This patent specification is based on Japanese patent application, No. JPAP2005-215809 filed on Jul. 26, 2005 in the Japanese Patent Office, the entire contents of which are incorporated by reference herein.
1. Field of Invention
Exemplary aspects of the present invention relate to an apparatus for image forming, and more particularly to an apparatus for toner image forming capable of effectively controlling an image forming condition of an image forming mechanism for an adjustment at a predetermined timing.
2. Description of the Related Art
In general, related art image forming apparatus such as a copying machine, a printer, a facsimile machine, etc., employing an electrophotographic method, is provided with an image forming engine which is made based on a state-of-the-art technology involving different engineering fields, such as mechanical, electrical, and even chemical art. In many cases, the image forming engine is susceptible to changes, such as wear and tear of constituent components, conditions of power supply, and environmental factors, such as temperature and humidity, and so forth.
Therefore, the related art image forming apparatus is commonly provided with various adjustable parameters and is capable of adjusting these parameters to determine an image forming condition suitable for the image forming engine. The parameters may include a charge potential of a photoconductor, a development bias, a strength of optical writing relative to the photoconductor, and/or a target value of a toner density in a developer.
Such a parameter adjustment is typically performed when the background image forming apparatus is energized with power, or when it performs an image forming operation a predetermined cumulative number of times in units of sheet.
One exemplary parameter adjustment may optically measure an amount of reflection light relative to a surface of a photoconductor by using an optical sensor in two cases; no toner image is formed on the photoconductor surface and a reference toner image is formed on the photoconductor surface. A comparison is made on resultant reflection light amounts in the two cases. The comparison result can lead to an instant analysis of a toner density of the reference toner image on the photoconductor surface. Specifically, this process determines a toner amount of the reference toner image deposited in a unit area on the photoconductor surface. The determined toner amount becomes primary information based on which the parameter adjustment can be conducted.
As such, an output of the optical sensor is critical in the parameter adjustment. However, the optical sensor generally takes a relatively long time period to make an amount of light emission stable.
An exemplary embodiment of the present invention provides an image forming apparatus including an image carrying member, an image forming mechanism, an optical sensor, and a controller. The image forming mechanism performs an image forming operation for forming a reference toner image on the image carrying member under a specific setting associated with the image forming mechanism. The optical sensor is arranged in a vicinity of the image carrying member. The controller performs an optical toner test for checking, by using the optical sensor, optical characteristics of the reference toner image formed on the image carrying member and to adjust the specific setting based on a result of the optical toner test.
A more complete appreciation of the exemplary aspects of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing exemplary embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner. Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, an image forming apparatus according to an exemplary embodiment of the present invention is described.
Referring to
As illustrated in
The main control unit 500 controls a drive of a plurality of units, for example, the print unit 100, the feeding device 200, the scanner 300, and the ADF 400. A detailed description will be given with reference to
The feeding device 200 includes a transfer sheet 5, a sheet cassette 44, a feed roller 42, a separation roller 45, a feeding path 46, and a conveyance roller 47.
The transfer sheet is a sheet of paper on which an image is formed by the image forming apparatus. The sheet cassette 44 stores the transfer sheet 5. The feed roller 42 and the separation roller 45 respectively feeds and separates the transfer sheet stored in the cassette 44 one by one. The feeding path 46 feeds the transfer sheet to the conveyance path 48. The conveyance roller 47 conveys the transfer sheet along the feeding path 46. A detailed description of the feeding device 200 will be given with reference to
The scanner 300 includes a contact glass 31, a first traveling body 33, a second traveling body 34, an imaging lens 35, and a reading sensor 36.
The contact glass 31 is on which an original is placed. The first and second traveling bodies 33 and 34 scan the original. The imaging lens 35 focuses an image information. The reading sensor 36 reads the image information.
