A more complete appreciation of example embodiments and the many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict example embodiments and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
It will be understood that if an element or layer is referred to as being “on”, “against”, “connected to”, or “coupled to” another element or layer, then it can be directly on, against, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, if an element is referred to as being “directly on”, “directly connected to”, or “directly coupled to” another element or layer, then there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper”, and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein are interpreted accordingly.
Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, it should be understood that these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are used only to distinguish one element, component, region, layer, or section from another region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
In describing example embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, particularly to
As illustrated in
The image forming apparatus 100 may be a copying machine, a facsimile machine, a printer, a multifunction printer including copying, printing, scanning, and facsimile functions, or the like. According to this non-limiting example embodiment, the image forming apparatus 100 functions as a color printer for forming a color image on a recording medium by an electrophotographic method.
The paper trays 1 and 2 are disposed in a lower portion of the image forming apparatus 100. The paper trays 1 and 2 load a recording sheet (e.g., a sheet P). The sheet P may include information paper, coated paper, and/or non-coated paper. The information paper may include office automation paper (e.g., plain paper and/or the like) generally used for a copying machine, a printer, and/or the like. The coated paper may include cast-coated paper, art paper, and/or light weight coated paper. The non-coated paper may include high quality paper, medium quality paper, and/or low quality paper. The sheet P may further include an OHP (overhead projector) transparency formed of a plastic material (e.g., polyethylene terephthalate and/or the like).
The image forming apparatus 100 may form a toner image having a uniform, high gloss. Therefore, the image forming apparatus 100 may use coated paper having small surface asperities or special paper including a thermoplastic resin on its surface into which a toner layer is embedded to form a smooth toner image.
A sheet P fed from the paper tray 1 or 2 is conveyed on the conveying path 12 toward an upper portion of the image forming apparatus 100. The conveying belt 3 conveys the sheet P in a state that a surface of the conveying belt 3 supports the sheet P. The image forming device 4 forms and superimposes yellow, cyan, magenta, and black toner images to form a color toner image, and transfers the color toner image onto the sheet P conveyed on the conveying belt 3. The conveying belt 3 conveys the sheet P bearing the color toner image toward the upper portion of the image forming apparatus 100.
The sheet P bearing the color toner image (e.g., the sheet P having a toner layer on its surface) is conveyed to the fixing device 5. While the sheet P is conveyed in the fixing device 5, heat and pressure are applied on the sheet P bearing the color toner image to fix the color toner image on the sheet P. For example, in the fixing device 5, the fixing roller 33 faces the color toner image on the sheet P. The fixing roller 33 has a diameter of about 30 mm and includes a tube, an elastic layer, and/or a releasing layer. The tube includes aluminum. The elastic layer includes a liquid silicon rubber and is formed on the tube. The releasing layer includes fluoroplastic (e.g., PTFE (polytetrafluoroethylene) and/or the like) and forms a surface layer of the fixing roller 33. The pressing roller 34 has a diameter of about 30 mm and includes a core, an elastic layer and/or a releasing layer. The core includes aluminum. The elastic layer includes a silicon rubber and is formed on the core. The releasing layer includes fluoroplastic (e.g., PTFE and/or the like) and forms a surface layer of the pressing roller 34. According to this non-limiting example embodiment, this first fixing operation is referred to as tentative fixing and a process for performing the tentative fixing is referred to as a first fixing process.
The conveyance path selector 8 guides the sheet P bearing the tentatively fixed color toner image toward the storing tray 6. For example, the sheet P is conveyed downward in the upper portion of the image forming apparatus 100. The storing tray 6 serves as a sheet storing member for storing the sheet P conveyed from the fixing device 5. For example, sheets P bearing a tentatively fixed color toner image are stored in the storing tray 6 as needed.
A sheet P bearing a tentatively fixed color toner image is fed from the storing tray 6 to return to the conveying path 12, and is conveyed toward the fixing device 5 again. The gloss sheet tray 7 loads a gloss sheet S. A gloss sheet S is fed from the gloss sheet tray 7 at a proper time when the gloss sheet S is superimposed on the tentatively fixed color toner image on the sheet P. The sheet P is conveyed to the fixing device 5 in a state that the gloss sheet S is superimposed on the sheet P. While the sheet P is conveyed in the fixing device 5, heat and pressure are applied to the tentatively fixed color toner image on the sheet P to fix the tentatively fixed color toner image on the sheet P. For example, a surface of the toner image is deformed to correspond to a surface of the sheet P. According to this non-limiting example embodiment, this second fixing operation is referred to as regular fixing and a process for performing the regular fixing is referred to as a second fixing process. The sheet P bearing the regular-fixed color toner image is conveyed together with the gloss sheet S. For example, the conveyance path selector 8 guides the sheet P toward an outside of the image forming apparatus 100. Thus, the sheet P and the gloss sheet S are output onto the outside of the image forming apparatus 100.
