Information
-
Patent Grant
-
6483997
-
Patent Number
6,483,997
-
Date Filed
Monday, July 24, 200024 years ago
-
Date Issued
Tuesday, November 19, 200221 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 399 46
- 399 49
- 399 50
- 399 53
- 399 72
-
International Classifications
-
Abstract
An engine controller adjusts an image density of the toner image to a target density by controlling an electrifying bias and a development bias. The engine controller determines an optimal development bias which is needed to obtain the target density based on densities of first patch images which are formed in the following bias condition: The electrifying bias is fixed at the most recent optimal electrifying bias which is stored in a RAM; and the development bias is gradually changing based on the most recent optimal development bias which is stored in the RAM.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image forming apparatus and an image forming method in which an electrifying bias applied to electrifying means electrifies a surface of a photosensitive member, an electrostatic latent image is thereafter formed on the surface of the photosensitive member, and a development bias is thereafter applied to developer means so that a toner visualizes the electrostatic latent image into a toner image.
2. Description of the Related Art
This type of an image forming apparatus often sees a change in an image density due to the following factors: fatigue, degradation with age or the like of a photosensitive member and a toner; a change in a temperature, a humidity or the like around the apparatus; and other causes. Noting this, a number of techniques have been proposed which aim at stabilizing an image density through appropriate adjustment of a density control factor such as an electrifying bias, a development bias, a light exposure dose, etc. For example, the invention described in the Japanese Patent Application Laid-Open Gazette No. 10-239924 requires to properly adjust an electrifying bias and a development bias in an effort to stabilize an image density. That is, according to this conventional technique, reference patch images are formed on a photosensitive member while changing an electrifying bias and/or a development bias and an image density of each reference patch is detected. An optimal electrifying bias and an optimal development bias are thereafter determined based on the detected image densities, and a density of a toner image is accordingly adjusted.
The density adjustment is executed at the following timing. Specifically, after turning on a main power source of the image forming apparatus, a density is adjusted upon arriving at a state where the apparatus is ready to form an image, which is when a fixing temperature reaches a predetermined temperature or immediately after that, for example. Where a timer is built within the image forming apparatus, the density adjustment is executed at regular intervals, e.g., for every two hours.
By the way, while an electrifying bias and a development bias change in accordance with fatigue, degradation with age or the like of a photosensitive member and a toner, etc., the changes possess a continuity to a certain extent. Hence, when repeated density adjustment is desired, if a density is adjusted using an optimal electrifying bias and an optimal development bias which are obtainable from immediately preceding density adjustment, the current density adjustment is expectedly more accurate.
However, according to this conventional technique, a density is adjusted uniformly at the timing described above. More precisely, an electrifying bias-development bias characteristic is identified in advance, and three combinations of an electrifying bias and a development bias which satisfy the identified characteristic are registered in a ROM. Following this, for density adjustment, three reference patch images are formed using the different registered bias. Thus, the conventional apparatus executed the density adjustment without considering a result of immediately preceding density adjustment at all. Densities of the respective patch images formed in this manner are measured, and an optimal electrifying bias and an optimal development bias are determined based on the measured image densities.
Hence, there is a room in the conventional technique for improving an accuracy of calculation of an optimal electrifying bias and an optimal development bias, with respect to adjustment of an image density of a toner image to a target density by means of control of an electrifying bias and a development bias.
SUMMARY OF THE INVENTION
The present invention aims at providing an image forming apparatus and an image forming method which more accurately calculate an optimal electrifying bias and an optimal development bias which are necessary for adjusting of an image density of a toner image to a target density and accordingly stabilize the image density.
In fulfillment of the foregoing object, an image forming apparatus and method are provided and are particularly well suited to density adjustment of a toner image based on image densities of a plurality of patch images. Control means adjusts an image density of the toner image to a target density by controlling an electrifying bias and a development bias. Every time adjustment is finished, the control means causes memory means to store the electrifying bias and the development bias which are obtained after the adjustment as an optimal electrifying bias and an optimal development bias, respectively. When adjustment is performed repeatedly, based on the optimal electrifying bias and the optimal development bias stored in the memory means, the control means controls such that a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias.
An image forming apparatus and method according to the present invention will be described in derail by means of the following most suitable embodiments thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a drawing showing a preferred embodiment of an image forming apparatus according to the present invention;
FIG. 2
is a block diagram showing an electric structure of the image forming apparatus of
FIG. 1
;
FIG. 3
is a flow chart showing a density adjustment operation in the image forming apparatus of
FIG. 1
;
FIG. 4
is a flow chart showing an operation of development bias calculation of
FIG. 3
;
FIG. 5
is a flow chart showing an operation of the bias calculation of
FIG. 4
in a wide range;
FIGS. 6A through 6D
are schematic diagrams showing an operation of the processing of FIG.
5
and an operation of the bias calculation in a narrow range;
FIG. 7
is a drawing showing a first patch image;
FIGS. 8A through 8D
are drawings showing an order of forming patch images;
FIG. 9
is a flow chart showing an operation of bias calculation (
1
) of
FIG. 4
in the narrow range;
FIG. 10
is a flow chart showing an operation of bias calculation (
2
) of
FIG. 4
in the narrow range;
FIGS. 11A and 11B
are schematic diagrams showing the operation of the processing of
FIG. 10
;
FIG. 12
is a flow chart showing an operation of the electrifying bias calculation of
FIG. 3
;
FIGS. 13A and 13B
are schematic diagrams showing the operation of the processing of
FIG. 12
;
FIG. 14
is a drawing showing a second patch image;
FIGS. 15A and 15B
are drawings showing a relationship between the first patch images, a surface potential and a development bias potential;
FIGS. 16A and 16B
are drawings showing a relationship between the second patch images, a surface potential and a development bias potential;
FIG. 17
is a graph showing attenuation of a surface potential as photosensitive member is exposed at various exposure powers;
FIG. 18
is a drawing showing a relationship between a development bias and a contrast potential when the development bias is changed with an electrifying bias fixed;
FIG. 19
is a drawing showing a relationship between an electrifying bias and a contrast potential when the electrifying bias is changed with a development bias fixed;
FIG. 20
is a drawing showing the relationship between the development bias and the contrast potential;
FIG. 21
is a drawing showing variations in the contrast potential and the exposed area potential in accordance with a change in the electrifying bias;
FIG. 22
is a drawing showing a relationship between the development bias and the contrast potential as the electrifying bias is set according to a first variation;
FIG. 23
is a drawing showing a relationship between the electrifying bias and the development bias in the first variation;
FIG. 24
is a drawing showing a relationship between the electrifying bias and the development bias in a second variation;
FIG. 25
is a drawing showing a relationship between an exposure power and a surface potential;
FIG. 26
is a drawing showing a relationship between the development bias and the contrast potential at the exposure power shown in
FIG. 25
;
FIG. 27
is a drawing showing a relationship between the development bias and the contrast potential as the electrifying bias is set according to the second variation;
FIG. 28
is a drawing showing a relationship between the electrifying bias and the development bias in a third variation;
FIG. 29
is a drawing showing a relationship between an exposure power and a surface potential;
FIG. 30
is a drawing showing a relationship between the development bias and the contrast potential at the exposure power shown in
FIG. 29
;
FIG. 31
is a drawing showing a relationship between the development bias and the contrast potential as the electrifying bias is set according to the third variation;
FIG. 32
is a drawing showing the relationship between the development bias and the contrast potential;
FIG. 33
is a drawing showing a relationship between the electrifying bias and the development bias in a fourth variation;
FIG. 34
is a drawing showing a relationship between the development bias and the contrast potential as the electrifying bias is set according to the fourth variation;
FIG. 35
is a drawing showing the relationship between the development bias and the contrast potential;
FIG. 36
is a drawing showing a relationship between the electrifying bias and the development bias in a fifth variation;
FIG. 37
is a drawing showing a relationship between the development bias and the contrast potential as the electrifying bias is set according to the fifth variation; and
FIGS. 38A through 38D
are drawings showing an order of forming patch images according to still other preferred embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A. Overall Structure of Image Forming Apparatus
FIG. 1
is a drawing showing a preferred embodiment of an image forming apparatus according to the present invention.
FIG. 2
is a block diagram showing an electric structure of the image forming apparatus of FIG.
