Image Forming Apparatus and Photo Sensor

Information

  • Patent Application
  • 20080025760
  • Publication Number
    20080025760
  • Date Filed
    July 26, 2006
    18 years ago
  • Date Published
    January 31, 2008
    16 years ago
Abstract
A photo sensor of the invention includes a photo coupler having a light emitting element and a light receiving element arranged and disposed to be spaced from each other by a specified interval, and a prism capable of being coupled to the photo coupler, having an optical path to guide a light from the light emitting element to the light receiving element, and provided with a slit in the optical path, through which an object to be detected can pass, plural prisms different in width of the slit are provided, and the plural prisms and the photo couplers are combined to enable detection of objects to be detected which are different in detection distance. The photo sensor can be used for an image forming apparatus or the like.
Description

DESCRIPTION OF THE DRAWINGS


FIG. 1 is a structural view schematically showing the whole structure of an image forming apparatus of an embodiment of the invention.



FIGS. 2A and 2B are perspective views showing an embodiment of a photo sensor of the invention.



FIGS. 3A, 3B and 3C are front views showing the embodiment of the photo sensor of the invention and a modified example.



FIGS. 4A and 4B are perspective views showing an example in which the photo sensor of the invention is applied to an image forming apparatus.



FIGS. 5A, 5B and 5C are front views showing another embodiment of a photo sensor of the invention.



FIGS. 6A, 6B and 6C are front views showing still another embodiment of a photo sensor of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus of the present invention.


Hereinafter, embodiments of the invention will be described in detail with reference to the drawings.



FIG. 1 is a structural view schematically showing the whole structure of an image forming apparatus of an embodiment of the invention. Incidentally, in FIG. 1, although a description will be made while using an MFP (Multi-Function Peripherals) as an example, the invention can also be applied to a copier, a printer or the like.


In FIG. 1, 1 denotes an image forming apparatus, and a printer unit 10 is provided at the center of the apparatus. The printer unit 10 includes a photoconductive drum 11 to hold image information to be printed. A charging device 12, a developing device 13 for black, which develops an electrostatic latent image formed on the photoconductive drum 11, and a developing device 14 to develop an electrostatic latent image for color are provided around the photoconductive drum 11.


Further, an intermediate transfer belt 15 and a cleaning/charge removal device 16 are disposed around the photoconductive drum 11. Besides, an exposure device 17 is disposed in the vicinity of the photoconductive drum 11, and a laser beam is irradiated to the photoconductive drum 11. The light intensity of the laser beam is modulated correspondingly to the image information to be printed.


The color developing device 14 includes developing units of Y (yellow), C (cyan) and M (magenta) and is of a revolver type. The developing units of Y, C and M respectively include development machines 20y, 20c and 20m and toner cartridges 21y, 21c and 21m, and hold a developer in which a toner and a carrier are mixed at a specified ratio.


The developing units of Y, M and C of the developing device 14 are disposed to be rotatable in an arrow α direction around the center axis, and are successively rotated to a development position opposite to the photoconductive drum 11 according to the request of image output. In the case where the image to be printed is the color image, image data of respective color components formed on the photoconductive drum 11 are developed by the developing unit of Y, C and M, are successively transferred onto the transfer belt 15 and are superimposed.


An intermediate transfer device 18 to transfer the toner image developed on the photoconductive drum 11 to the transfer belt 15 is provided at the inside of the intermediate transfer belt 15. Further, a transfer device 19 to transfer the toner image transferred on the transfer belt 15 to a sheet P is provided on a transport path of the sheet P.


Besides, a scanner 30 is provided at an upper part of the image forming apparatus 1. The scanner 30 reads a document placed on a document mounting table 31, and includes a light source 32 to irradiate a light to the document placed on the document mounting table 31, a reflecting mirror 33 to reflect the light reflected from the document, and a light receiving unit 34 to receive the light reflected from the reflecting mirror 33.


Besides, an automatic document feeder (ADF) 35 and an operation panel 36 are provided at an upper part of the document mounting table 31. The operation panel 36 includes a display unit 37 and an operation unit 38.


