This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2011-166678 filed Jul. 29, 2011.
1. Technical Field
The present invention relates to an image forming apparatus and an image forming method.
2. Summary
According to an aspect of the invention, there is provided an image forming apparatus including an image forming unit that forms, on an image bearing member, an image for adjusting operations of the image forming apparatus, a container that contains toner removed from the image bearing member, and a controller that controls formation of the image for adjusting the operations of the image forming apparatus so that after an amount of toner contained in the container reaches a threshold value, an amount of toner removed from the image bearing member and to be contained in the container is reduced to less than before the amount of toner contained in the container reaches the threshold value.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
The cleaning device 20 is disposed downstream of the second transfer roller 18. The cleaning device 20 removes residual toner remaining on a surface of the intermediate transfer belt 17. The cleaning device 20 includes a cleaning member 31 and a transport member 32. The cleaning member 31 has a blade shape. By urging the cleaning member 31 onto the intermediate transfer belt 17, the cleaning device 20 removes residual toner remaining on a surface of the intermediate transfer belt 17. The toner removed by the cleaning member 31 falls down into the housing of the cleaning device 20. The transport member 32 is disposed in the housing. The transport member 32 is rotated by a transport motor (not illustrated). The transport member 32 rotates and transports the toner in the housing to a transport path 36. Thereafter, the toner is transported to a waste toner container 37 (an example of a container) through the transport path 36 and is stored in the waste toner container 37.
The cleaning device 26 is disposed downstream of the first transfer roller 25 and removes residual toner remaining on the surface of the photoconductor drum 21. The cleaning device 26 includes a cleaning member 33 and a transport member 34. The cleaning member 33 has a blade shape. By urging the cleaning member 33 onto the surface of the photoconductor drum 21, the cleaning device 26 removes residual toner remaining on the surface of the photoconductor drum 21. The toner removed by the cleaning member 33 falls down into the housing of the cleaning device 26. The transport member 34 is disposed in the housing. The transport member 34 is rotated by a transport motor (not illustrated). The transport member 34 rotates and transports the toner in the housing to a transport path 36. Thereafter, the toner is transported to a waste toner container 37 through the transport path 36 and is stored in the waste toner container 37.
As illustrated in
In response to a request from a user, the image forming apparatus 1 forms an image. In addition, in order to form an excellent image or maintain the image forming apparatus 1 in an excellent condition, the image forming apparatus 1 performs process control and color registration control (hereinafter referred to as “color regi control”) and forms a toner band 45. In the process control, a pattern 41 is formed in order to control the density of an image. In the color regi control, a pattern 43 for correcting misalignment (an example of a color registration error correction image) is formed in order to correct an error that is caused by incorrect color registration among the images. Each of the pattern 41 for controlling the density, the pattern 43 for correcting misalignment, and the toner band 45 is not an image formed in response to a user request (hereinafter referred to as a “user image”) but an image used for adjustment of the image forming apparatus 1. Accordingly, hereinafter, the pattern 41 for controlling the density, the pattern 43 for correcting misalignment, and the toner band 45 are referred to as “adjustment images”. The adjustment images are not transferred to a sheet of paper. That is, an image used for adjustment of the image forming apparatus 1 is an image other than a user image. More specifically, an image used for adjustment of the image forming apparatus 1 is one of the pattern 41 for controlling the density, the pattern 43 for correcting misalignment, and the toner band 45.
The toner band 45 indicates a strip-shaped image formed on the photoconductor drum 21 using yellow toner, magenta toner, cyan toner, or black toner. Two types of the toner band 45 are formed. One is formed for forcibly ejecting the toner inside the developing device 24. The other is formed for protecting the cleaning member 31 or 33. The toner band 45 formed for forcibly ejecting the toner inside the developing device 24 is described first. The developing device 24 contains toner. The toner is stirred in the developing device 24 by a stirring member. If, for example, images having a low density are continuously formed, the toner is stirred in the developing device 24 for a long period of time. Thus, the surface of a toner particle is removed and, therefore, the quality of the toner is deteriorated. Accordingly, in order to forcibly eject the deteriorated toner and introduce new toner, the toner band 45 is formed.