1
. The image forming apparatus is an apparatus which overlaps toner images in four colors of yellow (Y), cyan (C), magenta (M) and black (K) to thereby form a full-color image or uses only a black (K) toner to thereby form a monochrome image. When an image signal is supplied to a main controller
11
of a control unit
1
from an external apparatus such as a host computer, an engine controller
12
controls respective portions of an engine part E in accordance with an instruction from the main controller
11
, whereby the image forming apparatus forms an image which corresponds to the image signal on a sheet S.
The engine part E is capable of forming a toner image on a photosensitive member
21
of an image carrier unit
2
. That is, the image carrier unit
2
comprises the photosensitive member
21
which is rotatable in the direction of an arrow in FIG.
1
. Disposed around the photosensitive member
21
and in the rotation direction of the photosensitive member
21
in
FIG. 1
are an electrifying roller
22
which serves as electrifying means, developers
23
Y,
23
C,
23
M and
23
K which serve as developing means, and a cleaning part
24
. Applied with a high voltage from an electrifying bias generation part
121
and in contact with an outer peripheral surface of the photosensitive member
21
, the electrifying roller
22
uniformly electrifies the outer peripheral surface of the photosensitive member
21
.
An exposure unit
3
irradiates laser light L toward the outer peripheral surface of the photosensitive member
21
which is electrified by the electrifying roller
22
. The exposure unit
3
, as shown in
FIG. 2
, is electrically connected with an image signal switching part
122
. In accordance with an image signal which is supplied through the image signal switching part
122
, the laser light L scans over the photosensitive member
21
and consequently exposes the photosensitive member
21
, whereby an electrostatic latent image corresponding to the image signal is formed on the photosensitive member
21
. For example, when the image signal switching part
122
is in conduction with a patch generation module
124
, based on an instruction from a CPU
123
of the engine controller
12
, a patch image signal outputted from the patch generation module
124
is fed to the exposure unit
3
so that a patch latent image is formed. On the other hand, when the image signal switching part
122
is in conduction with a CPU
111
of the main controller
11
, the laser light L scans over and consequently exposes the photosensitive member
21
in accordance with an image signal which is supplied through an interface
112
from an external apparatus such as a host computer, so that an electrostatic latent image corresponding to the image signal is formed on the photosensitive member
21
.
The electrostatic latent image which is formed in this manner is developed by a developer part
23
. In other words, according to the preferred embodiment, disposed as the developer part
23
are the developer
23
Y for yellow, the developer
23
C for cyan, the developer
23
M for magenta and the developer
23
K for black which are arranged in this order around the photosensitive member
21
. The developers
23
Y,
23
C,
23
M and
23
K are each structured so as to freely separate from and come close to the photosensitive member
21
. In accordance with an instruction given from the engine controller
12
, one of the four developers
23
Y,
23
C,
23
M and
23
K selectively contacts the photosensitive member
21
. A development bias generation part
125
thereafter applies a high voltage to the photosensitive member
21
, and the toner in the selected color moves to the surface of the photosensitive member
21
, thereby visualizing the electrostatic latent image on the photosensitive member
21
. The voltages supplied to the respective developers may be simply D.C. voltages, or alternatively, A.C. voltages superimposed over D.C. voltages.
The toner image developed by the developer part
23
is primarily transferred onto an intermediate transfer belt
41
of a transfer unit
4
in a primary transfer region R
1
which is located between the black developer
23
K and the cleaning part
24
. A structure of the transfer unit
4
will be described in detail later.
The cleaning part
24
is disposed at a position further ahead in a circumferential direction (the direction of the arrow in
FIG. 1
) from the primary transfer region R
1
, such that a toner remaining on the outer peripheral surface of the photosensitive member
21
after the primary transfer treatment is scraped off.
Next, the structure of the transfer unit
4
will be described. According to the preferred embodiment, the transfer unit
4
comprises rollers
42
through
47
, the intermediate transfer belt
41
which is spun around the rollers
42
through
47
, and a secondary transfer roller
48
which secondarily transfers an intermediate toner image transferred to the intermediate transfer belt
41
onto a sheet S. A transfer bias generation part
126
applies a primary transfer voltage upon the intermediate transfer belt
41
. Toner images in the respective colors formed on the photosensitive member
21
are laid one atop the other on the intermediate transfer belt
41
into a color image, while the sheet S is taken out from a cassette
61
, a hand-feeding tray
62
or an additional cassette (not shown) by a paper feed part
63
of a paper feed/discharge unit
6
and conveyed to a secondary transfer region R
2
. The color image is thereafter secondarily transferred onto the sheet S, thereby obtaining a full-color image. Meanwhile, when a monochrome image is to be transferred onto a sheet S, only a black toner image on the photosensitive member
21
is formed on the intermediate transfer belt
41
, and transferred onto a sheet conveyed to the secondary transfer region R
2
to thereby obtain a monochrome image, as in the case of forming a color image.
After secondary transfer treatment, a toner remaining on and sticking to an outer peripheral surface of the intermediate transfer belt
41
is removed by a belt cleaner
49
. The belt cleaner
49
is disposed opposite to the roller
46
across the intermediate transfer belt
41
, and a cleaner blade contacts the intermediate transfer belt
41
at appropriate timing and scrapes off a toner from the outer peripheral surface of the intermediate transfer belt
41
.
Further, disposed in the vicinity of the roller
43
is a patch sensor PS which detects a density of a patch image which is formed on the outer peripheral surface of the intermediate transfer belt
41
as described later, and so is a read sensor for synchronization RS which detects a reference position of the intermediate transfer belt
41
.
Referring to
FIG. 1
again, the description on the structure of the engine part E will be continued. The sheet S now seating the toner image transferred by the transfer unit
4
is conveyed by the paper feed part
63
of the paper feed/discharge unit
6
to a fixing unit
5
which is disposed on the downstream side to the secondary transfer region R
2
along a predetermined paper feed path (dot-dot-dash line), and the toner image on the conveyed sheet S is fixed on the sheet S. The sheet S is thereafter conveyed to a paper discharge part
64
along the paper feed path
630
.
The paper discharge part
64
has two paper discharge paths
641
a
and
641
b
. The paper discharge path
641
a
extends from the fixing unit
5
to a standard paper discharge tray, while the paper discharge path
641
b
extends approximately parallel to the paper discharge path
641
a
between a paper re-feed part
66
and a multi-bin unit. Three roller pairs
642
through
644
are disposed along the paper discharge paths
641
a
and
641
b
, so as to discharge the sheets S toward the standard paper discharge tray or the multi-bin unit and convey the sheets S toward the paper re-feed part
66
for the purpose of forming images on non-printing surfaces of the sheets S.
Aiming at conveying a sheet S which was inverted and fed from the paper discharge part
64
as described above to a gate roller pair
637
of the paper feed part
63
along a paper re-feed path
664
(dot-dot-dash line), the paper re-feed part
66
is formed of three paper re-feed roller pairs
661
through
663
which are disposed along the paper re-feed path
664
as shown in FIG.
1
. In this manner, the sheet S sent from the paper discharge part
64
is returned to the gate roller pair
637
along the paper re-feed path
664
and a non-printing surface of the sheet S is directed toward the intermediate transfer belt
41
within the paper feed part
63
, which makes it possible to secondarily transfer the image onto the non-printing surface.
In
FIG. 2
, denoted at
113
is an image memory which is disposed in the main controller
11
such that the image memory stores image data supplied from an external apparatus such as a host computer through the interface
112
, denoted at
127
is a RAM which temporarily stores control data for controlling the engine part E, a calculation result obtained by the CPU
123
, etc., and denoted at
128
is a ROM which stores a calculation program which is executed by the CPU
123
.
B. Density Adjustment by Image Forming Apparatus
Now, a description will be given on how the image forming apparatus having such a structure as described above adjusts a density of an image.
FIG. 3
is a flow chart showing a density adjustment operation in the image forming apparatus of FIG.
1
. In the image forming apparatus, as shown in
FIG. 3
, it is determined at a step S
1
whether the density adjustment operation should be executed to thereby update an electrifying bias and a development bias. For example, the image forming apparatus may start setting the biases when the image forming apparatus becomes ready to form an image after a main power source of the image forming apparatus is turned on. Alternatively, the image forming apparatus may set the biases every few hours while a timer (not shown) disposed in the image forming apparatus measures hours of continuous use.
