1. Field of the Invention
The present invention relates to an image forming apparatus that is connectable to a network, and an operation system and an operation method which realize power saving of the image forming apparatus.
2. Description of the Related Art
An image forming apparatus, for example, a digital multi-function machine called MFP (multi-function peripherals), has a scanner unit and a printer unit. A document is read by the scanner unit. The read image data is processed by an image processing unit. The image is printed by the printer unit.
Some of the recent digital multi-function peripherals have a facsimile function using a public line, as well as a copy and scanner functions. Some of the digital multi-function peripherals also have plural functions such as connecting to a network and getting linked to an external computer (for example, a personal computer), inputting print data from the external computer, and printing the data.
Such digital multi-function peripherals have taken various measures to reduce power consumption. For example, JP-A-2005-288971 discloses an image forming apparatus in which the time for shifting to a sleep state or a ready state can be preferentially set by user operation. However, in this example, the time of power-saving operation is set by the user and only simple settings can be provided.
JP-A-2005-32397 discloses a power saving control method. In this example, the state of power in plural image forming apparatuses connected to a network is centrally controlled by using a power saving server. However, in this example, it is determined whether the total value of power consumption by the image forming apparatuses exceeds a target value or not, and the overall power consumption of the system is reduced. This technique has a problem that the overall control algorithm is inflexible and has a low degree of freedom.
It is an object of the invention to provide an image forming apparatus that can be operate in a normal mode and in a power-saving mode and in which the operation in the power-saving mode can be set more in detail, and an operation system for the image forming apparatus.
According to an aspect of the present invention, there is provided an operation system for an image forming apparatus comprising; a plurality of image forming apparatuses connected to a network, and a server which controls operation state of the plural image forming apparatuses via the network. The image forming apparatuses are operable in a normal operation mode and in one of plural power-saving modes with different power consumption. The server individually sets the operation mode of the image forming apparatuses in accordance with a preset power-saving operation policy, and controls the image forming apparatuses so that each of the image forming apparatuses operates in the preset operation mode in each predetermined time band.
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus of the present invention.
Hereinafter, an embodiment of the invention will be described in detail with reference to the drawings. In the drawings, the same parts and components are denoted by the same reference numerals.
In the system of
The image forming apparatuses 101, 102, . . . 10n are, for example, digital multi-function machines called MFPs (multi-function peripherals). Hereinafter, the image forming apparatuses 101, 102, . . . 10n may also be referred to as MFPs.
The operation server 200 centrally manages the operation mode of the MFPs 101, 102, . . . 10n and causes each MFP to operate with power saving.
The outer structure of the image forming apparatuses 101, 102, . . . 10n will be described, taking the MFP 101 as a typical example. There is a document table at the top of a body 10 of the MFP 101. A control panel 11 is provided near the document table. Also, an automatic document feeder (ADF) 12 is provided on the document table in such a manner that the ADF can freely open and close.
A scanner unit and a printer unit are provided within the body 10. Moreover, plural cassettes 13 having sheets of various sizes housed therein are provided at the bottom of the body 10. The internal configuration of the body 10 will be described later with reference to
The operation server 200 controls the operation mode of each of the MFPs 101, 102, . . . 10n via the network 300 and causes the MFPs 101, 102, . . . 10n to operate with power saving, for example, according to an exemplary operation as shown in
In
For example, in the time band of 0:00-08:00, eight MFPs are operable in class A and two MFPs are set to be operable in class B2. In the time band of 08:00-12:00, all the ten MFPs are set to be operable in class D. In the time band of 12:00-13:00, five MFPs are operable in class A, three MFPs are operable in class B3, and two MFPs are set to be operable in class C.
In the time band of 13:00-17:00, all the ten MFPs are set to be operable in class D. In the time band of 17:00-19:00, five MFPs are operable in class A, three MFPs are operable in class B3, and two MFPs are set to be operable in class C. In the time band of 19:00-24:00, eight MFPs are operable in class A and two MFPs are set to be operable in class B3.