The toner band 45 formed for protecting the cleaning member 31 or 33 is described next. As described above, the cleaning members 31 and 33 are urged against the surfaces of the intermediate transfer belt 17 and the photoconductor drum 21, respectively. Accordingly, if the amount of toner that reaches the cleaning member 31 or 33 is small, the cleaning member 31 or 33 becomes worn due to a friction between the cleaning member 33 and the intermediate transfer belt 17 or between the cleaning member 31 and the photoconductor drum 21. In order to protect the cleaning members 31 and 33, the toner band 45 illustrated in
A user image is formed on the photoconductor drum 21. Thereafter, the user image is transferred onto a sheet of paper via the intermediate transfer belt 17, and the sheet is output. Accordingly, if a user image is formed, only a small amount of residual toner remains on the surface of the photoconductor drum 21 and, therefore, a small amount of toner is collected into the waste toner container 37. In contrast, an adjustment image is not transferred onto a sheet of paper. Accordingly, if an adjustment image is formed, all the toner that forms the adjustment image remains on the surface of the photoconductor drum 21 or the intermediate transfer belt 17. Thereafter, the toner is collected into the waste toner container 37. Thus, when an adjustment image is formed, the amount of toner collected after one image forming operation is performed is larger than when a user image is formed.
The controller 11 detects whether the waste toner container 37 is full.
If the waste toner container 37 is nearly full, the controller 11 notifies the user of information indicating that the waste toner container 37 is nearly full (step S12). For example, the controller 11 instructs the UI unit 14 to display a message indicating that the waste toner container 37 is nearly full. The user is aware of the waste toner container 37 being nearly full due to the notification. Thereafter, the user prepares a new waste toner container that is to be mounted in place of the waste toner container 37. As illustrated in
In addition, if the waste toner container 37 is nearly full, the controller 11 determines whether the waste toner container 37 is full on the basis of information regarding the use conditions of the image forming apparatus 1 (step S13). Examples of the use condition include the number of printed sheets and the number of pixels. In this case, if the waste toner container 37 is nearly full, the controller 11 starts measuring the number of printed sheets and the number of pixels. More specifically, the controller 11 counts the number of sheets on which images are formed and stores, as a first number of printed sheets, the number of sheets in a memory. In addition, the controller 11 counts the number of pixels to be included in the image data supplied to the exposure device 23, that is, the number of dots of the images formed on the photoconductor drum 21 and stores the counted number of pixels in the memory. If each of the first number of printed sheets and the number of pixels stored in the memory does not reach a threshold value, the controller 11 determines that the waste toner container 37 is not full (NO in step S13). However, if at least one of the first number of printed sheets and the number of pixels stored in the memory reaches the threshold value (YES in step S13), it is highly likely that the amount of toner in the waste toner container 37 reaches an upper limit K2. In such a case, the controller 11 determines that the waste toner container 37 is full (YES in step S13).
If toner is delivered into the waste toner container 37 after the waste toner container 37 becomes full, the toner spills out of the waste toner container 37. In order to prevent the toner from spilling out, if the controller 11 determines that the waste toner container 37 is full, the controller 11 stops the operation performed by the image forming unit 15 until the user replaces the waste toner container 37 (step S14). That is, if the amount of toner collected into the waste toner container 37 reaches the upper limit K2, the controller 11 stops the operation performed by the image forming unit 15.
In addition, after the detecting unit 38 outputs the detection signal, the controller 11 controls the frequency of the color regi control operation or the frequency of formation of the toner band 45 so that the amount of toner removed from the intermediate transfer belt 17 or the photoconductor drum 21 and collected into the waste toner container 37 is reduced. For example, the controller 11 controls the frequency of the color regi control operation using a control table 51. The control table 51 is prestored in the storage unit 13.