When it is determined YES at the step S
1
and setting of the biases is accordingly started, steps S
2
and S
3
are executed to calculate an optimal development bias, and the calculated bias is set as the development bias (step S
4
). Following this, a step S
5
is executed to calculate an optimal electrifying bias, and the calculated bias is set as the electrifying bias (step S
6
). The electrifying bias and the development bias are optimized in this manner. In the following, a detailed description will be given on an operation of each one of the development bias calculation (step S
3
) and the electrifying bias calculation (step S
5
).
B-1. Development Bias Calculation
FIG. 4
is a flow chart showing an operation of the development bias calculation shown in FIG.
3
. In the development bias calculation (step S
3
), the CPU
123
determines whether this is first calculation or the second or subsequent calculation after the main power source of the image forming apparatus is turned on (step S
301
). When the current calculation is the first one, after setting up such that patch images will be created in all colors (which are the four colors of yellow (Y), cyan (C), magenta (M) and black (K) in this preferred embodiment) (step S
311
), an immediately subsequent step S
312
is executed. In other words, a plurality of patch images are formed while gradually changing the development bias at relatively long intervals within a relatively wide range, thereby tentatively identifying a development bias which is necessary to obtain an optimal image density based on densities of the respective patch images. Now, an operation of this processing will be described in detail with reference to
FIGS. 5 and 6A
through
6
D.
FIG. 5
is a flow chart showing an operation of the bias calculation of
FIG. 4
within a wide range.
FIGS. 6A through 6D
are schematic diagrams showing an operation of the processing of FIG.
5
and an operation of the bias calculation within narrow range which will be described later. During this calculation, a color in which patch images are to be generated is set as the first color, e.g., yellow (step S
312
a
). With the electrifying bias set to a default value which is set in advance at the step S
2
, the development bias is set to four different values which are apart at relatively long intervals (first intervals) within the wide range (step S
312
b
). For instance, in this preferred embodiment, the wide range is the entirety of a programmable range (Vb
01
-Vb
10
) of development bias which can be supplied to the developer part
23
from the development bias generation part
125
, and four points Vb
01
, Vb
04
, Vb
07
and Vb
10
within the wide range (Vb
01
-Vb
10
) are set as development biases. In this manner, according to this preferred embodiment, the first intervals W
1
are:
W
1
=
Vb
10
−
Vb
07
=
Vb
07
−
Vb
04
=
Vb
04
—
Vb
01
Four yellow solid images (
FIG. 7
) are sequentially formed on the photosensitive member
21
with this bias setup, and the solid images are transferred onto the outer peripheral surface of the intermediate transfer belt
41
as shown in
FIG. 8A
to thereby form first patch images PI
1
(step S
312
c
). The first patch images PI
1
are solid images in this preferred embodiment. The reason of this will be described in detail later.
At a subsequent step S
312
d
, whether patch images are formed in all of patch generation colors is determined. While a result of the judgement stays NO, the next color is set as a patch generation color (step S
312
e
) and the steps S
312
b
and S
312
c
are repeated. This adds further first patch images PI
1
on the outer peripheral surface of the intermediate transfer belt
41
, in the order of cyan (C), magenta (M) and black (K), as shown in
FIGS. 8B through 8D
.
On the contrary, when it is determined YES at the step S
312
d
, image densities of the sixteen (=4 types×4 colors) patch images PI
1
are measured on the basis of a signal outputted from the patch sensor PS (step S
312
f
). While the image densities of the patch images PI
1
are measured at once after forming the patch images PI
1
in all patch generation colors in this preferred embodiment, the image densities of the patch images PI
1
may be measured sequentially color by color every time the patch images PI
1
in one patch generation color are formed. This applies to the later bias calculation (
FIGS. 9
,
10
and
12
) as well.
Following this, a development bias corresponding to a target density is calculated at a step S
312
g
, and the calculated bias is stored temporarily in the RAM
127
as an interim bias. When a measurement result (image density) matches with the target density, a development bias corresponding to this image density may be used as the interim bias. When the two density values fail to match, as shown in
FIG. 6B
, it is possible to calculate an interim bias through linear interpolation, averaging or other appropriate methodology in accordance with data D (Vb
04
) and data D (Vb
07
) which are on the both sides of the target density.
Once the interim bias is determined in this manner, the bias calculation (
1
) in the narrow range shown in
FIG. 4
is executed.
FIG. 9
is a flow chart showing an operation of the bias calculation (
1
) of
FIG. 4
in the narrow range. During this calculation, a color in which patch images are to be generated is set as the first color, e.g., yellow (step S
313
a
), as in the earlier calculation (step S
312
). With the electrifying bias set to the default value which is set in advance at the step S
2
, the development bias is set to four different values which are apart at narrower intervals (second intervals) than the first intervals W
1
within a narrow range which includes the interim bias (step S
313
b
). For instance, in this preferred embodiment, the narrow range is approximately ⅓ of the programmable range (Vb
01
-Vb
10
) of development bias. When the interim bias is between development biases Vb
05
and Vb
06
as shown in
FIG. 6B
, four points Vb
04
, Vb
05
, Vb
06
and Vb
07
are set as development biases (FIG.
6
C). In this manner, according to this preferred embodiment, the second intervals W
2
are:
W
2
=
Vb
07
−
Vb
06
=
Vb
06
−
Vb
0
S=
Vb
05
−
Vb
04
Four yellow solid images (
FIG. 7
) are sequentially formed on the photosensitive member
21
with this bias setup, and the solid images are transferred onto the outer peripheral surface of the intermediate transfer belt
41
as shown in
FIG. 8A
to thereby form first patch images PI
1
(step S
313
c
). As in the earlier calculation (step S
312
), the next color is set as a patch generation color (step S
313
e
) and the steps S
313
b
and S
313
c
are repeated until it is determined at a step S
313
d
that patch images are formed in all of patch generation colors. As a result, first patch images PI
1
are further formed on the outer peripheral surface of the intermediate transfer belt
41
, in the order of cyan (C), magenta (M) and black (K).
Once sixteen (=4 types×4 colors) patch images PI
1
are formed on the intermediate transfer belt
41
in this manner, image densities of the respective patch images PI
1
are measured on the basis of a signal outputted from the patch sensor PS (step S
313
f
). Following this, at a step S
313
g
, a development bias corresponding to a target density is calculated. When a measurement result (image density) matches with the target density, a development bias corresponding to this image density may be used as an optimal development bias. When the two density values fail to match, as shown in
FIG. 6D
, it is possible to calculate an optimal development bias through linear interpolation, averaging or other appropriate methodology in accordance with data D (Vb
05
) and data D (Vb
06
) which are on the both sides of the target density.
The RAM
127
stores the optimal development bias which is calculated in this manner (step S
302
in FIG.
4
), and reads it out as the development bias during calculation of the electrifying bias which will be described later or while an image is formed in a normal manner.
By the way, as described earlier in Description of the Related Art, while an optimal electrifying bias and an optimal development bias change due to fatigue, degradation with age or the like of a photosensitive member, a toner, etc., the changes possess a continuity to a certain extent. Hence, where an image density is repeatedly adjusted, it is possible to predict an optimal development bias based on an image density which is measured immediately previously (e.g., the step S
313
f
, and steps S
322
f
and S
510
which will described later). Noting this, in the bias calculation (step S
3
) according to this preferred embodiment, when the current calculation is determined to be the second or subsequent calculation after the main power source of the image forming apparatus is turned on, that is, when it is determined at the step S
301
in
FIG. 4
to follow the SECOND OR SUBSEQUENT path, after setting up such that patch images will be created in all colors (which are the four colors of yellow (Y), cyan (C), magenta (M) and black (K) in this preferred embodiment) (step S
321
), an immediately subsequent step S
322
is executed. In other words, bias calculation (
2
) within the narrow range is executed to thereby calculate an optimal development bias using biases which are measured immediately previously and stored in the RAM
127
as a reference. Now, an operation of this processing will be described in detail with reference to FIG.
10
.
FIG. 10
is a flow chart showing an operation of the bias calculation (
2
) of
FIG. 4
within the narrow range.
FIGS. 11A and 11B
are schematic diagrams showing the operation of the processing shown in FIG.
