |
09204094 | Aug 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20070165095 A1 | Jul 2007 | US |