In the control table 51 illustrated in
In addition, in the control table 51, the frequency “once every two times” is specified for the timing “power-on” “after outputting detection signal”. In such a case, after the waste toner container 37 becomes nearly full and the detecting unit 38 outputs a detection signal, the controller 11 performs the color regi control only once every two power-on operations of the image forming apparatus 1. Furthermore, in the control table 51, a “threshold value T2” is specified as a threshold value of a “temperature variation” “after outputting detection signal”. Still furthermore, a “threshold value H2” is specified as a threshold value of a “humidity variation” “after outputting detection signal”. The threshold value T2 is greater than the threshold value T1. The threshold value H2 is greater than the threshold value H1. In such a case, after the detecting unit 38 outputs the detection signal and before the temperature variation measured by the temperature sensor exceeds the threshold value T2 or before the humidity variation measured by the humidity sensor exceeds the threshold value H2, the controller 11 does not perform the color regi control. Thus, after the detecting unit 38 outputs the detection signal, the frequency of performance of the color regi control, that is, the frequency of formation of the pattern 43 for correcting misalignment is decreased.
In addition, the controller 11 controls the frequency of formation of the toner band 45 for protecting the cleaning member 31 (hereinafter referred to as a “protection toner band 45”) using a control table 52. The control table 52 is prestored in the storage unit 13.
In the control table 52 illustrated in
In addition, in the control table 52, the frequency “once every two times” is specified for the timing “power-on” after “outputting detection signal”. In such a case, after the waste toner container 37 becomes nearly full and the detecting unit 38 outputs a detection signal, the controller 11 performs formation of the protection toner band 45 only once every two power-on operations of the image forming apparatus 1. Furthermore, in the control table 52, a “threshold value N2” is specified as a threshold value of the “number of printed sheets” “after outputting detection signal”. The threshold value N2 is greater than the threshold value N1. In this case, after the detecting unit 38 outputs the detection signal, the controller 11 does not form the protection toner band 45 until the second number of printed sheets stored in the memory exceeds the threshold value N2. Still furthermore, in the control table 52, a “threshold value T4” is specified as a threshold value of the “temperature variation”. A “threshold value H4” is specified as a threshold value of the “humidity variation”. The threshold value T4 is greater than the threshold value T3. The threshold value H4 is greater than the threshold value H3. In such a case, after the detecting unit 38 outputs the detection signal and before the temperature variation measured by the temperature sensor exceeds the threshold value T4 or before the humidity variation measured by the humidity sensor exceeds the threshold value H4, the controller 11 does not form the protection toner band 45. Thus, after the detecting unit 38 outputs the detection signal, the frequency of formation of the protection toner band 45 is decreased.
As described above, in the case where an adjustment image is formed, the amount of toner collected after one image formation is performed is larger than in the case where a user image is formed. Accordingly, as in the present exemplary embodiment, if the frequency of formation of the pattern 43 for correcting misalignment or the toner band 45 is decreased, the amount of toner collected into the waste toner container 37 is decreased after a detection signal is output.
In addition, unlike the case where a user image is formed, when the pattern 43 for correcting misalignment or the toner band 45 is formed, process control is not performed and the density of an image is not adjusted in advance. Accordingly, when the pattern 43 for correcting misalignment or the toner band 45 is formed, the density variation of the image is large. For example, when an image having a density of 10% is formed, an image having a density of 11% may be formed in reality. In such a case, the amount of toner collected into the waste toner container 37 is increased more than expected. In order to prevent toner from spilling over the waste toner container 37 even in such a case, the reserve capacity R1 of the waste toner container 37 includes a margin capacity R12 in addition to a planned capacity R11.
According to the present exemplary embodiment, the amount of toner removed from the intermediate transfer belt 17 or the photoconductor drum 21 after the amount of toner collected into the waste toner container 37 reaches the threshold value K1 decreases. Thus, the amount of toner collected into the waste toner container 37 is decreased to less than in the case where formation of the adjustment image is not controlled.