10
. This calculation processing is largely different from the bias calculation (
1
) within the narrow range described earlier in regard to the following. During the calculation (
1
) shown in
FIG. 9
, the electrifying bias set to the default value, and four different types of development biases are set based on an interim bias (step S
313
b
). Meanwhile, during the bias calculation (
2
), the electrifying bias is the optimal electrifying bias which is calculated through immediately preceding measurement and stored in the RAM
127
, and four different types of development biases are set within the narrow range based on the optimal development bias which is stored in the RAM
127
(step S
322
b
). The bias calculation (
2
) is structured otherwise the same as the bias calculation (
1
), and therefore, a redundant description will be simply omitted.
In this manner, during the second or subsequent density adjustment, the four different types of development biases are set. The four biases are apart at the second intervals within the narrow range using the development bias which is calculated immediately previously (preceding optimal development bias) without calculating an interim bias, the patch images are formed in the respective colors, and the optimal development bias is calculated. Hence, as compared to the first density adjustment (step S
312
+step S
313
), it is possible to calculate an optimal development bias in a further shorter time.
In addition, as compared with the conventional technique, the present invention realizes a unique effect that it is possible to calculate an optimal development bias at a high accuracy. The reason of this will now be described. According to the conventional technique, three pairs of an electrifying bias and a development bias are stored in advance, and patch images are formed using the three development biases, respectively. Hence, in order to cover a range of possible changes in the development biases, namely, a range which is approximately the same as the programmable range of development bias, it is necessary to set the three development biases at relatively long intervals.
In contrast, according to this preferred embodiment, the development bias is changed within the narrow range including the immediately preceding optimal development bias out of the programmable range (Vb
01
-Vb
10
) of development bias. That is, this preferred embodiment requires only approximately ⅓ of the programmable range of development bias, and the intervals of the development biases according to this preferred embodiment (second intervals) are narrower than those used in the conventional technique. Due to this, the present invention allows to calculate an optimal development bias at a better accuracy. It is to be noted that a simple reduction of the range in which a development bias is to be changed causes an optimal development bias to be calculated to deviate from the reduced range and only makes it difficult to accurately calculate an optimal development bias. However, according to this preferred embodiment, since the narrow range is set around an immediately preceding optimal development bias, it is extremely unlikely to see such a problem.
The engine controller
12
writes the optimal development bias which is calculated in this manner over the preceding optimal development bias which is already stored in the RAM
127
, thereby updating the optimal development bias (step S
302
in FIG.
4
). The sequence thereafter returns to
FIG. 3
which requires to read the optimal development bias from the RAM
127
and set the retrieved optimal development bias as the development bias. An optimal electrifying bias is thereafter calculated (step S
5
) and set as the electrifying bias (step S
6
).
B-2. Optimal Electrifying Bias Calculation
FIG. 12
is a flow chart showing an operation of the electrifying bias calculation of FIG.
3
.
FIGS. 13A and 13B
are schematic diagrams showing the operation of the processing shown in FIG.
12
. During the electrifying bias calculation (step S
5
), after setting up such that patch images will be created in all colors (which are the four colors of yellow (Y), cyan (C), magenta (M) and black (K) in this preferred embodiment) (step S
501
), a color in which second patch images are to be generated is set as the first color, e.g., yellow at a step S
502
.
As in the development bias calculation, the CPU
123
determines whether the current electrifying bias calculation is first such calculation or the second or subsequent calculation after the main power source of the image forming apparatus is turned on (step S
503
). When the current calculation is determined to be the first one, a step S
504
is executed. When the current calculation is determined to be the second or subsequent calculation, a step S
505
is executed.
At the step S
504
, the electrifying bias is set to four different values. The four biases are apart at relatively narrow intervals (third intervals) within the narrow range which includes the default value. Meanwhile, at the step S
505
, the electrifying bias is set to four different values which are apart at relatively narrow intervals (third intervals) within the narrow range which includes a preceding optimal electrifying bias. In this manner, unlike the development bias calculation, the electrifying bias calculation executes only narrow-range calculation without calculating within the wide range. In this preferred embodiment, the narrow range is approximately ⅓ of a programmable range (Va
01
-Va
10
) of electrifying bias. When the default value or an immediately preceding optimal electrifying bias is between electrifying biases Va
05
and Vb
06
as shown in
FIG. 13A
, four points Va
04
, Va
05
, Va
06
and Va
07
are set as electrifying biases. That is, according to this preferred embodiment, the third intervals W
3
are:
W
3
=
Va
07
−
Va
06
=
Va
06
−
Va
05
=
Va
05
−
Va
04
Once four types of electrifying biases are set up for the yellow color in this manner, respective yellow halftone images (See
FIG. 14
) are sequentially formed on the photosensitive member
21
and transferred onto the outer peripheral surface of the intermediate transfer belt
41
, whereby second patch images PT
2
are formed (FIG.
8
A: step S
506
). The second patch images PI
2
are halftone images in this preferred embodiment. The reason of this will be described in detail later, together with the reason that first patch images are solid images.
At a subsequent step S
507
, whether the second patch images are formed in all of patch generation colors is judged. While a result of the judgement stays NO, the next color is set as a patch generation color (step S
508
) and the steps S
503
through S
507
are repeated. This adds further second patch images PI
2
on the outer peripheral surface of the intermediate transfer belt
41
, in the order of cyan (C), magenta (M) and black (K), as shown in
FIGS. 8B through 8D
.
On the contrary, when it is determined YES at the step S
507
, image densities of the sixteen (=4 types×4 colors) patch images PI
2
are measured on the basis of a signal outputted from the patch sensor PS (step S
509
). Following this, an electrifying bias corresponding to a target density is calculated (step S
510
), and the calculated electrifying bias is stored in the RAM
127
as an optimal electrifying bias (step S
511
). When a measurement result (image density) matches with the target density, an electrifying bias corresponding to this image density may be used as an optimal electrifying bias. When the two density values fail to match, as shown in
FIG. 13B
, it is possible to calculate an optimal electrifying bias through linear interpolation, averaging or other appropriate methodology in accordance with data D (Va
05
) and data D (Va
06
) which are on the both sides of the target density.
As described above, according to this preferred embodiment, during the second or subsequent density adjustment, the four types of electrifying biases are set up in the narrow range using biases which are measured immediately previously and stored in the RAM
127
, the patch images are formed in the respective colors, and the optimal electrifying bias is calculated. Hence, unlike the conventional technique, this preferred embodiment realizes a similar effect to that of the development bias calculation. In other words, according to the conventional technique, three pairs of an electrifying bias and a development bias are stored in advance, and patch images are formed using the three electrifying biases, respectively. Hence, in order to cover a range of possible changes in the electrifying bias, namely, a range which is approximately the same as the programmable range of electrifying bias, it is necessary to set the three electrifying biases at relatively long intervals.
In contrast, according to this preferred embodiment, the electrifying bias is changed within the narrow range including an immediately preceding optimal electrifying bias out of the programmable range (V
01
-Va
10
) of electrifying bias. That is, the preferred embodiment requires only approximately ⅓ of the programmable range of electrifying bias, and the intervals of the electrifying biases according to this preferred embodiment (third intervals W
3
) are narrower than those used in the conventional technique. Due to this, the present invention allows to calculate an optimal electrifying bias at a further higher accuracy. It is to be noted that a simple reduction of the range in which an electrifying bias is to be changed merely causes an optimal electrifying bias to be calculated to deviate from the reduced range and makes it difficult to accurately calculate an optimal electrifying bias. However, according to this preferred embodiment, since the narrow range is set around an immediately preceding optimal electrifying bias, it is extremely unlikely to see such a problem.
Once the optimal electrifying bias is determined in this manner, the optimal electrifying bias calculated as described above is read from the RAM
127
and set as the electrifying bias, in addition to the optimal development bias already set as the development bias. When an image is formed with this setup, the resultant image has the target density. In other words, the image density is stable.
By the way, solid images are used as the first patch images for the development bias calculation while halftone images are used as the second patch images for the electrifying bias calculation in this preferred embodiment for the following reason.
As an electrostatic latent image LI
1
of a solid image (first patch image) PI
1
(See
FIG. 7
) is formed on the surface of the photosensitive member
21
which is electrified uniformly at a surface potential V
0
, a surface potential corresponding to the electrostatic latent image LI
1
largely drops down to a potential (exposed area potential) Von as shown in
FIGS. 15A and 15B
, whereby a well potential is developed. Now, even if the electrifying bias is increased to raise the surface potential of the photosensitive member
21
from the potential V
0
up to a potential V
0
′, the exposed area potential will not depart largely from the potential Von. Hence, a toner density is determined only in accordance with the development bias Vb despite any small change in the electrifying bias.