A user picks up the sheet P output on the outside of the image forming apparatus 100, and separates (e.g., strips) the gloss sheet S from the sheet P. Thus, the toner image having a smooth surface is formed on the sheet P. The toner image appearing on the sheet P after the gloss sheet S is removed may provide a high quality image having an improved color reproduction and an increased image density. Namely, the image forming apparatus 100 may produce a high quality image.
The controller 13 controls operations of the image forming apparatus 100.
As described above, the image forming apparatus 100 includes the fixing device 5 which performs the first and second fixing processes. The image forming apparatus 100 further includes the storing tray 6 which temporarily stores a sheet P bearing a color toner image tentatively fixed in the first fixing process.
Referring to
The image forming device 4 superimposes toner images having four color components (e.g., yellow, cyan, magenta, and black) respectively on a sheet P to form a color toner image on the sheet P. As illustrated in
The four image forming units 20Y, 20C, 20M, and 20K have a common structure. Therefore, the following describes the image forming unit 20Y. The photoconductor 22Y rotates in a rotating direction A. The charger 23Y charges the photoconductor 22Y to have a reference electric potential. The optical unit 24 emits light onto the charged photoconductor 22Y according to print image data (e.g., image data on which image processing is performed) so as to form an electrostatic latent image on the photoconductor 22Y. The developing device 25Y develops the electrostatic latent image with a toner in a corresponding color (e.g., a yellow toner in the image forming unit 20Y) so as to form a yellow toner image on the photoconductor 22Y. The first transfer member 26Y transfers the yellow toner image from the photoconductor 22Y onto the intermediate transfer belt 21. The cleaner 27Y removes residual yellow toner not transferred onto the intermediate transfer belt 21 and thereby remaining on the photoconductor 22Y from the photoconductor 22Y.
The image processor 30 includes an MTF (modulation transfer function) filter processor (not shown), a gray-scale correction processor (not shown), and/or a pseudo-halftone processor (not shown). Input image data may be sent from a personal computer (not shown). Alternatively, input image data may be sent from an image scanner (not shown) when the image forming apparatus 100 functions as a copying machine. The input image data generally includes RGB (red, green, blue) multi-valued image data (e.g., 8-bit image data). The MTF filter processor performs enhancement processing on the input image data and color conversion processing for converting the enhanced image data in an RGB color space into image data in a CMYK (cyan, magenta, yellow, black) color space. The gray-scale correction processor (e.g., a γ converter) performs density control on the converted image data so that the image data has a reference gray scale. The pseudo-halftone processor performs pseudo-halftone processing so that the image data has a reference print property. The image processor 30 sends the processed image data (e.g., 600-dpi, 4-bit output image data) to the video signal processor 31.
The video signal processor 31 includes video signal processors for yellow, cyan, magenta, and black image data having a common structure. Therefore, the following describes a video signal processor for yellow image data.
When the video signal processor 31 (e.g., a video signal processor for yellow image data) receives output image data (e.g., processed image data), the output image data is stored in line memories (not shown) provided in accordance with the number of light emitters (e.g., laser diodes). The image data stored in the line memories and corresponding to each pixel is sent to a PWM (pulse width modulation) controller (not shown) at a reference time (e.g., a pixel clock) in accordance with a signal (e.g., a synchronous signal) synchronizing with rotation of a polygon mirror (not shown). According to this non-limiting example embodiment, one light emitter is provided for each of yellow, cyan, magenta, and black image data. The PWM controller converts the image data into a pulse width modulation signal and sends the pulse width modulation signal to an LD (laser diode) driver (not shown). The LD driver performs optical modulation driving on an LD element (e.g., an LD array) with a reference light quantity in accordance with the pulse width modulation signal. According to this non-limiting example embodiment, the PWM controller performs pulse width modulation control corresponding to output image data for each of yellow, cyan, magenta, and black colors so as to perform optical modulation driving of laser beams.