The present invention is not limited to the above-described exemplary embodiment. The above-described exemplary embodiment may be modified in the following manner. In addition, any of the following modifications may be combined together.
Modification 1
In the above-described exemplary embodiment, the amount of toner removed from the intermediate transfer belt 17 or the photoconductor drum 21 and collected into the waste toner container 37 is reduced by reducing the frequency of performance of color regi control or the frequency of formation of the toner band 45. However, another technique for reducing the amount of toner collected into the waste toner container 37 can be employed.
As illustrated in
If the number of the patches 42 included in the pattern 41 for controlling the density is reduced in this manner, the amount of toner used for forming the pattern 41 for controlling the density is small. Accordingly, the amount of toner collected into the waste toner container 37 after the detecting unit 38 outputs a detection signal is small. Similarly, after the detecting unit 38 outputs a detection signal is small, the controller 11 may reduce the number of the chevron patches 44 (examples of partial images) included in the pattern 43 for correcting misalignment. In addition, if plural protection toner bands 45 are formed in one go, the controller 11 may reduce the number of the protection toner bands 45 after the detecting unit 38 outputs a detection signal. In such a case, each of the protection toner bands 45 is used as an example of a partial image.
Alternatively, the controller 11 may reduce the area of the protection toner band 45 by reducing the width of the protection toner band 45. As used herein, the term “width” refers to the length of the protection toner band 45 formed on the photoconductor drum 21 in the rotational direction of the photoconductor drum 21.
As described above, the controller 11 may change the adjustment image into a simpler adjustment image after the detection signal is output. In such a case, the amount of toner removed from the intermediate transfer belt 17 or the photoconductor drum 21 can be reduced without reducing the frequency of formation of the adjustment image. Accordingly, the amount of toner collected into the waste toner container 37 is reduced. In addition, the controller 11 may simultaneously perform a process for reducing the frequency of formation of the adjustment image according to the present exemplary embodiment and a process for changing the adjustment image into a simpler adjustment image according to the present modification.
Modification 2
The controller 11 may change the sequence of the process control process, the color regi control process, and the formation of the toner band 45 before and after the detecting unit 38 outputs a detection signal. For example, before the detecting unit 38 outputs a detection signal, the controller 11 may perform the formation of the toner band 45, the color regi control process, and the process control process in this order. In contrast, after the detecting unit 38 outputs the detection signal, the controller 11 may perform the process control process before the color regi control process or the formation of the toner band 45 is performed. For example, the controller 11 reorders the color regi control process and the process control process so that the formation of the toner band 45, the process control, and the color regi control are performed in this order. In such a case, the process control is performed before the color regi control is performed, and the density of an image is adjusted. Therefore, even when the pattern 43 for correcting misalignment is formed, a variation in the density of the image is small. Thus, a variation in the estimated amount of collected toner with respect to the amount of the actually collected toner can be made small.
Modification 3
The length of the toner band 45 is not limited to that illustrated in
Modification 4
While the above-described exemplary embodiment has been described with reference to control of the frequency of formation of the pattern 43 for correcting misalignment or the toner band 45, the frequency of formation of an image other than the pattern 43 for correcting misalignment and the toner band 45 included in the adjustment image may be controlled. For example, after the detecting unit 38 outputs a detection signal, the controller 11 may reduce the frequency of formation of a toner band for forcibly ejecting the toner (hereinafter referred to as an “ejection toner band”). Alternatively, after the detecting unit 38 outputs a detection signal, the controller 11 may reduce the frequency of performance of the process control, that is, the frequency of formation of the pattern 41 for controlling the density. Note that in such a case, it is desirable that the frequency of performance of the process control after the detecting unit 38 outputs a detection signal be higher than the frequency of performance of the color regi control or the frequency of formation of the toner band 45.