Meanwhile, a halftone image (second patch image) PI
2
(See
FIG. 14
) contains line images formed at predetermined intervals. As an electrostatic latent image LI
2
of the halftone image is formed on the surface of the photosensitive member
21
which is electrified uniformly at a surface potential V
0
, surface potentials corresponding to the positions of the lines largely drop down to the potential (exposed area potential) Von, as shown in
FIGS. 16A and 16B
. As a result, a comb-shaped well potential is developed. If the electrifying bias is increased in a similar manner to described above to raise the surface potential of the photosensitive member
21
from the potential V
0
up to the potential V
0
′, the exposed area potential corresponding to each line changes greatly from the potential Von to a potential Von′. Hence, as the electrifying bias changes, a toner density corresponding to the development bias Vb changes with the change in the electrifying bias. A relationship between such bias setup (the optimal development bias and the optimal electrifying bias) and a toner density will be described in detail in “C. Setting of Electrifying Bias in Development Bias Calculation” below.
From the above, it is found that use of a solid image reduces the influence of the electrifying bias over the toner density, and therefore, it is possible to adjust an image density of the solid image by means of adjustment of the development bias. In short, when the development bias calculation is executed using solid images as the first patch images as in the preferred embodiment above, it is possible to accurately calculate an optimal development bias regardless of the value of the electrifying bias.
Further, to form an image in a stable manner, adjustment at a maximum gradation (maximum density) alone is not sufficient. Density adjustment at a halftone gradation is necessary as well. However, when halftone images are used, as shown in
FIGS. 16A and 16B
, the set development bias and the set electrifying bias strongly influence an eventual image. To deal with this, the preferred embodiment above requires to calculate an optimal development bias first. While changing the electrifying bias with the development bias set to the optimal development bias, the second patch images of halftone images are formed. As a result, therefore, the optimal electrifying bias needed to obtain an image density which meets the target density is calculated.
C. Setting of Electrifying Bias in Development Bias Calculation
By the way, when second patch images are formed while changing an electrifying bias, a exposed area potential (bright part potential) Von of a latent image sometimes largely changes as the electrifying bias changes.
FIG. 17
is a graph showing attenuation of a surface potential as a photosensitive member is exposed at various exposure powers, in which curves C(Va-
1
), C(Va-
2
), C(Va-
3
) and C(Va-
4
) express attenuation of a surface potential caused by electrification at electrifying biases Va-
1
through Va-
4
which are different from each other. In
FIG. 17
, “EXPOSURE POWER” denotes a dose of exposure applied upon a photosensitive member
21
per unit area from the exposure unit
3
. As clearly shown in
FIG. 17
, a surface potential in a surface area of the exposed photosensitive member
21
, namely, the exposed area potential changes in accordance with the electrifying bias and the exposure power supplied to the exposed photosensitive member
21
from the exposure unit
3
. The exposed area potential is approximately the same between the attenuation curves regardless of a value of the electrifying bias when the exposure power is relatively large. On the other hand, the exposed area potential is different in accordance with the electrifying bias when the exposure power is relatively small. Such a tendency is as already described with reference to
FIGS. 15A
,
15
B,
16
A and
16
B.
Hence, when the exposure power is set relatively high, even if the electrifying bias set during the development bias calculation is largely deviated from the optimal electrifying bias, a contrast potential (=development bias−surface potential) during the development bias calculation matches with a contrast potential after setting of the optimal electrifying bias. Therefore, it is possible to stably form an image at a target density by means of the optimal development bias and the optimal electrifying bias which are calculated according to the preferred embodiment above.
Conversely, when the exposure power is set relatively small, since the surface potential differs depending on the electrifying bias, it is sometimes impossible to stably form an image at a target density even despite setting the optimal development bias and the optimal electrifying bias which are calculated according to the preferred embodiment above. This is because when the electrifying bias set during the development bias calculation is largely deviated from the optimal electrifying bias, the contrast potential (=development bias−surface potential) during the development bias calculation becomes different from the contrast potential after setting of the optimal electrifying bias. With the contrast potential varied in such a manner, it is difficult to stabilize an image density.
Noting this, in a preferred embodiment described below, the electrifying bias is changed in accordance with a change in the development bias during the development bias calculation processing, to thereby solve the problem above which occurs when the exposure power is relatively small. First, a relationship between the development bias Vb and the contrast potential will be described before describing how the electrifying bias is specifically changed.
During the development bias calculation processing, as shown in
FIG. 18
for instance, if the electrifying bias is fixed at a bias Va-
2
and latent images of first patch images are formed by exposing light at an exposure power P
1
, the exposed area potential of the latent images become a potential Von
1
. As the development bias Vb is changed in this condition, a contrast potential Vcon
1
changes in accordance with the change in the development bias Vb, thereby changing densities of the first patch images. Hence, during the development bias calculation according to the preferred embodiment described above, a plurality of first patch images are formed while changing only the development bias Vb and the optimal development bias is thereafter determined.
On the other hand, during the electrifying bias calculation processing, as shown in
FIG. 19
for example, the electrifying bias is set to various levels while fixing the development bias to the optimal development bias Vb, and latent images of second patch images are formed by exposing light at an exposure power P
2
. The exposed area potential of the latent images becomes largely different between the different electrifying bias levels. Since second patch images are halftone images as those shown in FIG.
16
A. Hence, even though the latent images are formed with an exposure beam having the exposure power P
1
, an effective exposure power for exposure with an isolated beam is smaller than the exposure power P
1
. As a result, the lowest potential level of a comb-shaped well potential is not as low as the lowest potential level which is observed during solid exposure. Noting a macro surface potential of a halftone latent image, this is the same as solid exposure at the exposure power P
2
which is smaller than the exposure power P
1
. Therefore, considering that the latent images of the second patch images are images solidly exposed at the exposure power P
2
, the exposed area potential of these latent images becomes largely different depending on the electrifying bias.
For instance, the exposed area potential becomes a potential Von
2
-
2
to generate the contrast potential Vcon
2
-
2
when the electrifying bias has the level Va-
2
, whereas when the electrifying bias has the level Va-
3
, the exposed area potential becomes a potential Von
2
-
3
to generate the contrast potential Vcon
2
-
3
. In this manner, the contrast potential Vcon
2
changes as the electrifying bias Va changes, and a density of the second patch image accordingly changes. For this reason, the electrifying bias calculation according to the preferred embodiment described above requires to form a plurality of second patch images while changing only the electrifying bias Va in order to determine an optimal electrifying bias.
If the optimal electrifying bias resulting from such electrifying bias calculation processing is different from the electrifying bias set during the development bias calculation (i.e., the electrifying bias Va-
2
in FIG.
18
), the contrast potential Vcon
1
determined through the development bias calculation is changed. Hence, despite application of the optimal development bias, an image density may deviate from a target density. The possibility of this is high particularly when the exposure power drops.
FIG. 20
shows a relationship between the development bias Vb and the contrast potential which is identified based on the optimal attenuation curves C(Va-a) and C(Va-b). In
FIG. 20
, the horizontal axis denotes the development bias Vb while the vertical axis denotes the contrast potential. Further, straight lines L(P
1
, Va-a), L(P
1
, Va-b), L(P
2
, Va-a) and L(P
2
, Va-b) respectively denote contrast potentials Vcon
1
-a, Vcon
1
-b, Vcon
2
-a and Vcon
2
-b which are shown in FIG.
21
.
When first patch images are formed with the electrifying bias Va-a, changing the development bias Vb causes proportional change in the contrast potential Vcon
1
-a as denoted at the straight line L(P
1
, Va-a) shown in FIG.
20
. Meanwhile, when first patch images are formed with the electrifying bias Va-b, changing the development bias Vb causes proportional change in the contrast potential Vcon
1
-b as denoted at the straight line L(P
1
, Va-b) shown in FIG.
20
. When second patch images are formed with the electrifying bias Va-a, changing the development bias Vb causes proportional change in the contrast potential Vcon
2
-a as denoted at the straight line L(P
2
, Va-a) shown in FIG.