A collimate lens (not shown) shapes light beams emitted by the LD element into parallel light beams. An aperture (not shown) shapes the parallel light beams into a light flux having a reference beam diameter. The light flux passes a cylindrical lens (not shown) and irradiates the polygon mirror. The polygon mirror reflects the light flux toward a scanning lens (not shown), such as an fθ lens. The fθ lens gathers the reflected light flux. A deflecting mirror (not shown) deflects the gathered light flux toward the photoconductor 22Y so that the deflected light flux forms an electrostatic latent image on the photoconductor 22Y. As described above, the electrostatic latent image is developed with a yellow toner into a yellow toner image. The yellow toner image is transferred and superimposed on the intermediate transfer belt 21 together with cyan, magenta, and black toner images formed on the photoconductors 22C, 22M, and 22K, respectively. The superimposed yellow, cyan, magenta, and black toner images are further transferred from the intermediate transfer belt 21 onto a sheet P.
The following describes a toner used in the image forming apparatus 100 (depicted in
A gloss sheet S has a size equivalent to or greater than a size of a sheet P. According to this non-limiting example embodiment, the gloss sheet S and the sheet P have a common size (e.g., an A4 size). For example, the gloss sheet S includes a PET (polyethylene terephthalate) material having a thickness of about 70 μm and a surface roughness of about 0.2 μm. However, the gloss sheet S may include a material (e.g., polyimide, polyester, polypropylene, and/or the like) other than the PET material to provide effects common to the effects provided by the PET material. According to this non-limiting example embodiment, the gloss sheet S includes a single layer. However, the gloss sheet S may include a plurality of layers.
Referring to
While the storing tray 6 stores the sheet P bearing the tentatively fixed toner image, the controller 13, serving as a fixing condition controller, changes a fixing condition of the fixing device 5. For example, the controller 13 changes a fixing temperature of the fixing device 5 from about 170 degrees centigrade to about 185 degrees centigrade while the storing tray 6 stores the sheet P bearing the tentatively fixed toner image.
Referring to
According to the above-described example configurations of the image forming apparatus 100, a toner image on a sheet P, after a gloss sheet S is removed from the sheet P, may provide a high quality image having an improved color reproduction and an increased image density. Namely, the image forming apparatus 100 may produce a high quality image.
Referring to
According to this non-limiting example configuration of the image forming apparatus 100, a toner image on a sheet P, after a gloss sheet S is removed from the sheet P, may provide a high quality image having an improved color reproduction and an increased image density. The increased pressure applied in the second fixing process causes the toner image to be properly buried in the sheet P at a position where the toner image carries a decreased amount of toner. Thus, the toner image has a smooth surface. Namely, the image forming apparatus 100 may produce a high quality image having an improved surface smoothness.
Referring to
The separator 9 separates (e.g., strips) a gloss sheet S from a sheet P after the second fixing process. For example, after the fixing device 5 performs regular fixing for fixing a tentatively fixed toner image on a sheet P in a state that the toner image on the sheet P contacts a gloss sheet S, the separator 9 separates the gloss sheet S contacting the sheet P from the sheet P. The separated sheet P is output onto an outside of the image forming apparatus 100A.
The image forming apparatus 100A performs processes common to the image forming apparatus 100 until the second fixing process. For example, the fixing device 5 tentatively fixes a toner image on a sheet P in the first fixing process. The sheet P bearing the tentatively fixed toner image is sent to the storing tray 6 and temporarily stored in the storing tray 6. The sheet P is sent from the storing tray 6 to the fixing device 5 again. The fixing device 5 performs regular fixing for fixing the tentatively fixed toner image on the sheet P in a state that a gloss sheet S contacts the toner image on the sheet P in the second fixing process.
When the second fixing process is finished, the image forming apparatus 100A performs a process which is not common to the image forming apparatus 100. For example, the separator 9 separates the gloss sheet S from the sheet P. When the sheet P is conveyed near the separator 9, a nail of the separator 9 changes its position to separate the gloss sheet S from the sheet P. The gloss sheet S separated from the sheet P is conveyed on a conveyance path on which the sheet P bearing the tentatively fixed toner image is conveyed after the first fixing process. For example, the gloss sheet S is conveyed downward in the upper portion of the image forming apparatus 100A. The conveyance path selector 10 guides the gloss sheet S toward the gloss sheet tray 7. Namely, the gloss sheet S is returned to the gloss sheet tray 7 so that the gloss sheet S is repeatedly used. The conveyance path selector 8 guides the sheet P separated by the separator 9 from the gloss sheet S toward the outside of the image forming apparatus 100A. Thus, the sheet P is output onto the outside of the image forming apparatus 100A.
