This Nonprovisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 2005-328987 filed in Japan on Nov. 14, 2005, the entire contents of which are hereby incorporated by reference.
The present invention relates to an image forming apparatus including an image forming unit that forms a color image in which a plurality of color component images are superimposed; and a formation controlling unit that allows the image forming unit to form images for adjustment of formation positions of the color component images, and a method of adjusting a color shift in the image forming apparatus.
In image forming apparatuses capable of forming color images, such as copiers and multifunction devices, a color image is formed by superimposing color component images of C (cyan), M (magenta), Y (yellow), and K (black), for example. To maintain good image quality of a color image, it is important to minimize the shift in the formation position of each color component image, which is caused by an influence of periodic speed variations of photosensitive bodies or the like. Hence, marks for adjustment of color component images of C, M, Y, and K are formed, the presence/absence of a color shift in the color component images is checked, and if there is a color shift, then a formation position is corrected (see Japanese Patent Application Laid-Open No. 2002-207338, for example).
The present invention is made in view of the foregoing and other problems. An object of the present invention is therefore to provide an image forming apparatus capable of reducing the amount of toner used for adjustment of an image formation position and an adjustment time by allowing an image forming unit to form, for each color, a plurality of adjustment images having different tilts with respect to an image formation direction, and a method of adjusting a color shift.
Another object of the present invention is to provide an image forming apparatus capable of grasping influences (for example, a periodic deviation of the movement speed of a photosensitive body surface due to eccentricity of a rotation center axis thereof or the like) associated with the rotation period of photosensitive bodies on adjustment of an image formation position, and a method of adjusting a color shift.
An image forming apparatus of the present invention comprises: an image forming unit that forms a color image in which a plurality of color component images are superimposed; and a formation controlling unit that allows the image forming unit to form, in a predetermined direction, a plurality of images for adjustment of formation positions of the respective color component images, wherein the formation controlling unit allows the image forming unit to form, for each color, a plurality of adjustment images having different tilts with respect to the predetermined direction. In the present invention, the image forming unit forms, for each color, a plurality of adjustment images having different tilts with respect to an image formation direction (a sub-scanning direction or a main scanning direction). Thus, when the adjustment images are shifted in the sub-scanning direction, detected positions of the adjustment images are shifted all at a comparable level. When the adjustment images are shifted in the main scanning direction, detected positions of the adjustment images are shifted substantially proportionally or inversely proportionally to the tilt. Hence, the shift in the sub-scanning direction and the shift in the main scanning direction can be detected by one set of adjustment images made up of a plurality of adjustment images having different tilts. Comparing with two sets of conventional adjustment images for the main scanning direction and the sub-scanning direction, the number of adjustment images is reduced by half. Accordingly, the amount of toner used for adjustment of an image formation position and an adjustment time can be significantly reduced.
The image forming apparatus of the present invention may further comprise: a first calculating unit that calculates a shift of a detected position of each adjustment image from a reference position in which each adjustment image should be formed; a second calculating unit that calculates a tilt and an intercept of a regression line that uses the reference positions and the calculated shifts as variables; and a third calculating unit that calculates a shift in a main scanning direction and a shift in a sub-scanning direction based on the calculated tilt and intercept. In the present invention, a shift of a detected position of each adjustment image from a reference position in which each adjustment image should be formed is calculated, a tilt and an intercept of a regression line that uses the reference positions and the calculated shifts as variables are calculated, and a shift in the main scanning direction and a shift in the sub-scanning direction are determined based on the calculated tilt and intercept. When the adjustment images are shifted in the sub-scanning direction, detected positions of the adjustment images are shifted all at a comparable level. When the adjustment images are shifted in the main scanning direction, detected positions of the adjustment images are shifted substantially proportionally or inversely proportionally to the tilt. Hence, the shift in the sub-scanning direction is determined from an intercept of a regression line that uses the reference positions and the calculated shifts as variables and the shift in the main scanning direction is determined from a tilt of the regression line.
The image forming apparatus of the present invention may further comprise a plurality of photosensitive bodies each having a drum shape, on which the image is formed, wherein the formation controlling unit may allow the image forming unit to form a plurality of adjustment images over a length of a circumference of each of the photosensitive bodies. In the present invention, the image forming unit forms a plurality of adjustment images over the length of the circumference of each photosensitive body. Thus, influences associated with the rotation period of the photosensitive bodies on adjustment of an image formation position can be grasped.
In the image forming apparatus of the present invention, the photosensitive bodies may be rotated, and the image forming apparatus may further comprise a fourth calculating unit that calculates a reference phase of rotation of each of the photosensitive bodies based on differences between the calculated shifts and the regression line. In the present invention, a reference phase of the rotation of each photosensitive body is calculated based on differences between calculated shifts and a regression line. Thus, by allowing the reference phases of the respective photosensitive bodies to mach with one another, influences associated with the rotation period of the photosensitive bodies on adjustment of an image formation position can be grasped.
The above and further objects and features of the invention will more fully be apparent from the following detailed description with accompanying drawings.