In this manner, the operation server 200 carries out rating (classification) for power saving in each time band in accordance with the frequency of use of the MFPs, and thus provides settings that improve operation efficiency with power saving by minimizing the resulting inconvenience of the MFPs.
There are, for example, six power saving classes, that is, class A, class B1, class B2, class B3, class C and class D. Class A has the highest degree of power saving, and class D has the lowest degree of power saving. The classes are described as follows.
Class A: The degree of power saving is the highest of all the classes. This is close to the all-off state. That is, in a set time band, the power saving mode (sleep mode) is continued even when there is an access from the user. The set time band applies from late at night to dawn (for example, 0:00-08:00). Hereinafter, the operation mode of the MFP in class A is referred to as mode AO.
Class B1: The degree of power saving is lower than class A. This is the state of low power consumption with power saving. That is, in a set time band, the power saving mode is canceled when the user has accessed the control panel 11. An access to the MFP via the network is ignored. Hereinafter, the operation mode of the MFP in class B1 is referred to as mode PL.
Class B2: The degree of power saving is lower than class B1. This is the state of middle power consumption with power saving. That is, in a set time band, the power saving mode is canceled when the user has accessed the control panel 11. When the MFP is accessed via the network, response is allowed. However, the operation of mechanical elements (print operation or the like) of the MFP is not allowed. Hereinafter, the operation mode of the MFP in class B2 is referred to as mode PM.
Class B3: The degree of power saving is lower than class B2. This is the state of high power consumption with power saving. That is, in a set time band, the power saving mode is canceled when the user has accessed the control panel 11. When there is an access via the network, response is allowed. Also the print operation is allowed. Hereinafter, the operation mode of the MFP in class B3 is referred to as mode PH.
Class C: This is the state in which the degree of power saving is lower than class B3. That is, in a set time band, the normal state is immediately restored when there is an access from the user. Hereinafter, the operation mode of the MFP in class C is referred to as mode N.
Class D: This is the full-operation state with no power-saving operation. Its set time band applies to, for example, working hours (08:00-12:00, 13:00-17:00). Hereinafter, the operation mode of the MFP in class D is referred to as mode F.
The remaining time bands except for the set time bands of class A and class D are applied to classes B1, B2, B3 and C.
In this manner, the operation server 200 sets the number of operable MFP units in accordance with the time band where the MFPs are used at a high rate and the time band where the MFPs are used at a low rate, and sets the power saving class of the MFPs in each time band, thereby managing power saving.
For example, the MFP is set to operate in class 32 in the time band of 0:00-08:00, and to operate in class D in the time band of 08:00-12:00. Subsequently, the MFP is set to operate in class C in the time band of 12:00-13:00, in class D in the time band of 13:00-17:00, in class C in the time band of 17:00-19:00, and in class B3 in the time band of 19:00-24:00.
In
The control panel 11 includes a panel CPU 111, various operation keys 112, a display unit 113 made of liquid crystal or the like, a liquid crystal backlight 114, and a touch panel 115 integrated with the display unit 113. The operation keys 112 are used to input various instructions such as the number of copies to be printed. The display unit 113 shows various displays.
The main control unit 14 includes a CPU 141, a DRAM 142, a network interface 143, and an ASIC (application specified IC) 144. The HDD 19, which is controlled by the CPU 141, is connected to the main control unit 14. The scanner unit 15 and the printer unit 16 are connected to the ASIC 144. Moreover, the control panel 11 and the FAX unit 18 are connected to the main control unit 14.
The CPU 141 is to control the overall operation of the MFP 101. The DRAM 142 is to store various data. The network interface 143 has a PHY (physical layer device) that carries out physical layer processing on the network. The network interface 143 converts packet data transmitted through the network 300 to digital data and takes the digital data into the MFP 101. The network interface 143 also converts digital data from the MFP 101 to electric signals and outputs the electric signals to the network 300.