According to this non-limiting example embodiment, a user may pick up the sheet P bearing the fixed toner image and being separated from the gloss sheet S. Thus, the user needs not strip the gloss sheet S from the sheet P. The image forming apparatus 100A may provide a high quality image having an improved color reproduction and an increased image density.
Referring to
According to this non-limiting example configuration, a user may select a gloss mode or a normal mode. In the gloss mode, the fixing device 5 (depicted in
Referring to
According to this non-limiting example configuration, a user does not directly select the gloss mode or the normal mode, but specifies a sheet property (e.g., sheet type and/or the like) of a sheet P. The sheet property memory 43 stores properties (e.g., information) of sheets. The sheet determiner 42 refers to the properties stored in the sheet property memory 43 to determine which mode (e.g., the gloss mode or the normal mode) is appropriate for a sheet P based on the sheet property of the sheet P.
For example, when a user selects sheet type (e.g., plain paper, coated paper, and/or the like) of a sheet P, the sheet determiner 42 refers to the properties stored in the sheet property memory 43, and determines which mode (e.g., the gloss mode or the normal mode) is appropriate for the sheet P based on the sheet type of the sheet P selected by the user. The operation determiner 44 invokes operations of the gloss mode or operations of the normal mode stored in the controller 13 (depicted in
Referring to
The gloss detector 45 selects the gloss mode or the normal mode based on a gloss of a sheet P. For example, the sheet gloss detector 46 detects a gloss of a sheet P. The sheet gloss determiner 47 determines the gloss of the sheet P based on a detection result provided by the sheet gloss detector 46. The operation determiner 48 invokes operations of the gloss mode or operations of the normal mode stored in the controller 13 (depicted in
The gloss sensor 11 detects a gloss of a sheet P by detecting a size of regular reflection light. The gloss sensor 11 opposes the conveying path 12 and serves as the sheet gloss detector 46 (depicted in
According to this non-limiting example embodiment, the gloss mode or the normal mode is properly selected in accordance with a gloss of a sheet P. Thus, a toner image on a sheet P may provide a high quality image fitting the sheet P and having an improved color reproduction and an increased image density.
As described above, in an image forming apparatus (e.g., the image forming apparatus 100, 10A, 100B, 100C, or 100D depicted in
Since the single fixing device performs the first and second fixing processes, a recording sheet on which the first fixing process is performed in the fixing device returns to the fixing device for the second fixing process. For example, the recording sheet is conveyed via a long conveying path to an upstream side from the fixing device in a sheet conveyance direction. When the image forming apparatus does not include a sheet storing member (e.g., the storing tray 6 depicted in
To address this problem, the image forming apparatus according to the above-described example embodiments includes the sheet storing member. The sheet storing member stores the previous recording sheet on which the first fixing process is performed before the previous recording sheet returns to the upstream side from the fixing device in the sheet conveyance direction for the second fixing process. Thus, even when a small distance is provided between the previous and next recording sheets, the previous and next recording sheets may not collide with each other. As a result, the image forming apparatus may provide efficient printing and an increased productivity at an increased print speed.
A recording sheet passes the fixing device so that the fixing device performs the first fixing process to tentatively fix a toner image on the recording sheet. The sheet storing member temporarily stores the recording sheet bearing the tentatively fixed toner image. The recording sheet bearing the tentatively fixed toner image passes the fixing device again so that the fixing device performs the second fixing process to fix the tentatively fixed toner image on the recording sheet in a state that the toner image contacts a gloss sheet. The sheet storing member temporarily stores the recording sheet bearing the tentatively fixed toner image before the recording sheet is conveyed to the fixing device for the second fixing process. Therefore, while the sheet storing member stores the recording sheet, fixing conditions set for the first fixing process may be changed for the second fixing process. For example, a fixing temperature for the second fixing process may be different from a fixing temperature for the first fixing process. Thus, fixing conditions appropriate for the first and second fixing processes, respectively, may be set. When a gloss sheet is used to cool and separate a recording sheet, a toner image on the recording sheet may not be easily heated in the second fixing process due to an increased heat capacity provided by the gloss sheet. Therefore, different fixing temperatures are generally applied as fixing temperatures for the first and second fixing processes, respectively. When the image forming apparatus includes the sheet storing member, a single switch of fixing conditions may set different fixing conditions for the first and second fixing processes, respectively, resulting in an improved energy efficiency compared to a configuration in which the sheet storing member is not provided and thereby fixing conditions are switched whenever a recording sheet passes the fixing device. As a result, the image forming apparatus may save energy.