Further, paper feed cassettes 41 and 42 of plural stages are provided at a lower part of the image forming apparatus 1, and the sheet P in these paper feed cassettes 41 and 42 is transported upward by a transport roller 43, a register roller 44 and a fixing roller 45, and is discharged onto a paper discharge tray 47 by a paper discharge roller 46.


At the time of image formation, the light is irradiated to the document on the document mounting table 31 from the light source 32, the light reflected from the document is incident on the light receiving unit 34 through the reflecting mirror 33, and the document image is read. Based on the information read by the light receiving unit 34, the laser beam is outputted from the exposure device 17, and the surface of the photoconductive drum 11 is irradiated with this laser beam. By this, a latent image corresponding to the intensity of the exposure light is formed on the photoconductive drum 11.


The latent image formed on the photoconductive drum 11 is selectively supplied with a toner of a corresponding color from the black developing device 13 or the color developing device 14, so that it is visualized as a toner image.


The toner image on the photoconductive drum 11 is transported to the intermediate transfer position by the rotation of the photoconductive drum 11, and is transferred to the transfer belt 15 by an intermediate transfer voltage provided from the intermediate transfer device 18.


The toner image transferred to the transfer belt 15 is transported to a transfer area opposite to the transfer device 19 by the movement of the belt surface of the transfer belt 15, and is transferred to the sheet P supplied at a specified timing. A transfer bias voltage is supplied from the transfer device 19.


The sheet P on which the toner image has been transferred is guided to the fixing device 45, and the toner image is fixed to the sheet P by heat supplied from the fixing device 45. The sheet on which the image has been fixed by the fixing device 45 is successively transported to the paper discharge tray 47 by the roller 46.


In the image forming apparatus 1 as stated above, in order to detect the mounting of the toner cartridges 21y, 21c and 21m and to detect the rotation state of a rotator such as the developing units 14y, 14c and 14m, a photo sensor 51 is disposed. Besides, a photo sensor 52 is disposed in the transport path of the sheet P.


The photo sensors 51 and 52 constitute a detection unit to detect the movement of a moving object (sheet to be transported, rotation of the toner cartridge, etc.) relating to an image forming process, and the image forming apparatus 1 is provided with a control unit (not shown) to control the operation of the respective units in the image forming apparatus 1 based on the detection result of the photo sensors 51 and 52. The control unit includes a CPU, and in the case where a jam occurs from the detection result of the photo sensor 52, a message is displayed on the display unit 37 or the control rotation of the developing device 14 is performed.



FIG. 2A and FIG. 2B are perspective views showing an embodiment of a photo sensor of the invention, and FIG. 3A and FIG. 3B are front views.


A photo sensor 51 of FIG. 2A and FIG. 3A includes a photo coupler 60 and a prism 71. The photo coupler 60 includes a light emitting element 61, a light receiving element 62, and a light-shielding case 63. The light emitting element 61 and the light receiving element 62 are spaced from each other by a specific interval d0 and are attached in the case 63, a light emitting surface of the light emitting element 61 and a light receiving surface of the light receiving element 62 face one surface of the case 63, and a terminal 64 of the light emitting element 61 and a terminal 65 of the light receiving element 62 protrude from the other surface.


On the other hand, the prism 71 includes a pair of light guides 71a and 71b and a main body 71c to couple the light guides 71a and 71b, and the main body 71c is opposite to the light emitting element 61 and the light receiving element 62. The prism 71 can be coupled to the photo coupler 60, the light from the light emitting element 61 is reflected plural times at the inner surface of the light guide 71a, is guided to an end face 71d, and is incident on an end face 71e of the light guide 71b. Besides, in the light guide 71b, the light received at the end face 71e is reflected plural times at the inner surface of the light guide 71b and is guided to the light receiving element 62.


A width d1 of a slit 71f formed between the end face 71d of the light guide 71a and the end face 71e of the light guide 71b is set so that an object 81 to be detected can pass through. In this case, the width d1 of the slit 71f is set to be wider than the interval d0.