In the scanner 300, the original placed on the contact glass 31 is scanned by reciprocating the first and second traveling bodies 33 and 34 having a light source for illuminating the original and a mirror. The image information scanned by the traveling bodies 33 and 34 is focused at an imaging surface of the reading sensor 36 by the imaging lens 35 so that the reading sensor 36 may read the information as an image signal. A detailed description of the scanner 300 will be given with reference to
The automatic document feeder (ADF) 400 includes an original tray 30 on which the original is placed instead of the contact glass 31. A detailed description of the ADF 400 will be given with reference to
Referring to
The conveyance mechanism 22 conveys the transfer sheet to the fixing device 25. The belt cleaning device 17 cleans the intermediate transfer belt 10. In the fixing device 25, the heat roller 26 heats the toner while the pressure roller 27 presses the toner on the transfer sheet to be fixed. The charging device 60 of the image forming unit 18 uniformly charges a surface of the photoconductor 20. The development device 61 develops the latent image so as to obtain a toner image. The primary transfer device 62 transfers the toner image on the photoconductor to the surface of the intermediate transfer belt 10. The photoconductor cleaning device 63 removes remaining toner from the photoconductor surface. Detailed descriptions of the charging device 60, development device 61, primary transfer device 62, and photoconductor cleaning device 63 will be given with reference to
As shown in
The four image forming units 18Y, 18C, 18M, and 118K are disposed to a stretch portion of the belt between the first support roller 14 and the second support roller 15.
The optical sensor unit 110 is disposed to a stretch portion of the belt between the second support roller 15 and the third support roller 16. The laser writing device 21 of
The laser writing device 21 drives a semiconductor laser (not shown) by a laser control unit (not shown) so as to emit the writing light based on the image information of the original read by the scanner 300. The writing light performs exposure scanning on the photoconductors 20Y, 20C, 20M, and 20K included in respective image forming units 18Y, 18C, 18M, and 18K so that the electrostatic latent images are formed on the photoconductors. A source of the writing light is not limited to a laser diode, and may include a light emitting diode (LED).
The secondary transfer roller 24 is disposed to a location opposed to the third support roller 16. When the toner image on the intermediate transfer belt 10 is secondarily transferred onto the transfer sheet 5, the secondary transfer roller 24 presses against a portion of the intermediate transfer belt 10 wound around the third support roller 16. Since the secondary transfer roller 24 may not be needed as the secondary transfer device, a transfer belt or a non-contact transfer charger, for example, may be employed as the secondary transfer device. The secondary transfer roller 24 is abutted on the cleaning unit 91.
The conveyance mechanism 22 is disposed in a down stream side in a conveyance direction of the transfer sheet 5 of the secondary transfer roller 24.
The fixing device 25 is disposed in a further down stream side. In the fixing device 25, the heat roller 26 and the pressure roller 27 press against each other.
The belt cleaning device 17 is disposed in a location opposed to the second support roller 15, and removes the remaining toner from the intermediate transfer belt 10 after the toner image on the intermediate transfer belt 10 is transferred onto the transfer sheet 5.
Referring to
The discharge device 64 initializes a potential on the photoconductor surface. The potential sensor 120 detects the potential on the photoconductor surface. In the photoconductor cleaning device 63, the cleaning blade 75 and the brush 76 remove the toner from the photoconductor 20. In the development device 61, the agitation unit 66 conveys a two-component developer (hereafter called a developer) to the development sleeve 65 while agitating the developer. The two screws 68 included in the agitation unit 66 agitate the developer. The development unit 67 transfers the toner in the developer to the photoconductor 20 so as to form the toner image. The development sleeve 65 included in the development unit 67 acts as a developer carrier. The blade 73 included in the development unit 67 controls an amount of the developer at an appropriate level. The development case 70 is a case that houses, for example, the agitation unit 66 and development unit 67, and on which a density sensor 71 is attached. The density sensor 71 detects a toner density of the developer in the development device 61.
As shown in
The charging device 60 uniformly charges the surface of the photoconductor by a voltage applied by contacting the photoconductor. The charging device 60 is a contact charging type using a charging, roller (not shown). However, a non-contact charging type, for example, using a non-contact scorotron charger may be employed as the charging device 60.
The development device 61 is divided into two units, the agitation unit 66 and the development unit 67.
The agitation unit 66 agitates the developer by the two screws 68 which are parallel to each other, and has a partition plate between the two screws such that both ends of the screws are in communication with each other. The agitated developer is supplied to the development sleeve 65. In this exemplary embodiment, the development device 61 uses the two-component developer including a magnetic carrier and a non-magnetic toner. However, a one-component developer may be used as the developer.