when the fixing temperature is repeatedly increased and decreased to a target temperature, a recording sheet is not conveyed to the fixing device until the fixing device or a fixing roller (e.g., the fixing roller 33 depicted in
The fixing device uses a gloss sheet instead of a fixing belt to apply gloss to a toner image on a recording sheet. When the fixing belt is used for a long time period, the fixing belt may be damaged or may wear. On the contrary, the gloss sheet may be used when a user adds gloss to a toner image on a recording sheet. Namely, the user may not use the gloss sheet when the user does not add gloss to a toner image on a recording sheet, reducing wear of the gloss sheet. The user replaces the gloss sheet instead of the fixing belt with new one, reducing costs. According to the above-described example embodiments, even when the gloss sheet is repeatedly used for a long time period, wear of the gloss sheet may be reduced. Accordingly, the image forming apparatus may provide an increased endurance.
The first and second fixing processes are performed under different fixing conditions, respectively. Thus, the image forming apparatus may form a toner image having a proper gloss. The second fixing process is performed with a gloss sheet which is not used for the first fixing process. Therefore, the second fixing process consumes a greater amount of heat than the first fixing process. Accordingly, proper fixing conditions for the second fixing process differ from proper fixing conditions for the first fixing process. Thus, according to the above-described example embodiments, the image forming apparatus performs the first and second fixing processes under different fixing conditions, respectively.
Even when the different fixing conditions are applied to the first and second fixing processes, respectively, switching of the fixing conditions may be performed once, because the sheet storing member stores recording sheets bearing a toner image tentatively fixed in the first fixing process before the recording sheets are conveyed to the fixing device for the second fixing process. For example, after the first fixing process is performed on a plurality of recording sheets as needed, fixing conditions may be changed to fit the second fixing process and the second fixing process is performed on the plurality of recording sheets. Namely, switching of the fixing conditions may be performed once, providing more efficient printing compared to a configuration in which the fixing conditions are switched for every recording sheet. Thus, the image forming apparatus may provide an increased productivity.
The first and second fixing processes are performed under different fixing temperatures, respectively. Thus, proper fixing may be performed in each of the first fixing process and the second fixing process using a gloss sheet and thereby using an increased amount of heat compared to the first fixing process. As a result, the image forming apparatus may form a toner image having an increased image density and an improved uniform gloss.
The first and second fixing processes are performed at different fixing speeds, respectively. Thus, different amounts of heat are applied to a recording sheet in the first and second fixing processes, respectively, because the second fixing process uses a gloss sheet and thereby uses an increased amount of heat compared to the first fixing process. As a result, proper fixing may be performed both in the first fixing process and the second fixing process. Namely, the image forming apparatus may form a toner image having an increased image density and an improved uniform gloss.
A fixing condition controller (e.g., the controller 13 depicted in
A recording sheet bearing a fixed toner image may be output onto an outside of the image forming apparatus after the image forming apparatus separates a gloss sheet from the recording sheet. Namely, the image forming apparatus may form a high quality image without causing a user to separate the gloss sheet from the recording sheet. An example background image forming apparatus outputs a recording sheet onto an outside of the background image forming apparatus without separating a gloss sheet from the recording sheet so as to provide a value to a user. However, when a user finds a value in a recording sheet bearing a toner image output after being separated from a gloss sheet, the user may regard a task for separating the gloss sheet from the recording sheet as a burden. To address this problem, the image forming apparatus according to the above-described example embodiments frees the user from the task.
The image forming apparatus provides two modes for fixing. For example, the user may select the gloss mode for performing the first and second fixing processes or the normal mode for performing the first fixing process. Thus, the image forming apparatus may form a toner image having balanced quality between image quality and print speed. When plain paper having increased surface asperities and a decreased gloss is used as a recording sheet, a toner image on the recording sheet may not have uniform surface asperities. The normal mode may be selected for plain paper so as to print a toner image on a recording sheet at an increased speed and to provide a user with improved user-friendliness.
The image forming apparatus further includes a control panel (e.g., the control panel 40 depicted in
The image forming apparatus further includes a sheet determiner (e.g., the sheet determiner 42 depicted in
The image forming apparatus further includes a gloss detector (e.g., the gloss detector 45 depicted in
The present invention has been described above with reference to specific example embodiments. Nonetheless, the present invention is not limited to the details of example embodiments described above, but various modifications and improvements are possible without departing from the spirit and scope of the present invention. It is therefore to be understood that within the scope of the associated claims, the present invention may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative example embodiments may be combined with each other and/or substituted for each other within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-190228 | Jul 2006 | JP | national |