A photo sensor 52 of FIG. 2B and FIG. 3B includes a photo coupler 60 and a prism 72. The photo coupler 60 is the same as that of FIG. 2A and FIG. 3A, and the prism 72 is different in shape.


The prism 72 includes a pair of light guides 72a and 72b and a main body 72c to couple the light guides 72a and 72b. The prism 72 can be coupled to the photo coupler 60, and a light from a light emitting element 61 is reflected once at the inner surface of the light guide 72a and is guided to an end face 72d, and is incident on an end face 72e of the light guide 72b.


Besides, in the light guide 72b, the light received at the end face 72e is once reflected at the inner surface of the light guide 72b, and is then immediately guided to a light receiving element 62. A width d2 of a slit 72f formed between the end face 72d and the end face 72e is set so that an object 82 to be detected can pass through. In this case, the width d2 of the slit 72f is set to be narrower than the interval d0.



FIG. 3A and FIG. 3B show the optical paths of the photo sensors 51 and 52 by arrows. The photo sensor 51 of FIG. 3A has such structure that the light emitted from the light emitting element 61 is once refracted toward the outer direction by the light guide 71a and is guided to the end face 71d, and the light guide 71b has also the symmetric structure. Thus, the length of the optical path is long and the width d1 of the slit 71f can be set to be wide. Accordingly, it is suitable for detecting the object 81 to be detected which has a wide width.


Besides, the photo coupler 72 of FIG. 3B has such structure that the light emitted from the light emitting element 61 is directly guided upward, is reflected only once, and goes out from the end face 72d, and the light guide 72b has also the symmetric structure. Thus, the length of the optical path is short, and the width d2 of the slit 72f can also be made narrow. Accordingly, it is suitable for detection of the object 82 to be detected which has a narrow width.


The prisms 71 and 72 form loop-shaped optical paths from the light emitting element 61 to the light receiving element 62, and the loop diameter of the prism 71 is longer than the interval d0 in the lateral direction. Besides, the loop diameter of the prism 72 is shorter than the loop diameter of the prism 71.


A photo sensor 53 of FIG. 3C is an example of using a prism 73 having a slit width d3 of an intermediate width (d1>d3>d2). The prism 73 includes a light guide 73a and a light guide 73b, a light emitted from a light emitting element 61 is once refracted toward the outer direction by the light guide 73a, is reflected plural times at the inner surface of the light guide 73a, and is guided to an end face 73d.


The light guide 73b has such a structure that the light received at an end face 73e is once reflected at the inner surface, and then is immediately guided to a light receiving element 62. Accordingly, the length of the optical path is also an intermediate length, and the width d3 of a slit 73f formed between the end face 73d of the light guide 73a and the end face 73e of the light guide 73b is the intermediate width between those of FIG. 3A and FIG. 3B.


Although the photo sensors 51, 52 and 53 are respectively used for detection of objects to be detected which are different from each other in thickness or size, the photo coupler 60 with the same shape can be used.



FIG. 4A is a view showing an example in which the foregoing photo sensors 51 and 52 are applied to the image forming apparatus 1. In FIG. 4A, 14 schematically denotes a color developing device which includes developing units 14y, 14c and 14m of yellow, cyan and magenta, and toner cartridges 21y, 21c and 21m are mounted to the respective developing units 14y, 14c and 14m. FIG. 4A typically shows the magenta toner cartridge 21m, and a wing-shaped projection 22 is provided at an end face of the toner cartridge 21m in an insertion direction.


On the other hand, the photo sensor 51 shown in FIG. 2A and FIG. 3A is attached to a printed board 23 at the side of an image forming apparatus main body, and when the toner cartridge 21m is mounted, the projection 22 is made to be capable of passing through the slit 71f of the photo sensor 51. When the color developing device 14 is rotated in the α direction around a rotation axis 140, the projection 22 of the toner cartridge 21m is detected by the photo sensor 51, and accordingly, the mounting state of the toner cartridge 21m is detected, and the rotation state can be detected.