In the development unit 67 included in the development device 61, the developer supplied from the agitation unit 66 to the sleeve 65 is drawn to a sleeve surface by a magnetic force applied from a magnet roller (not shown) which is disposed in the sleeve 65. The drawn developer is conveyed with a rotation of the development sleeve 65 so as to be controlled by the blade 73 at the appropriate level. The developer controlled by the blade 73 is returned to the agitation unit 66. The blade 73 is disposed such that a tip thereof is in close proximity to the sleeve 65. A distance of a closest point between the blade 73 and the sleeve 65 is 0.35 mm in this exemplary embodiment. The developer conveyed to a development area opposed to the photoconductor 20 becomes in a chain shape by the magnetic force, and forms a magnetic brush. In the development area, a development electric field is formed by a development bias applied to the development sleeve 65 so that the toner in the developer is moved to an electrostatic latent image on the photoconductor 20. Thereby, the electrostatic latent image on the photoconductor 20 is visualized, and the toner image is formed. The developer passed the development area is conveyed to an area having a low magnetic field so as to be away from the development sleeve 65, and is returned to the agitation unit 66. When such operations are repetitively conducted, the toner density in the agitation unit 66 may be decreased. If so, the density sensor 71 detects the decreased density, and the toner is added to the agitation unit 66 based on a result detected by the sensor 71.
In the photoconductor cleaning device 63, the cleaning blade 75, for example, a polyurethane rubber blade is disposed such that a tip of the blade presses against the photoconductor 20. In the exemplary embodiment, the brush 76 is used in combination with the blade 75. The brush 76 is a dielectric brush, and contacts the photoconductor 20 to enhance a cleaning capability.
The discharge device 64 irradiates the photoconductor 20 with the light so as to initialize the potential on the photoconductor surface. The discharge device 64 may be a discharge lamp, for example.
The primary transfer device 62 is disposed so as to press against the photoconductor 20 through the intermediate transfer belt 10. A primary roller is employed as the primary transfer device 62. The transfer device 62 may be in various shapes, for example, a roller shape, and a brush shape with dielectric. The transfer device 62 may employ a charger, for example, a non-contact corona charger.
In the image forming unit 18, the potential sensor 120 is disposed in a location opposed to the photoconductor 20. The photoconductor 20 is in a drum shape having a diameter of 60 mm, and is rotationally driven at a linear velocity of 282 mm/sec. The development sleeve 65 is in a cylindrical shape having a diameter of 25 mm, and is rotationally driven at the linear velocity of 564 mm/sec. A charging amount of the toner in the developer supplied to the development area has a suitable range from −10 to −31 μC/g. The photoconductor 20 and the development sleeve 65 has a development gap between them. The development gap is set at a range from 0.5 to 0.3 mm, and a development efficiency may be enhanced as the gap becomes smaller. The photoconductor 20 has a photoconductor layer which has a thickness of 30 μm. The laser writing device 21 emits an optical laser beam which has a spot diameter of 50×60 μm and a light amount of 0.47 mW.
The photoconductor surface is uniformly charged by the charging device 60 with −700V, for example. The potential on the electrostatic latent image irradiated with the laser from the laser writing device 21 becomes −120V, for example. A voltage of the development bias is set to be −470V, and the development potential of 350V is obtained. Such a process condition may be modified as may be needed depending on a result of a potential control.
Therefore, in the photoconductor 18, the charging device 60 uniformly charges the surface of the photoconductor 20 with rotation of the photoconductor 20. The laser writing device 21 irradiates the photoconductor with the writing light based on the image information read by the scanner 300 so that the electrostatic latent image is formed on the photoconductor. The development device 61 visualizes the latent image so as to form the toner image. The primary transfer device 62 primarily transfers the toner image onto the intermediate transfer belt 10. The photoconductor cleaning device 63 removes the remaining toner on the photoconductor surface after the primary transfer, and the discharge device 64 discharges the photoconductor surface for forming a next image.
Referring to
The CPU 501 executes various computations or driving controls of the plurality of units. The ROM 503 stores fixed data beforehand, for example, a computer program. The ROM 503 also stores a conversion table (not shown) having conversion information on the per unit area of the toner adhesion amount with respect to an output amount of the optical sensor unit 110. The RAM 504 functions as an work area, for example, rewriting and freely storing various data.
As shown in
When an original is copied by the image forming apparatus of this example embodiment, the original is placed on the original tray 30 of the ADF 400, or is placed on the contact glass 31 of the scanner 300 by opening the ADF 400. The original on the contact glass 31 is pressed by closing the ADF 400. When a user presses a start switch (not shown), the original placed on the tray 30 is conveyed on the contact glass 31, and the scanner 300 is driven so that the first and second traveling bodies begin scanning. A light from the first traveling body 33 is reflected at the original on the contact glass 31, which is then reflected by a mirror of the second traveling body 34. The light is guided to the reading sensor 36 through the imaging lens 35 so that image information of the original is read.
