The present invention relates to an image forming apparatus, a management method of a consumable item, and a storage medium.
In an image forming apparatus, a consumable item, for example, such as an ink tank and toner, is used and in the case where the consumable item has been consumed, the consumable item is exchanged with a new consumable item. Further, in recent years, an image forming apparatus is known, which is capable of appropriately managing the amount of remaining consumable item by storing the amount of remaining consumable item (or the amount of used consumable item). For example, Japanese Patent Laid-Open No. 2009-8756 has disclosed an image forming apparatus that uses information necessary for management of a consumable item to control the printing operation by writing the information in a memory chip mounted on the consumable item of the image forming apparatus.
In this image forming apparatus of Japanese Patent Laid-Open No. 2009-8756, information at the time of manufacture is stored in a ROM area, information on a new item, a used item, and so on, which is rewritten only once, is stored in an OTP (One Time Programmable) area, and further, information on the amount of remaining consumable item is stored in an R/W area (rewritable area).
However, as in the image forming apparatus of Japanese Patent Laid-Open No. 2009-8756, in the case where a plurality of memory areas is provided in the memory chip (consumable item), the cost is raised accordingly, and therefore, for example, writing information on the amount of remaining consumable item also in an OTP area, which is comparatively inexpensive, can be under study by taking into consideration the cost.
However, in the case where a memory whose write speed is comparatively slow, like the OTP area, is adopted in a memory chip mounted on the consumable item of the image forming apparatus, there is a possibility that a decrease in throughput of printing will result. The present invention has been made in view of these problems and an object is to reduce a decrease in throughput of image formation while improving accuracy of management of a consumable item.
The present invention is an image forming apparatus that manages information on a consumable item by a management chip attached to the consumable item, the image forming apparatus including: a control unit configured to control the management chip, and the management chip includes: a chip-side storage unit whose storage area is made up in units of blocks; a simultaneous writing unit configured to simultaneously write information on the consumable item in units of the blocks in the chip-side storage unit; and a predetermined unit writing unit configured to write information on the consumable item in predetermined units smaller than the block unit in the chip-side storage unit, and the control unit performs control so as to write information on the consumable item by the simultaneous writing unit at timing at which there is time constraint and performs control so as to write information on the consumable item by the predetermined unit writing unit at timing at which there is no time constraint.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In the following, embodiments of the present invention are explained in detail with reference to the drawings. The following embodiments are not intended to limit the present invention and all combinations of features explained in the present embodiments are not necessarily indispensable to the solution of the present invention. In addition, in the following explanation, explanation is given by attaching the same symbol to the same configuration.
In the present embodiment, explanation is given by using the MFP 100 as an example of an image forming apparatus, but it may also be possible to use, for example, a copy machine, a facsimile machine, and so on in place of the MFP 100. Further, the printing method is not necessarily limited to an ink jet printer, a full-color laser beam printer, a monochrome printer, and so on.
In the following, each unit of the MFP 100 is explained by using the external appearance diagram in
A printing sheet insertion port 113 is an insertion port at which sheets of various sizes are set (that is, a printing sheet feed unit). Sheets set at the printing sheet insertion port 113 are conveyed one by one to a print engine 128, to be described later, and after printing processing is performed, discharged from a printing sheet discharge port 114.
A cassette 115 is a printing sheet feed unit different from the printing sheet insertion port 113. Here, for example, by setting sheets of A4 at the printing sheet insertion port 113 and sheets of A3 in the cassette 115, it is possible for a user to perform a print job to perform printing on the sheet of A3 and the sheet of A4 without the need to walk to the MFP 100 at the time of changing the sheets.
An operation display unit 116 is a display screen on which an image, an operation menu, and so on are displayed and as shown in the top diagram in
The print head 220 shown in
It is possible to attach ink tanks 221 to 224 to the print head 220 and the ink supplied from the ink tanks 221-224 is ejected from the ejection portion of the print head 220.
In the present embodiment, as the ink tanks 221 to 224, ink tanks filled with inks whose colors are different from one another are attached to the print head 220. Specifically, as the ink tank 221, a “cyan” ink tank, as the ink tank 222, a “magenta” ink tank, as the ink tank 223, a “yellow” ink tank, and as the ink tank 224, a “black” ink tank are attached to the print head 220.