20
. Further, when second patch images are formed with the electrifying bias Va-b, changing the development bias Vb causes proportional change in the contrast potential Vcon
2
-b as denoted at the straight line L(P
2
, Va-b) shown in
FIG. 20. A
development bias/contrast potential characteristic is determined based on the optimal attenuation curves in this manner.
In
FIG. 20
, a target contrast potential Vcon
01
corresponds to the target density during the development bias calculation processing and a target contrast potential Vcon
02
corresponds to the target density during the electrifying bias calculation processing. In order to even more accurately adjust a density, it is necessary to set the optimal development bias Vb and the optimal electrifying bias Va such that these two contrast potentials Vcon
01
and Vcon
02
are simultaneously satisfied.
According to this embodiment, during the development bias calculation processing, as shown in
FIG. 22
, the development bias Vb is varied in its variable range while at the same time changing the electrifying bias from the level Va-a to the level Va-b. As the electrifying biases Va-a and Va-b are set so that the two target contrast potentials Vcon
01
and Vcon
02
are simultaneously satisfied with approximately the same development bias Vb
0
, the optimal development bias Vb and the optimal electrifying bias Va are set at a high accuracy.
Now, as variations of the electrifying bias during the development bias calculation processing, five variations will be described. In each one of the five variations below, the electrifying bias increases as the development bias increases.
(1) First variation:
FIG. 23
FIG. 23
is a drawing showing a first variation of the development bias and the electrifying bias during the development bias calculation processing. In the first variation, a quantity of change ΔVa (=Va-b−Va-a) in the electrifying bias is set equal to a quantity of change ΔVb in the development bias, and the electrifying bias Va is set to a value which is expressed as below:
Va=Vb+C
where C is a constant which is determined in accordance with a structure, operations and the like of an image forming apparatus.
(2) Second variation:
FIG. 29
FIG. 29
is a drawing showing a second variation of the development bias and the electrifying bias during the development bias calculation processing. In the second variation, a quantity of change ΔVa (=Va-b−Va-a) in the electrifying bias is set smaller than a quantity of change ΔVb in the development bias. Such setup is suitable to a situation where, as shown in
FIG. 25
, the exposure power P
1
during the development bias calculation processing is relatively high thereby accompanying a small change in the exposed area potential Von
1
with a change in the electrifying bias, whereas the exposure power P
2
during the electrifying bias calculation processing is relatively low thereby accompanying a large change in the potential Von
2
with a change in the electrifying bias. The reason of this will now be described with reference to
FIGS. 25 through 27
.
Where an attenuation characteristic is as shown in
FIG. 25
, the straight line L(P
2
, Va-a) and the straight line L(P
2
, Va-b) shown in
FIG. 26
are apart relatively far from each other. Because of this, even when the electrifying bias is changed from the level Va-a to the level Va-b, the contrast potential Vcon
2
shows only a small change, thereby making it impossible sometimes to calculate appropriate values which are necessary to obtain the target contrast potential Vcon
02
.
To deal with this, the second variation requires to set an electrifying bias change ΔVa smaller than a quantity of change ΔVb in the development bias Vb. Hence, the straight line L(P
2
, Va-b) shifts closer to the straight line L(P
2
, Va-a) as shown in
FIG. 27
, accompanying a large change in the contrast potential Vcon
2
. As a result, it is possible to reliably calculate appropriate values (the optimal development bias and the optimal electrifying bias) which are necessary to obtain the target contrast potential Vcon
02
.
(3) Third variation:
FIG. 28
FIG. 28
is a drawing showing a third variation of the development bias and the electrifying bias during the development bias calculation processing. In the third variation, a quantity of change ΔVa (=Va-b−Va-a) in the electrifying bias is set larger than a quantity of change ΔVb in the development bias. Such setup is suitable to a situation where, as shown in
FIG. 29
, the exposure power P
1
during the development bias calculation processing is relatively high thereby accompanying a small change in the exposed area potential Von
1
with a change in the electrifying bias, and the exposure power P
2
during the electrifying bias calculation processing is also relatively high thereby accompanying a small change in the potential Von
2
with a change in the electrifying bias. The reason of this will now be described with reference to
FIGS. 29 through 31
.
Where an attenuation characteristic is as shown in
FIG. 29
, the straight line L(P
2
, Va-a) and the straight line L(P
2
, Va-b) shown in
FIG. 30
are apart relatively close to each other. In this condition, even when the electrifying bias is changed from the level Va-a to the level Va-b, the exposed area potentials Von
2
-a, Von
2
-b of second patch images shows only a small change, which arrives at virtually one optimal solution (the optimal electrifying bias). Because of this, as shown in
FIG. 30
, the target contrast potential Vcon
01
of first patch images and the target contrast potential Vcon
02
of second patch images sometimes become inconsistent to each other. In short, a deviation ΔVb
0
is sometimes created between the optimal development bias Vb
0
of first patch images and the optimal development bias of second patch images.
To deal with this, the third variation requires to set the electrifying bias change ΔVa larger than a quantity of change ΔVb in the development bias Vb (FIG.
28
). Hence, the straight line L(P
2
, Va-b) is far from the straight line L(P
2
, Va-a) as shown in
FIG. 31
, thereby expanding a range of an optimal solution. This ensures consistency between the target contrast potential Vcon
01
of first patch images and the target contrast potential Vcon
02
of second patch images.
(4) Fourth variation:
FIG. 33
It is desirable to set the electrifying bias in accordance with a change in the development bias such that a development bias Vb
01
satisfying the target contrast potential Vcon
01
and a development bias Vb
02
satisfying the target contrast potential Vcon
02
become approximately equal to each other, as described above. However, depending on a process of forming images, as described earlier, it is difficult in some cases to match the development biases Vb
01
and Vb
02
with a linear change in the electrifying bias. For example, when the electrifying bias is changed according to the first variation (FIG.
23
), the development bias Vb
02
sometimes becomes smaller than the development bias Vb
01
as shown in
FIG. 32
to thereby create a deviation ΔVb
0
to the development bias. When this occurs, the electrifying bias may be changed logarithmically as shown in
FIG. 33
, which moves the development bias Vb
02
which satisfies the target contrast potential Vcon
02
closer to the development bias Vb
01
which satisfies the target contrast potential Vcon
01
so that the two development biases Vb
01
and Vb
02
approximately match with each other (FIG.
34
).
(5) Fifth variation:
FIG. 36
When the electrifying bias is changed according to the first variation (FIG.
23
), the development bias Vb
02
sometimes becomes larger than the development bias Vb
01
as shown in
FIG. 35
, creating a deviation ΔVb
0
to the development bias. When this occurs, the electrifying bias may be changed exponentially as shown in
FIG. 36
, which moves the development bias Vb
02
which satisfies the target contrast potential Vcon
02
closer to the development bias Vb
01
which satisfies the target contrast potential Vcon
01
so that the two development biases Vb
01
and Vb
02
approximately match with each other (FIG.
37
).
The present invention is not limited to the preferred embodiment above, but can be modified in various manners other than those described above without departing from the essence of the present invention. For example, although the foregoing requires to use the electrifying roller
22
as the electrifying means, the present invention is applicable to an image forming apparatus in which non-contact electrifying means electrifies the photosensitive member
21
.
Further, while the preferred embodiment above is related to an image forming apparatus which is capable of forming a color image using toners in four colors, an application of the present invention is not limited to this. The present invention is naturally applicable to an image forming apparatus which forms only a monochrome image as well. In addition, although the image forming apparatus according to the preferred embodiment above is a printer for forming an image supplied from an external apparatus such as a host computer through the interface
112
on a sheet such as a copying paper, a transfer paper, a form and a transparent sheet for an over-head projector, the present invention is applicable to image forming apparatuses of the electrophotographic method in general such as a copier machine and a facsimile machine.
Further, in the preferred embodiment above, toner images on the photosensitive member
21
are transferred onto the intermediate transfer belt
41
, image densities of patch images formed by said toner images are detected, and an optimal development bias and an optimal electrifying bias are thereafter calculated based on the detected image densities. However, the present invention is also applicable to an image forming apparatus in which a toner image is transferred onto other transfer medium except for the intermediate transfer belt
41
, to thereby form a patch image. The other transfer medium includes a transfer drum, a transfer belt, a transfer sheet, an intermediate transfer drum, an intermediate transfer sheet, a reflection-type recording sheet, a transmission memory sheet, etc. Further, instead of forming a patch image on a transfer medium, a patch sensor may be disposed so as to detect a density of a patch image which is formed on a photosensitive member. In this case, the patch sensor detects image densities of patch images on the photosensitive member and an optimal development bias and an optimal electrifying bias are calculated based on the detected image densities.