Modification 5
While the above-described exemplary embodiment has been described with reference to reduction in the frequency of performance of the color regi control and the frequency of formation of the protection toner band 45, only one of the frequency of performance of the color regi control and the frequency of formation of the protection toner band 45 may be reduced. For example, if only the frequency of performance of the color regi control is reduced, it is not necessary to reduce the frequency of formation of an adjustment image other than the pattern 43 for correcting misalignment, that is, the pattern 41 for controlling the density and the toner band 45. In contrast, if only the frequency of formation of the protection toner band 45 is reduced, it is not necessary to reduce the frequency of formation of an adjustment image other than the protection toner band 45, that is, the frequency of formation of the pattern 41 for controlling the density, the pattern 43 for correcting misalignment, and the ejection toner band.
Modification 6
The above-described exemplary embodiment has been described with reference to reducing the frequency of the color regi control performed when the image forming apparatus 1 is powered on and the frequency of the color regi control performed when a temperature variation or a humidity variation inside the image forming apparatus 1 exceeds the threshold value. However, only one of the frequency of the color regi control performed when the image forming apparatus 1 is powered on and the frequency of the color regi control performed when a temperature variation or a humidity variation inside the image forming apparatus 1 exceeds the threshold value may be reduced. For example, the color regi control may be performed each time the image forming apparatus 1 is powered on both before and after the detection signal is output, and only the frequency of color regi control performed when a temperature variation or a humidity variation inside the image forming apparatus 1 exceeds the threshold value may be reduced in the above-described manner. Similarly, in order to reduce the frequency of formation of the protection toner band 45, at least one of the frequency of formation performed when the image forming apparatus 1 is powered on, the frequency of formation performed when the number of printed sheets counted after the protection toner band 45 was previously formed, and the frequency of formation performed when a temperature variation or a humidity variation inside the image forming apparatus 1 exceeds the threshold value may be reduced.
In addition, the timing at which the color regi control is performed and the timing at which the protection toner band 45 is formed are not limited to those described in the above exemplary embodiment. For example, in response to a request received from the user, the color regi control may be performed or the protection toner band 45 may be formed.
Modification 7
While the above-described exemplary embodiment has been described with reference to the detecting unit 38 that detects whether the amount of toner in the waste toner container 37 reaches the threshold value K1 by using an optical sensor, it can be detected whether the amount of toner in the waste toner container 37 reaches the threshold value K1 by using a technique without an optical sensor. For example, the detecting unit 38 may detect whether the amount of toner contained in the waste toner container 37 reaches the threshold value K1 by using a magnetic sensor. In such a case, the magnetic sensor measures the intensity of a magnetic field inside the waste toner container 37 and outputs a detection signal if the measured intensity reaches a value set in accordance with the threshold value K1.
Modification 8
While the above-described exemplary embodiment has been described with reference to the number of printed sheets and the number of pixels for determining whether the waste toner container 37 becomes full, only one of the number of printed sheets and the number of pixels may be used. In addition, the information regarding such a situation is not limited to the number of printed sheets and the number of pixels. For example, the number of rotation of the photoconductor drum 21 or the number of rotation of the transport member 34 can be used.
Modification 9
The shape of the cleaning member 31 or 33 is not limited to a blade shape. For example, the cleaning member 31 or 33 may be formed from a brush. In such a case, the cleaning device 20 or 26 removes toner by rotating the brush.
Modification 10
While the above-described exemplary embodiment has been described with reference to the configuration in which toner is removed from the photoconductor drum 21 and the intermediate transfer belt 17, a configuration in which toner is removed from only one of the photoconductor drum 21 and the intermediate transfer belt 17 may be employed. For example, if an image is transferred using a direct transfer technique, the necessity of the intermediate transfer belt 17 and the second transfer roller 18 can be eliminated. In such a case, since it is not necessary for the image forming apparatus 1 to remove toner from the intermediate transfer belt 17, the necessity of the cleaning device 20 can be eliminated. The image forming apparatus 1 can remove toner from only the photoconductor drum 21 using the cleaning device 26.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2011-166678 | Jul 2011 | JP | national |
Number | Date | Country |
---|---|---|
2000-019915 | Jan 2000 | JP |
2003-271023 | Sep 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20130028625 A1 | Jan 2013 | US |