Since similar projections 22 are provided on the cyan and yellow toner cartridges 21c and 21y, the photo sensor 51 can detect the mounting states of the three color toner cartridges 21y, 21c and 21m and the rotation states.



FIG. 4B is a view in which the foregoing photo sensor 52 is disposed in the transport path of the sheet P of the image forming apparatus 1. Since the thickness of the sheet P is thin, the photo sensor 52 with the small slit width is used. According to whether the end of the sheet P passes through the slit 72F of the photo sensor 52, it is possible to detect whether or not the sheet is transported. Besides, when it stays in the slit 72f for a long time, the transport of the sheet P is stopped, and detection of a jam can also be performed.


Even in the case where the detection of the toner cartridge or the detection of the sheet P is performed, the photo couplers 60 of the photo sensors 51 and 52 have the same structure, and accordingly, wiring circuit patterns at the time when the photo couplers 51 and 52 are mounted on the printed board 23 can be designed with the same pattern. Accordingly, the pattern design of the print wiring becomes easy.


Next, another embodiment of a photo sensor of the invention will be described with reference to FIGS. 5A, 5B and 5C. In FIGS. 3A, 3B and 3C, although the description has been given to the examples in which the slits 71f, 72f and 73f are formed in the vertical direction, FIGS. 5A, 5B and 5C show examples in which slits are formed in the horizontal direction.


A photo sensor 54 of FIG. 5A includes a photo coupler 60 and a prism 74. The photo coupler 60 used is the same as that of FIG. 2A, and the prism 74 is different in shape.


The prism 74 includes a pair of light guides 74a and 74b and a main body 74c to couple the light guides 74a and 74b, and has a “C”-type shape as a whole. In the prism 74, a light from a light emitting element 61 is reflected twice in the light guide 74a and is guided to an end face 74d, and is incident on an end face 74e of the light guide 72b in the vertical direction. Besides, the light guide 74b immediately guides the light received at the end face 74e to a light receiving element 62. A width d1 of a slit 74f formed between the end face 74d and the end face 74e is set to be relatively wide. In the case of FIG. 5A, the width d1 of the slit 74f is set to be wider than an interval d0 between the light emitting element 61 and the light receiving element 62, and the length of the optical path is long.


A photo sensor 55 of FIG. 5B includes a photo coupler 60 and a prism 75. The prism 75 includes a pair of light guides 75a and 75b and a main body 75c to couple the light guides 75a and 75b, and has a “C”-type shape as a whole. The prism 75 is lower than the prism 74, a width d2 of a slit 75f formed between an end face 75d of the light guide 75a and an end face 75e of the light guide 75b is set to be narrow, and the width d2 of the slit 75f is set to be narrower than an interval d0. Besides, the length of the optical path is also short.


The prisms 74 and 75 form loop-shaped optical paths from the light emitting element 61 to the light receiving element 62, and the loop diameter of the prism 74 is longer than the interval d0 in the longitudinal direction. Besides, the loop diameter of the prism 75 is shorter than the loop diameter of the prism 74.


A photo sensor 56 of FIG. 5C shows a modified example. The prisms 74 and 75 of FIGS. 5A and 5B have the slits of arbitrary widths by changing the height, whereas the photo sensor 56 detects an object to be detected at a position shifted in the lateral direction.


The photo sensor 56 includes a photo coupler 60 and a prism 76, the prism 76 includes light guides 76a and 76b and a main body 76c to couple the light guides 76a and 76b, and has a “C”-type shape as a whole. In this case, the light guide 76b extends in the lateral direction, and a slit 76f formed between an end face 76d of the light guide 76a and an end face 76e of the light guide 76b is slightly shifted from a position of the photo coupler 60 in the horizontal direction. In the light guide 76b, the light received at the end face 76e is refracted twice and is guided to a light receiving element 62.