Further, in the preferred embodiment above, the RAM
127
of the engine controller
12
stores an optimal development bias and an optimal electrifying bias. Hence, when the main power source of the image forming apparatus is turned off, the contents stored in the RAM
127
disappear. When the main power source is turned on once again, the image forming apparatus recognizes the current development bias calculation and the current electrifying bias calculation as “the first” calculation and executes processing in accordance with this recognition. Instead of this, a nonvolatile memory such as an EEPROM may be used to store an optimal development bias and an optimal electrifying bias which are calculated in sequence, so that as the main power source is turned on once again, the processing for “the second or subsequent” calculation is executed during the development bias calculation and the electrifying bias calculation.
Further, the narrow range is defines as approximately ⅓ of the programmable range (Vb
01
-Vb
10
) of development bias in the preferred embodiment above. Although the width of the narrow range is not limited to this, if the width of the narrow range is wide, the use of the narrow range becomes less meaningful and degrades the accuracy of calculation of an optimal development bias. For this reason, it is necessary to set the narrow range as approximately ½ of or narrower than the programmable range for development bias. This also applies to the narrow range for electrifying biases as well.
Further, although the four types of biases are set in the wide and the narrow ranges in the preferred embodiment described above, the number of bias values (the number of patch images) in the range is not limited to this but may be optional to the extent that more than one types of bias values are used. Alternatively, the number of bias values may be different between the wide range and the narrow range such that the number of patch images is different between the wide range and the narrow range.
Further, while the first patch images are each a solid image whose area ration is 100% in the preferred embodiment above, an image whose area ratio is approximately 80% or more may be used instead of using a solid image. Even when such an image is used as the first patch images, a similar effect to that promised when solid images are used is obtained. The term “area ratio” refers to a ratio of dots to the area of a patch image as a whole.
Further, in the preferred embodiment above, after executing the development bias calculation (step S
3
), the electrifying bias calculation (step S
5
) is further executed, in order to calculate an optimal development bias and an optimal electrifying bias. However, the manner in which an optimal development bias and an optimal electrifying bias are calculated is not limited to this. For example, a plurality of patch images may be formed while changing the development bias and the electrifying bias at the same time, so that an optimal development bias and an optimal electrifying bias are calculated based on image densities of the patch images and density adjustment is executed. In this case, memory means such as a RAM and a ROM stores the development bias and the electrifying bias for every density adjustment and the memory means reads out the most recent development bias and the most recent electrifying bias in preparation for the next density adjustment. The plurality of patch images are formed while changing the development bias and the electrifying bias at the same time based on the most recent development bias and the most recent electrifying bias. This realizes a similar effect to that according to the preferred embodiment above. Still further, the present invention is applicable to where calculation of an optimal development bias is executed first and an optimal electrifying bias is thereafter calculated followed by density adjustment, in which case as well it is possible to achieve a similar effect to that described above.
Further, while the patch images PI
1
are formed as clusters in each color as shown in
FIGS. 8A through 8D
in the preferred embodiment described above, the patch images PI
1
may be formed in each color in turn as shown in
FIGS. 38A through 38D
. More specifically, first, yellow patch images PI
1
(Y) are formed on the intermediately transfer belt
41
at relatively wide intervals. Next, cyan patch images PI
1
(C) are formed one by one, starting at a position which is shifted by one patch image and a blank between the adjacent-patch images in the sub scanning direction (the right-hand side in
FIGS. 38A through 38D
) as viewed from the yellow patch images PI
1
(Y). Following this, magenta patch images PI
1
(M) and black patch images PI
1
(K) are formed in a similar manner. Where the respective patch images are thus formed at relatively wide intervals, it is possible to ensure a stabilization time for switching of the biases, and hence, to form the respective patch images at the set biases without fail. Although the description immediately above is related to first patch images, the same directly applies to second patch images as well.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiment, as well as other embodiments of the present invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.
Claims
- 1. An image forming apparatus for forming an image which has a predetermined target density, comprising:a photosensitive member; electrifying means which electrifies a surface of said photosensitive member; exposing means which forms an electrostatic latent image on the surface of said photosensitive member; developing means which visualizes said electrostatic latent image with a toner and forms a toner image; transferring means which transfers the toner image from said photosensitive member to a transfer medium; density detecting means which detects an image density of the toner image on said photosensitive member or on said transfer medium as a patch image; control means which controls an electrifying bias to be supplied to said electrifying means and a development bias to be supplied to said development means based on a result of the detection obtained by said density detecting means, and adjusts an image density of the toner image to a target density; and memory means which stores the electrifying bias and the development bias, wherein every time adjustment is finished, said control means causes said memory means to store the electrifying bias and the development bias which are obtained after the adjustment as an optimal electrifying bias and an optimal development bias, respectively, and when adjustment is performed repeatedly, based on said optimal electrifying bias and the optimal development bias stored in said memory means, said control means controls such that a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias, wherein said control means is capable of changing the development bias within a predetermined programmable range of development bias, and said control means determines an optimal development bias which is needed to obtain the target density based on densities of first patch images which are formed in the following bias condition: the electrifying bias is set to said optimal electrifying bias which is stored in said memory means; and the development bias is gradually changed within a range which is approximately ½ of or narrower than the programmable range of development bias and yet includes the most recent optimal development bias which is stored in said memory means.
- 2. The image forming apparatus according to claim 1, wherein the area ratio of said first patch images is 80% or more.
- 3. The image forming apparatus according to claim 2, wherein said first patch images are solid images.
- 4. The image forming apparatus according to claim 1, wherein said control means is capable of changing the electrifying bias within a predetermined programmable range of electrifying bias, andsaid control means determines an optimal electrifying bias which is needed to obtain the target density based on densities of second patch images which are formed in the following bias condition: the development bias is set to the optimal development bias which is obtained based on densities of said first patch images; and the electrifying bias is gradually changing within a range which is approximately ½ of or narrower than the programmable range of electrifying bias and yet includes the most recent optimal electrifying bias which is stored in said memory means.
- 5. The image forming apparatus according to claim 4, wherein said second patch images are halftone images.
- 6. An image forming apparatus for forming an image which has a predetermined target density, comprising:a photosensitive member; electrifying means which electrifies a surface of said photosensitive member; exposing means which forms an electrostatic latent image on the surface of said photosensitive member; developing means which visualizes said electrostatic latent image with a toner and forms a toner image; transferring means which transfers the toner image from said photosensitive member to a transfer medium; density detecting means which detects an image density of the toner image on said photosensitive member or on said transfer medium as a patch image; control means which controls an electrifying bias to be supplied to said electrifying means and a development bias to be supplied to said development means based on a result of the detection obtained by said density detecting means, and adjusts an image density of the toner image to a target density; and memory means which stores the electrifying bias and the development bias, wherein every time adjustment is finished, said control means causes said memory means to store the electrifying bias and the development bias which are obtained after the adjustment as an optimal electrifying bias and an optimal development bias, respectively, and when adjustment is performed repeatedly, based on said optimal electrifying bias and the optimal development bias stored in said memory means, said control means controls such that a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias wherein said control means is capable of changing the electrifying bias within a predetermined programmable range of electrifying bias, and said control means determines an optimal electrifying bias which is needed to obtain the target density based on densities of third patch images which are formed in the following bias condition: the development bias is set to the optimal development bias which is stored in said memory means; and the electrifying bias is gradually changed within a range which is approximately ½ of or narrower than the programmable range of electrifying bias and yet includes the most recent optimal electrifying bias which is stored in said memory means.
- 7. The image forming apparatus according to claim 6, wherein said third patch images are halftone images.