Here, in the case where an incorrect ink tank (that is, an ink tank different from the ink tank scheduled to be attached) is attached to the print head 220, it is not possible to correctly form an image desired by a user, and therefore, the MFP 100 displays an error on the operation display unit 116.
In the case where a predetermined time elapses after printing is completed, the ejection portion of the print head 220 dries, and therefore, a cap 240 moves to a capping position and covers the ejection portion of the print head 220 in order to prevent drying.
The CPU (Central Processing Unit) 121 is a system control unit and controls the entire MFP 100. For example, in the case where printing processing is performed, the CPU 121 writes information relating to the ink tank 200, such as the amount of used ink, in the nonvolatile memory 124 and after this, performs control so as to write the information in the management chip 210 at predetermined timing.
The ROM (Read Only Memory) 122 stores fixed data, such as control programs executed by the CPU 121, a data table, and an OS program. The RAM (Random Access Memory) 123 includes a DRAM (Dynamic RAM) that needs a backup power source, and the like. The RAM 123 is also used as a main memory and a work memory of the CPU 121.
The nonvolatile memory 124 is an apparatus-side storage unit and is an auxiliary storage device that stores predetermined data (for example, setting values of a user, use situations of the apparatus, and so on) even in the case where the power source of the MFP 100 is turned off. The nonvolatile memory 124 includes a memory, for example, such as an EEPROM (Electrically Erasable Programmable Read-Only Memory). Data stored in the nonvolatile memory 124 also includes information relating to the currently attached ink tank 200 and the information is associated with identification information (for example, a manufacture number and the like) on the ink tank 200.
Further, part of information stored in the management chip 210 (in detail, an information storage unit 212, a counter unit 213, to be described later) is stored also in the nonvolatile memory 124. In particular, the writing processing of a counter value in the counter unit 213 takes time comparatively for writing, and therefore, writing in the nonvolatile memory 124 is performed with priority, whose speed of writing processing is higher than that of the counter unit 213. Then, after the information is written in the nonvolatile memory 124, the information is written in the management chip 210 by the CPU 121. Further, at the time of activation of the power source, in the case where the information of the nonvolatile memory 124 does not coincide with the information of the counter unit 213 of the management chip 210, correction processing is performed based on one of the values.
The operation unit 125 is a part of the operation display unit 116 and includes a cross key, buttons, and so on and is used for a user to give instructions to the MFP 100. As described above, by the operation display unit 116 including the operation unit 125, such as a touch panel, it is possible for a user to perform the touch operation. The scanner engine 126 converts a document into electronic data by optically reading the document by a CIS image sensor (contact-type image sensor) and stores the electronic data in the RAM 123.
The display unit 127 includes an LCD (Liquid Crystal Display) and the like and provides a user interface as described above. The print engine 128 performs various kinds of image processing, such as binarization processing and halftone processing, for image data and forms an image on a sheet.
The I2C control unit 129 is connected to an I2C interface and performs communication control in conformity with the communication scheme of I2C with a microcomputer 211 of the management chip 210, which is an I2C slave connected to the I2C interface.
The above-described configuration is an example and it may also be possible for the MFP 100 to include hardware other than the hardware shown schematically. Further, in
The information storage unit 212 includes a memory, for example, such as an EEPROM, and in the information storage unit 212, information necessary for control of the ink tank 200 (for example, information, such as the color of the ink tank, the model number of the MFP 100, and the manufacture number, and so on at the time of factory shipping) is stored. Due to this, even in the case where a user incorrectly attaches the ink tank 200 to the MFP 100, it is possible for the MFP 100 to notify a user of that. Specifically, in the case where the ink tank of “magenta” is attached to the position of the ink tank 221 (that is, the position of the ink tank of “cyan”), a display to the effect that the attachment position is incorrect is displayed on the display unit 127.
The counter unit 213 includes a memory, such as an OTP-ROM (One Time Programmable ROM). The OTP-ROM corresponds to a chip-side storage unit and the OTP-ROM includes a fuse-type that burns off a wire, an anti-fuse type that destroys a MOS insulation film, and so on. Generally, the OTP-ROM is less expensive than the EEPROM, but the write speed is slower than that of the EEPROM and the writing time of the OTP-ROM is longer than the writing time of the EEPROM.
Further, the above-described configuration is an example and the management chip 210 may include hardware other than the hardware shown schematically. Furthermore, in
As the configuration thereof, the counter unit 213 is divided into 100 blocks, that is, block 1 (501) to block 100 (503) (that is, the counter unit 213 is made up in units of blocks). Further, at the top of those blocks, a block management bit (management bit area) 500 is provided. In the example shown in
Next, by using
It is possible to perform the block deletion on the way of the bit deletion.