The ASIC 144 compresses image data read by the scanner unit 15 and stores the compressed image data to HDD 19. The ASIC 144 also reads out image data stored in the HDD 19, expands the image data, performs predetermined image processing (graduation reproduction or the like), and outputs the processed image data to the printer unit 16.
Storing image data to the HDD 19 and reading image data from the HDD 19 are carried out under the control of the CPU 141. The scanner unit 15 operates together with the ADF 12 and sequentially reads each sheet of a document fed by the ADF 12. The scanner 15 may also directly read the document set on the document table.
The printer unit 16 includes a photoconductive drum, a laser and the like. The surface of the photoconductive drum is scanned with a laser beam from the laser and exposed to light. An electrostatic latent image is thus created on the photoconductive drum. A charger, a developing device, and transfer device are arranged around the photoconductive drum. The electrostatic latent image on the photoconductive drum is developed by the developing device and a toner image is formed on the photoconductive drum. The toner image is transferred to a sheet by the transfer device.
The printer unit 16 also has a fixing device 161. The sheet P to which the toner image has been transferred is carried to the fixing device 161. In the fixing device 161, for example, a heating roller and a pressurizing roller are arranged to face each other. As the sheet is passed between the heating roller and the pressurizing roller, the toner image transferred to the sheet is fixed onto the sheet.
The ADF 12, the scanner unit 15, the printer unit 16 and the HDD 19 serve to form an image on a sheet in response to the operation on the control panel 11. These units form an image forming unit. The configuration of the printer unit 16 is not limited to the above example and various systems have been known.
The sheet on which the toner image has been fixed is discharged from the printer unit 16 and sent to the finisher 17. The finisher 17 performs post-processing of the printed sheet discharged from the printer unit 16, for example, punching processing, sorting processing, staple processing and the like. The FAX unit 18 is to send and receive data via a line 183, and has a FAX-CPU 181 and an NCU (network control unit) 182.
The power-supply unit 20 is to supply various power-supply voltages to the units in the MFP 101. The power-supply unit 20 has four types of power-supply systems, that is, power lines 201, 202, 203 and 204.
On the power line 201, a power-supply voltage is continuously provided while the power switch is on. On the power lines 202, 203 and 204, a power-supply voltage that is on-off controlled by a control line 145 from the main control unit 14 is provided.
The power-supply voltage from the power line 201 is supplied to the main control unit 14. The power-supply voltage from the power line 202 is supplied to the scanner unit 15, the printer unit 16, the finisher 17 and the like. The power-supply voltage from the power line 203 is supplied to the control panel 11. The power-supply voltage from the power line 204 is supplied to the FAX unit 18 and the HDD 19.
For example, class A (operation mode AO) is described an exemplary case. The CPU 141 of the main control unit 14 is in the sleep state. The HDD 19, the entire control panel 11, the PHY 143, the scanner unit 15, the printer unit 16, the fixing device 161, the FAX-CPU 181 and the NCU 182 are in the off state.
Class A (operation mode AO) is the mode with the least power consumption. It is the mode in which the CPU 141 has been set in the sleep operation by an internal timer and can be restored at the time decided by the timer operation.
In class B1 (operation mode PL), compared to class A, the power line 203 is supplying power and the control panel 11 is supplied with power though the backlight 114 in the control panel 11 is off. Therefore, in class B1, the CPU 141 is in the sleep state, but when the user has operated the control panel 11, the CPU 141 can restore its operation state according to the user's operation.
In class B2 (operation mode PM), compared with class B1, the power line 204 is supplying power, the HDD 19 has stopped rotating, and the PHY 143 is on. The FAX-CPU 181 is in the sleep state and the NCU 182 is on. Class B2 is the mode in which status response to a network access and FAX reception are possible even when the machines (scanner unit 15 and printer unit 16) are off. In this case, the HDD 19 has stopped rotating, but the HDD 19 can restore the normal state when necessary, and can save data.