FIGS. 6A, 6B and 6C are views showing still another embodiment of a photo sensor of the invention, and relate to a reflection type sensor. As shown in FIG. 6A, the reflection type photo sensor uses a photo coupler 90. The photo coupler 90 includes a light emitting element 91, a light receiving element 92 and a light-shielding case 93. The light emitting element 91 and the light receiving element 92 are spaced from each other by a specific interval d0 and are attached in the case 93, a light emitting surface of the light emitting element 91 and a light receiving surface of the light receiving element 92 face one surface of the case 93 at a specified angle, and a terminal 94 of the light emitting element 91 and a terminal 95 of the light receiving element 92 protrude from the other surface of the case 93.


The light emitting element 91 and the light receiving element 92 are symmetrically opposite to each other, an outgoing angle from the light emitting element 91 and an incident angle to the light receiving element 92 are different, the light from the light emitting element 91 is directly irradiated to an object 84 to be detected, and the reflected light is received by the light receiving element 92, so that the presence/absence of the object 84 to be detected can be detected.



FIG. 6B shows a photo sensor 57 using the photo coupler 90. The photo sensor 57 includes the photo coupler 90 and a prism 77. The prism 77 includes a pair of light guides 77a 77b and a main body 77c to couple the light guides 77a and 77b, and the main body 77c is opposite to the light emitting element 91 and the light receiving element 92.


The prism 77 can be coupled to the photo coupler 90, a light emitted in an oblique direction from the light emitting element 91 is reflected plural times at the inner surface of the light guide 91a, goes out from an end face 77d in the horizontal direction, and is incident on an end face 77e of the light guide 77b. In the light guide 77b, the light received at the end face 77e is similarly reflected plural times at the inner surface of the light guide 77b, and is guided to the light receiving element 92.


A width d1 of a slit 77f formed between the end face 77d and the end face 77e is set to be a relatively large width. In the case of FIG. 6B, the width d1 of the slit 77f is set to be wider than the interval d0.


A photo sensor 58 of FIG. 6B includes a photo coupler 90 and a prism 78. The photo coupler 90 is the same as that of FIG. 6A, and the prism 78 is different in shape.


The prism 78 includes a pair of light guides 78a and 78b and a main body 78c to couple the light guides 78a and 78b. The prism 78 is smaller than the prism 77 of FIG. 6B in size, and a refraction path of light from a light emitting element 91 to a light receiving element 92 through the light guides 78a and 78b is similar to that of FIG. 6B. However, refraction angles are slightly different.


A width d2 of a slit 78f formed between an end face 78d of the light guide 78a and an end face 78e of the light guide 78b is set to be such an interval that an object 82 to be detected can pass through. In the case of FIG. 6C, the width d2 of the slit 78f is set to be narrower than the interval d0.


Although the photo sensors 77 and 78 are used for detection of objects to be detected which are different in thickness or size, the photo couplers 90 with the same shape can be used. Besides, the photo coupler 90 can also be used singly as described in FIG. 6A.


As stated above, when the photo sensors of the invention are used, the same photo coupler 60, 90 can be used, and the size of the photo coupler itself can be made small. Further, even if the photo coupler itself is made small, the detection of objects to be detected which are different in detection interval can be performed by replacing the prism. Besides, since the same photo coupler can be used, reduction in cost by use of the common members can also be expected.


Incidentally, with respect to the photo couplers 60 and 90, although the description has been given to the example in which the light emitting element and the light receiving element are integrally attached to the case, the light emitting element and the light receiving element are respectively made independent, and may be attached to a printed board at an equal distance.


Although exemplary embodiments of the present invention have been shown and described, it will be apparent to those having ordinary skill in the art that a number of changes, modifications, or alterations to the invention as described herein may be made, none of which depart from the spirit of the present invention. All such changes, modifications, and alterations should therefore be seen as within the scope of the present invention.