Regarding the count processing shown in
Next, by using a flowchart in
In the following, the procedure of the processing shown in
Upon receipt of a print job, the MFP 100 analyzes the print job (S602). The electronic data of a page to be printed is described in a page description language (PDL) and the like. It is possible for the MFP 100 to specify printing settings and drawing contents by analyzing the page description language.
Next, the MFP 100 performs printing processing of one page by using the print engine 128 (S603). The MFP 100 determines whether or not the printing processing of all the pages making up the print job has been completed (S604) and in the case of determining that the printing processing of all the pages has been completed, that is, the print job is completed (S604 Yes), the MFP 100 advances the processing to step S605.
The MFP 100 calculates the amount of ink used in the print job in the course of the printing processing thereof and stores the amount of used ink in the nonvolatile memory 124 (S605). That is, the CPU 121 stores the amount of ink used inn the print job that is the processing target of this time in the nonvolatile memory 124 at step S605.
The CPU 121 gives the microcomputer 211 instructions to perform the count processing based on the amount of ink used in the print job, which is stored in the nonvolatile memory 124 at step S605 (S606). The instructions that the CPU 121 notifies the microcomputer 211 at step S606 include information corresponding to the number of bits to be deleted. Then, upon receipt of the instructions at step S606, the microcomputer 211 performs writing processing of data corresponding to the amount of used ink for the counter unit 213. For example, in the case where the amount of ink consumed in the print job is 3 mg of cyan, 6 mg of magenta, 3 mg of yellow, and 8 mg of black, the microcomputer 211 writes the count value corresponding to the amount in the counter unit 213 of each of the ink tanks 221 to 224.
However, at step S606, in order to reduce a decrease in throughput of image formation, as a method of decreasing the ink counter (method of writing data), the bit deletion is not performed and only the block deletion is performed. That is, only in the case where it is necessary to delete the block management bit 500, the ink counter is decreased and in the case where it is not necessary to delete the block management bit 500, the processing advances to step 607 without decreasing the ink counter. For example, it is supposed that the number of bits corresponding to the use of 3 mg is 80. As described above, in the present embodiment, one block corresponds to 100 bits. Consequently, in the case such as this, it is not necessary to delete the block management bit 500, and therefore, the CPU 121 does not give the microcomputer 211 instructions to write data for the counter unit 213. Further, for example, it is supposed that the number of bits corresponding to the use of 6 mg is 160. As described above, in the present embodiment, one block corresponds to 100 bits. Consequently, in the case such as this, the CPU 121 requests the microcomputer 211 to delete 100 bits as the amount of used ink. Upon receipt of this request, the microcomputer 211 deletes the block management bit 500, corresponding to deletion of one block.
After step S606, the MFP 100 determines whether or not all the print jobs have been completed (S607) and in the case where all the print job have not been completed (S607 No), the MFP 100 returns the processing to step S603 and in the case where all the print jobs have been completed (S607 Yes), advances the processing to step S608.
The MFP 100 displays that the print jobs have been completed on the display unit 127 at step S608. After displaying that the print jobs have been completed, the MFP 100 displays that the state has made a transition into the standby state for the user.
In the case where an operation (processing) that uses the print head is not performed within a predetermined time, the MFP 100 caps the print head 220 by using the cap 240 in order to prevent the print head 220 from drying (S609). After this, the CPU 121 requests the microcomputer 211 to write the data of the amount of used ink that is not counted between print jobs (S610). For example, in the example described above, the amount of used ink of the remaining 60 bits is not counted, and therefore, the CPU 121 requests the microcomputer 211 to delete 60 bits. Upon receipt of this request, the microcomputer 211 deletes the amount of remaining ink (counter bits) that was not able to be deleted by the block deletion performed at step S606 by bit deletion.