In class B3 (operation mode PH), compared with class B2, the power line 202 is supplying power, and the scanner unit 15 and the printer unit 16 are in the sleep state. In class B3, data reception from the network and FAX reception are possible. As the user operates the control panel 11, the scanner unit 15 and the printer unit 16 restore the state where printing and scanning of an original can be carried out.
In class C (operation mode N), compared with class B3, the CPU 141 is in the full-operation state, and the scanner unit 15, the printer unit 16 and the FAX-CPU 181 are in the ready state. The fixing device 161 is in the low-temperature state. In class C, the temperature setting of the fixing device 161 is controlled to be lower than usual, but the fixing device 161 can restore the normal state within several ten seconds.
In class D (operation mode F), the CPU 141, the HDD 19 and the control panel 11 are in the full-operation state. The PHY 143 and the NCU 182 are on. The scanner unit 15, the printer unit 16, the fixing device 161 and the FAX-CPU 181 are in the ready state. In class D, each unit of the MFP 101 is in the usual ready state and can start operating at any time.
In this manner, the electrifying state of the main control unit 14, the control panel 11, the scanner unit 15, the printer unit 16, the HDD 19 and the like is controlled to the on, off, sleep or ready state. Thus, the operation mode in each power saving class can be arbitrarily set.
In
Since the MFP 101 shown in
In
The operation server 200 requests a report from the MFP 101 in order to confirm whether the MFP 101 has operated according to the setting or not.
Meanwhile, the MFP 101 having received the report request packet P2 sends back an answer packet P3 shown in
In
The operation status shown in
In this manner, the operation server 200 gathers the actual operation status data and can grasp the actual operation status of each MFP. Moreover, the operation setting can be changed when necessary, and further power saving can be thus realized.
It is desired that the operation mode information from the MFPs 101 to 10n should be collectively sent back at the time when all the MFPs can send and receive data.
For this MFP 10m, the operation server 200 sets an operation mode, for example, as shown in
The operation server 200 gathers actual operation status data and thus can grasp the actual operation status of the MFP 10m. The power-saving operation policy can be changed when necessary.
In the example shown in
The operation server 200 sets an operation mode as shown in
As is described above, with the operation system according to the embodiment of the invention, the operation server 200 enables operation of each image forming apparatus in the power saving mode.
Also, by receiving actual operation state and results from plural MFPs, the operation server 200 can review the power-saving operation policy for each MFP. Thus, the number of MFP units to which power-saving operation is applied more strictly can be increased, or conversely, the number of MFP units to which power-saving operation is applied more loosely can be increased. Therefore, more detailed power-saving operation can be realized.
Moreover, the power saving mode of each MFP or image forming apparatus can be manually set and changed by a user, manager or serviceman on the basis of the operation of the operation panel 11, without depending on an instruction from the operation server 200.
It should be understood that the invention should not be limited to the above-described embodiment and that various modifications can be made without departing from the scope of the attached claims.
Although exemplary embodiments of the present invention have been shown and described, it will be apparent to those having ordinary skill in the art that a number of changed, modifications, or alterations to the invention as described herein may be made, none of which depart from the spirit of the present invention. All such changes, modifications, and alterations should therefore be seen as within the scope of the present invention.
This application is a Continuation of application Ser. No. 12/845,941 filed on Jul. 29, 2010, which is a Continuation of application Ser. No. 12/044,071 filed on Mar. 7, 2008, the entire contents of both of which are incorporated herein by reference. This application is based upon and claims the priority of U.S. Provisional Application No. 60/912,204, filed on Apr. 17, 2007, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12845941 | Jul 2010 | US |
Child | 13353436 | US | |
Parent | 12044071 | Mar 2008 | US |
Child | 12845941 | US |