The present invention will be described in detailed below based on the drawings showing an embodiment thereof.
The photosensitive drums 10 include a photosensitive drum for black 10K, a photosensitive drum for cyan 10C, a photosensitive drum for magenta 10M, and a photosensitive drum for yellow 10Y. Similarly, the developing rollers 24 include a developing roller for black 24K, a developing roller for cyan 24C, a developing roller for magenta 24M, and a developing roller for yellow 24Y. The laser diodes 42 include a laser diode for black 42K, a laser diode for cyan 42C, a laser diode for magenta 42M, and a laser diode for yellow 42Y.
The first mirrors 44 include a first mirror for cyan 44C, a first mirror for magenta 44M, and a first mirror for yellow 44Y that guide laser beams outputted from the laser diode for cyan 42C, the laser diode for magenta 42M, and the laser diode for yellow 42Y, respectively, to the polygon mirror 40. The second mirrors 46 include a second mirror for black 46K, a second mirror for cyan 46C, a second mirror for magenta 46M, and a second mirror for yellow 46Y that guide laser beams reflected by the polygon mirror 40 to the photosensitive drum for black 10K, the photosensitive drum for cyan 10C, the photosensitive drum for magenta 10M, and the photosensitive drum for yellow 10Y, respectively.
The transfer belt 30 has a loop shape. The photosensitive drums for the respective color components 10K, 10C, 10M, and 10Y are disposed in line so as to face a surface of the transfer belt 30. An image transferred onto the transfer belt 30 is moved from the right to the left in the drawing with respect to the photosensitive drums 10, by a belt drive roller 32 which is in internal contact with the transfer belt 30. In addition, a CCD (Charge Coupled Device) 34 is disposed so as to face the surface of the transfer belt 30. The CCD 34 is disposed at a side closer to a belt movement direction than the photosensitive drums 10. The photosensitive drums 10 are disposed in the order, from the CCD 34, of the photosensitive drum for black 10K, the photosensitive drum for cyan 10C, the photosensitive drum for magenta 10M, and the photosensitive drum for yellow 10Y in a direction opposite to the belt movement direction.
A transfer roller 36 is disposed so as to face the belt drive roller 32 with the transfer belt 30 interposed therebetween. The image is transferred from the transfer belt 30 onto a sheet 50 passing through the transfer roller 36 and then fused by fuser rollers 38.
The controlling unit 60 controls each of the component units included in the apparatus, based on a program and data stored in the ROM 70. The driving unit 66 includes a motor that drives the polygon mirror 40; a motor that drives the belt drive roller 32; and individual motors 26K, 26C, 26M, and 26Y that drive the photosensitive drums 10K, 10C, 10M, and 10Y, respectively.
The controlling unit (formation controlling unit) 60 controls, when adjusting image formation positions, the LSU (image forming unit) 64 such that the adjustment marks are formed in their corresponding reference positions. The controlling unit 60 determines shifts of detected positions where the marks are actually detected by the CCD 34, from their corresponding reference positions. Then, the controlling unit 60 controls the LSU 64 to minimize the shifts and thereby adjusts the image formation positions. When adjusting image formation positions, the LSU 64 forms, by control of the controlling unit 60, a plurality of marks of the same color on the transfer belt 30.
A distance L (six ds in the example of
The controlling unit 60 calculates a shift of a detected position of each adjustment mark from a reference position in which each adjustment mark should be formed. The controlling unit 60 then calculates the tilt and intercept of a regression line (y=ax+b, where x represents the reference position and y represents the shift) that uses the reference positions and the calculated shifts as variables. Based on the calculated tilt and intercept, the controlling unit 60 determines an amount of shift in the main scanning direction and an amount of shift in the sub-scanning direction.
For the position of each color component image, the controlling unit 60 determines an average value for the front and rear positions in a movement direction of a mark detected by the CCD 34, and sets the determined average value as a detected position of the adjustment mark. Since the photosensitive drums 10 and the belt drive roller 32 are rotated at a constant speed and the transfer belt 30 moves at a constant speed, a formation position can be expressed in time. Specifically, a time difference between a detection time of an adjustment mark and a time corresponding to a reference position is a shift in a formation position.
The photosensitive drums 10 have a drum shape. The controlling unit 60 sets a reference phase of the rotation of each photosensitive drum based on differences between calculated shifts and a regression line.
Now, formation position adjustment using the image forming apparatus of the present invention will be described.
Although, in the above-described embodiment, a formation position is corrected for each color by using seven adjustment marks having different tilts, the number of adjustment marks is not limited to seven and any number of adjustment marks can be used.
As this invention may be embodied in several forms without departing from the spirit of essential characteristics thereof, the present embodiment is therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-328987 | Nov 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6282396 | Iwata et al. | Aug 2001 | B1 |
6317147 | Tanaka | Nov 2001 | B1 |
20050212887 | Tanaka et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2000-098810 | Apr 2000 | JP |
2002-006584 | Jan 2002 | JP |
2002-207338 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20070109393 A1 | May 2007 | US |