Claims
  • 1. A photo sensor comprising: a photo coupler including a light emitting element and a light receiving element disposed to be spaced from each other by a specified interval;a prism capable of being coupled to the photo coupler, having an optical path to guide a light from the light emitting element to the light receiving element, and provided with a slit in the optical path, through which an object to be detected can pass,wherein plural prisms different in width of the slit are provided, and the plural prisms and the photo couplers are combined to enable detection of objects to be detected which are different in detection distance.
  • 2. The photo sensor according to claim 1, wherein in the photo coupler, the light emitting element and the light receiving element are arranged and spaced from each other by a specified interval, and are attached to a light-shielding case.
  • 3. The photo sensor according to claim 1, wherein the prism includes a first light guide having one end on which the light from the light emitting element is incident and the other end from which the light goes out, and a second light guide having one end on which the light going out from the first light guide is incident and the other end from which the light goes out and is guided to the light receiving element, a slit with a specified width is provided between a light outgoing surface of the first light guide and a light incident surface of the second light guide, andwith respect to a first interval determined by an interval between the light emitting element and the light receiving element, a first prism in which a width of the slit is wider than the first interval, and a second prism in which a width of the slit is equal to or narrower than the first interval are provided.
  • 4. The photo sensor according to claim 3, wherein in the prism, the first light guide and the second light guide are symmetrically opposite to each other to form a loop-shaped optical path from the light emitting element to the light receiving element, andthe first prism in which a length of the optical path is a first length and the width of the slit is larger than the first interval, and the second prism in which a length of the optical path is a second length shorter than the first length and the width of the slit is narrower than the first interval are provided.
  • 5. The photo sensor according to claim 3, wherein in the prism, the first light guide and the second light guide are symmetrically opposite to each other to form a loop-shaped optical path from the light emitting element to the light receiving element, andthe first prism in which a loop diameter of the optical path and the width of the slit are larger than the first interval, and the second prism in which a loop diameter of the optical path is smaller than the loop diameter of the first prism and the width of the slit is narrower than the first interval are provided.
  • 6. The photo sensor according to claim 3, wherein the light emitting element and the light receiving element of the photo coupler are attached to a light-shielding case so that an outgoing direction of the light from the light emitting element and an incident direction of the light to the light receiving element are parallel to each other, andin the prism, the first light guide and the second light guide are symmetrically opposite to each other to form a loop-shaped optical path, and the light from the light emitting element is incident on the prism from a first direction, and is incident on the light receiving element in a direction opposite to the first direction through the first and the second light guides.
  • 7. The photo sensor according to claim 3, wherein the light emitting element and the light receiving element of the photo coupler are attached to a light-shielding case at a specified outgoing angle and an incident angle, andin the prism, the first light guide and the second light guide are symmetrically opposite to each other to form a loop-shaped optical path, and the light from the light emitting element is incident on the prism at the outgoing angle, and goes out to the light receiving element at the incident angle through the first and the second light guides.
  • 8. An image forming apparatus comprising: an image forming apparatus main body including an image forming unit configured to form an image on a sheet transported through a sheet transport path, a detection unit including plural photo sensors disposed in the image forming apparatus main body and configured to detect movement of a moving object relating to an image forming process, and a control unit configured to control an operation of the moving object based on a detection result in the detection unit, whereinthe plural photo sensors include a photo coupler having a light emitting element and a light receiving element arranged and disposed to be spaced from each other by a specified interval, and a prism capable of being coupled to the photo coupler, having an optical path to guide a light from the light emitting element to the light receiving element, and provided with a slit in the optical path, through which an object to be detected can pass, andplural prisms different in width of the slit are provided in the image forming apparatus main body, and the plural prisms and the photo couplers are combined to dispose the plural photo sensors and to enable detection of the moving objects which are different in detection distance.
  • 9. The image forming apparatus according to claim 8, wherein the image forming unit includes a rotation member to perform a rotation movement at a time of image formation, and a replaceable member attachable/detachable to/from the image forming apparatus main body,the detection unit includes a first photo sensor having a prism in which the width of the slit is narrow, and a second photo sensor in which the width of the slit is wider than that of the first photo sensor,a transport state of the sheet is detected by causing an end of the sheet to pass through the slit of the first photo sensor, anda rotation state of the rotation member or a mounting state of the replaceable member is detected by causing a part of the rotation member or the replaceable part to pass through the slit of the second photo sensor.