- 8. An image forming method in which after an electrifying bias is applied to electrifying means to electrify a surface of a photosensitive member, an electrostatic latent image is formed on the surface of said photosensitive member, a development bias is applied to developing means so that said electrostatic latent image is visualized with a toner and a toner image is formed, said method comprising the steps of:a first step in which after sequentially forming a plurality of toner images as patch images while changing at least one of the electrifying bias and the development bias, densities of said patch images are detected, and an optimal development bias and an optimal electrifying bias which are needed to obtain a target density are determined based on image densities of said patch images; and a second step of storing the optimal development bias and said optimal electrifying bias in memory means, wherein when said first step is to be repeated again after executing said second step, based on the most recent optimal development bias and the most recent optimal electrifying bias which are stored in said memory means, a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias wherein, said first step comprises: a first sub step in which the electrifying bias is fixed at the most recent optimal electrifying bias which is stored in said memory means, and after sequentially forming a plurality of first patch images while changing the development bias based on the most recent optimal development bias which is stored in said memory means, densities of said first patch images are detected, and an optimal development bias which is needed to obtain a target density is determined based on the image densities of said first patch images, and wherein used as said first patch images at said first sub step are images whose the area ratio is 80% or more.
- 9. The image forming method according to claim 8, wherein said first patch images are solid images.
- 10. An image forming method in which after an electrifying bias is applied to electrifying means to electrify a surface of a photosensitive member, an electrostatic latent image is formed on the surface of said photosensitive member, a development bias is applied to developing means so that said electrostatic latent image is visualized with a toner and a toner image is formed, said method comprising the steps of:a first step in which after sequentially forming a plurality of toner images as patch images while changing at least one of the electrifying bias and the development bias, densities of said patch images are detected, and an optimal development bias and an optimal electrifying bias which are needed to obtain a target density are determined based on image densities of said patch images; and a second step of storing the optimal development bias and said optimal electrifying bias in memory means, wherein when said first step is to be repeated again after executing said second step, based on the most recent optimal development bias and the most recent optimal electrifying bias which are stored in said memory means, a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias, wherein said first step comprises: a first sub step in which the electrifying bias is fixed at the most recent optimal electrifying bias which is stored in said memory means, and after sequentially forming a plurality of first patch images while changing the development bias based on the most recent optimal development bias which is stored in said memory means, densities of said first patch images are detected, and an optimal development bias which is needed to obtain a target density is determined based on the image densities of said first patch images, and wherein said first step further comprises: a second sub step in which the development bias is fixed at the optimal development bias which is determined at said first sub step, and after sequentially forming a plurality of second patch images while changing the electrifying bias based on the most recent optimal electrifying bias which is stored in said memory means, densities of said second patch images are detected, and an optimal electrifying bias which is needed to obtain the target density is determined based on the image densities of said second patch images.
- 11. The image forming method according to claim 10, wherein halftone images are formed as said second patch images at said second sub step.
- 12. An image forming method in which after an electrifying bias is applied to electrifying means to electrify a surface of a photosensitive member, an electrostatic latent image is formed on the surface of said photosensitive member, a development bias is applied to developing means so that said electrostatic latent image is visualized with a toner and a toner image is formed, said method comprising the steps of:a first step in which after sequentially forming a plurality of toner images as patch images while changing at least one of the electrifying bias and the development bias, densities of said patch images are detected, and an optimal development bias and an optimal electrifying bias which are needed to obtain a target density are determined based on image densities of said patch images; and a second step of storing the optimal development bias and said optimal electrifying bias in memory means, wherein when said first step is to be repeated again after executing said second step, based on the most recent optimal development bias and the most recent optimal electrifying bias which are stored in said memory means, a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias, wherein said first step further comprises: a third sub step in which the development bias is fixed at the optimal development bias which is stored in said memory means, and after sequentially forming a plurality of second patch images while changing the electrifying bias based on the most recent optimal electrifying bias which is stored in said memory means, densities of said second patch images are detected, and an optimal electrifying bias which is needed to obtain the target density is determined based on the image densities of said second patch images.
- 13. The image forming method according to claim 12, wherein halftone images are formed as said second patch images at said third sub step.
- 14. An image forming apparatus for forming an image which has a predetermined target density, comprising:a photosensitive member; electrifying means which electrifies a surface of said photosensitive member; exposing means which forms an electrostatic latent image on the surface of said photosensitive member; developing means which visualizes said electrostatic latent image with a toner and forms a toner image; transferring means which transfers the toner image from said photosensitive member to a transfer medium; density detecting means which detects an image density of the toner image on said photosensitive member or on said transfer medium as a patch image; control means which controls an electrifying bias to be supplied to said electrifying means and a development bias to be supplied to said development means based on a result of the detection obtained by said density detecting means, and adjusts an image density of the toner image to a target density; and memory means which stores the electrifying bias and the development bias, wherein every time adjustment is finished, said control means causes said memory means to store the electrifying bias and the development bias which are obtained after the adjustment as an optimal electrifying bias and an optimal development bias, respectively, and when density adjustment is performed repeatedly, based on the optimal electrifying bias and the optimal development bias which are obtained from the immediately preceding density adjustment and stored in memory means, patch images are sequentially formed while changing at least one of the electrifying bias and the development bias.
- 15. An image forming method in which after an electrifying bias is applied to electrifying means to electrify a surface of a photosensitive member, an electrostatic latent image is formed on the surface of said photosensitive member, a development bias is applied to developing means so that said electrostatic latent image is visualized with a toner and a toner image is formed, said method comprising the steps of:a first step in which after sequentially forming a plurality of toner images as patch images while changing at least one of the electrifying bias and the development bias, densities of said patch images are detected, and an optimal development bias and an optimal electrifying bias which are needed to obtain a target density are determined based on image densities of said patch images; and a second step of storing the optimal development bias and said optimal electrifying bias in memory means, wherein when said first step is to be repeated again after executing said second step, based on the most recent optimal development bias and the most recent optimal electrifying bias which are stored in said memory means, a plurality of patch images are formed in sequence while changing at least one of the electrifying bias and the development bias, and when density adjustment is performed repeatedly, based on the optimal electrifying bias and the optimal development bias which are obtained from the immediately preceding density adjustment and stored in memory means, patch images are sequentially formed while changing at least one of the electrifying bias and the development bias.
- 16. The image forming method according to claim 15, wherein said first step comprises: a first sub step in which the electrifying bias is fixed at the most recent optimal electrifying bias which is stored in said memory means, and after sequentially forming a plurality of first patch images while changing the development bias based on the most recent optimal development bias which is stored in said memory means, densities of said first patch images are detected, and an optimal development bias which is needed to obtain a target density is determined based on the image densities of said first patch images.
- 17. The image forming method according to claim 15, wherein said patch images are toner images which are formed on the surface of said photosensitive member.
- 18. The image forming method according to claim 15, wherein said patch images are toner images which are obtained by transferring said toner images formed on the surface of said photosensitive member onto a transfer medium.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-213655 |
Jul 1999 |
JP |
|
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
5124750 |
Naito |
Jun 1992 |
A |
5298944 |
Sawayama et al. |
Mar 1994 |
A |
5321468 |
Nakane et al. |
Jun 1994 |
A |
5453773 |
Hattori et al. |
Sep 1995 |
A |
6243542 |
Fujimoto et al. |
Jun 2001 |
B1 |
Foreign Referenced Citations (26)
Number |
Date |
Country |
0 589 135 |
Mar 1994 |
EP |
63-142370 |
Jun 1988 |
JP |
63-142370 |
Jun 1988 |
JP |
3-260667 |
Nov 1991 |
JP |
4-30182 |
Feb 1992 |
JP |
4-96076 |
Mar 1992 |
JP |
4-96076 |
Mar 1992 |
JP |
4-204762 |
Jul 1992 |
JP |
5-40397 |
Feb 1993 |
JP |
5-40397 |
Feb 1993 |
JP |
5-333648 |
Dec 1993 |
JP |
5-333648 |
Dec 1993 |
JP |
6-102735 |
Apr 1994 |
JP |
8-211722 |
Aug 1996 |
JP |
244472 |
Sep 1997 |
JP |
9-244472 |
Sep 1997 |
JP |
10-55081 |
Feb 1998 |
JP |
10-55081 |
Feb 1998 |
JP |
10-239924 |
Sep 1998 |
JP |
10-239924 |
Sep 1998 |
JP |
11-15217 |
Jan 1999 |
JP |
11-15217 |
Jan 1999 |
JP |
11-133682 |
May 1999 |
JP |
3013441 |
Feb 2000 |
JP |
2000-66550 |
Mar 2000 |
JP |
3236751 |
Dec 2001 |
JP |