By performing the processing shown in
Next, by using
In the following, the procedure of the processing shown in
The CPU 121 requests the microcomputer 211 to perform count processing based the amount of ink used in the printing processing at step S703, which is stored in the nonvolatile memory 124 at step S704 (S705). In the instructions that the CPU 121 notifies the microcomputer 211 at step S705, information corresponding to the number of bits to be deleted is included. Then, upon receipt of the instructions at step S705, the microcomputer 211 performs the writing processing of the data corresponding to the amount of used ink for the counter unit 213. However, at step S705, as at step S606 in
The MFP 100 determines whether or not the printing of all the pages of the print job has been completed (S706), and in the case where the printing of all the pages has not been completed (S706 No), the MFP 100 returns the processing to step S703, and in the case where the printing of all the pages has been completed (S706 Yes), advances the processing to step S707.
The MFP 100 displays that the print job has been completed on the display unit 127 at step S707 (S707). In the case where an operation (processing) that uses the print head is not performed within a predetermined time, the MFP 100 caps the print head 220 by using the cap 240 in order to prevent the print head 220 from drying (S708). After this, the CPU 121 requests the microcomputer 211 to write data of the amount of used ink that is not counted between pages (S709). The processing at step S709 is also similar to that at step S610, and therefore, detailed explanation is omitted. By the control of the CPU 121 of the MFP 100, the microcomputer 211 deletes the amount of remaining ink that was not able to be deleted by the block deletion performed at step S705 by bit deletion.
As above, by performing the processing shown in
Next, by using
Upon detecting an error (S801), such a paper jam, the MFP 100 starts processing shown in
Then, in the case where the ink tank 200 or the print head 220 is removed, on a condition that the count processing in the ink counter is performed in order from the ink tank 221 to the ink tank 224, it is supposed that the count processing is not completed in all the ink tanks. In this case, the ink tank 200 or the print head 220 is removed, and therefore, it is not possible to perform the count processing in the ink counter and as a result of this, there is a possibility that the count value of the ink counter deviates largely from the actual amount of remaining ink.
Consequently, in the case where an error, such as a paper jam, is detected, it is necessary for the microcomputer 211 to quickly perform the count processing in the ink counter. Because of this, the CPU 121 requests the microcomputer 211 to perform block deletion for all the ink tanks of the ink tanks 221 to 224 at step S802. That is, the count processing of the ink counter (subtraction processing) is performed roughly in units of 100 bits.
After the microcomputer 211 performs the block deletion, next, the CPU 121 requests the microcomputer 211 to write data by bit deletion (S803). Specifically, the CPU 121 requests the microcomputer 211 to delete the amount of remaining ink that was not able to be deleted by the block deletion performed at step S802 for each ink tank of the ink tanks 221 to 224 by bit deletion.
By performing the count processing as described above, even in the case where a user has started the restoration task of an error in an early stage, it is possible to reduce the trouble that the entire subtraction processing has been completed for a certain ink tank but the entire subtraction processing has not been completed for another ink tank. That is, the possibility that the value of a specific ink counter deviates largely from the actual amount of remaining ink can be reduced.
Next, by using
Next, the MFP 100 determines whether or not it is necessary to perform adjustment (subtraction) for the count value of the ink counter based on the amount of used ink stored in the nonvolatile memory 124 (S902). There is a case where the amount of used ink stored in the nonvolatile memory 124 and the count value of the ink counter are different and in the case such as this, it is necessary to appropriately adjust the amount of remaining ink (amount used) based on one of pieces of information.
In the case of determining that it is necessary to perform subtraction for the counter value of the ink counter at step S902 (S902 Yes), the MFP 100 advances the processing to step S903.
The CPU 121 requests the microcomputer 211 to perform block deletion during activation of the MFP 100 at step S903. Then, in the case where the MFP 100 makes a transition into the standby state (S904), the CPU 121 performs step S905. Specifically, the CPU 121 requests the microcomputer 211 to delete the amount of remaining ink that was not able to be deleted by the block deletion performed at step S903 by bit deletion.
By performing the procedure of the processing as described above, it is possible to cause the MFP 100 to make a transition into the standby state in an early stage and further, it is possible to adjust (correct) the deviation between the amount of used ink stored in the nonvolatile memory 124 and the counter value of the ink counter in an early stage.
In the above-described embodiment, the microcomputer 211 performs data writing processing upon receipt of the request from the CPU 121, but it may also be possible for the microcomputer 211 to perform the above-described processing by referring to the value of the nonvolatile memory 124 without receiving a request from the CPU 121.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
By the invention of the present application, it is possible to reduce a decrease in throughput of image formation while improving accuracy of management of consumable items.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-156148, filed Aug. 10, 2017, which is hereby incorporated by reference wherein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-156148 | Aug 2017 | JP | national |