When the user presses the start switch, a drive motor (not shown) is driven, and one of the support rollers 14, 15, and 16 is rotationally driven so that the intermediate transfer belt 10 is rotationally driven. Simultaneously, the photoconductors 20Y, 20C, 20M, and 20K of the respective image forming units 18Y, 18C, 18M, and 18K are rotationally driven. The laser writing device 21 irradiates the photoconductors 20 of the image forming units 18 with the writing light based on the image information read by the reading sensor 36. The electrostatic latent images are formed on the photoconductors 20, and are visualized by the development devices 61. Thereby, toner images of yellow, cyan, magenta, and black are formed on the respective photoconductors 20Y, 20C, 20M, and 20K.
These color toner images formed on the photoconductors 20Y, 20C, 20M, and 20K are sequentially transferred onto the transfer belt 10 by the primary transfer devices 62Y, 62C, 62M, and 62K such that the color images are superimposed on the belt 10. Thereby, synthetic toner images are formed on the intermediate transfer belt 10 by superimposing the color images. The remaining toner on the intermediate transfer belt 10 is removed by the belt cleaning device 17 after the secondary transfer.
When the user presses the start switch, the feed roller 42 of the feeding device 200 corresponding to the transfer sheet 5 selected by the user is rotated, and the transfer sheets 5 are fed from one of the sheet cassettes 44. The transfer sheets fed from the cassette are separated to one sheet by the separation roller 45, and each sheet is fed into the feeding path 46. Each transfer sheet 5 is conveyed to the conveyance path 48 by the conveyance roller 47, and is stopped at the registration roller 49b.
The registration roller 49b begins to rotate at a timing when the synthetic toner images on the intermediate transfer belt 10 is conveyed to a secondary transfer area opposing to the secondary transfer roller 24. The transfer sheet 5 is fed from the registration roller 49bto a location between the intermediate transfer belt 10 and the secondary transfer roller 24, and the synthetic toner image on the transfer belt 10 is secondarily transferred onto the transfer sheet 5. The transfer sheet 5 is conveyed to the fixing device 25 while being absorbed to the secondary transfer roller 24, and is heated and pressed by the fixing device 25 so that the toner image is fixed. The transfer sheet 5 is ejected to the ejection tray 7 by the ejection roller 56. In a case where an image is formed on a back side of the transfer sheet having a fixed toner image, the transfer sheet passed the fixing device 25 is switched in a conveyance direction thereof by the switching tab 55, and is fed to the reversal device 93. The sheet 5 is reversed by the reversal device 93, and is guided to the secondary transfer roller 24 again.
The control unit 500 of the image forming apparatus having the CPU 501, ROM 503, and RAM 504 performs an adjustment control of an image forming condition called a self-check immediately after a power source (not shown) is turned on. In the self-check, gradation pattern images are formed on the surfaces of the photoconductors 20Y, 20M, 20C, and 20K in the respective image forming units 18Y, 18C, 18M, and 18K, and are transferred onto the intermediate transfer belt 10. The gradation pattern images of yellow, magenta, cyan, and black include a plurality of reference patches (e.g., reference toner images) each of which has a per unit area of the different toner adhesion amount. These gradation pattern images are transferred on the transfer belt 10. A detailed description of the gradation pattern images and the reference patch will be given with reference to
Referring to
The optical sensor unit 110 described above includes a regular optical sensor 110a and a multi-reflection sensor 110b which are respectively described in
Referring to
Referring to
Therefore, the regular optical sensor 110a of
The optical sensor employs a GaAs infrared emission diode with a peak emission wavelength λp=950 nm as the LED. The optical sensor also employs a Si phototransistor of 800 nm of a peak receiving sensitivity as the light receiving element. A detection distance between the optical sensor and a detection target surface of the intermediate transfer belt 10 is 5 mm.
Regarding the self-check described in
The LED of the optical sensor has the characteristic described in
This waiting time of the related art may be eliminated when one reference patch is formed, and is detected by the optical sensor. For example, the waiting time may be eliminated when one patch is formed in an area between transfer sheets of a printing job in execution even if an initial change in the emission amount of the LED exists. For example, the Vsg is detected immediately before the reference patch is detected so that substantially no influence is exerted on a detection accuracy of the Vsg and the reference patch because results of these detections are derived from relatively the same emission amounts. However, such a control may not be conducted when the self-check is performed. A detailed description will be given with reference to
Referring to
In
In
Differences between results of
Referring to
In the related art, the LED of the optical sensor is turned on and off each time the Vsg adjustment, potential adjustment, and half-tone γ correction for the self-check are performed. For example, a sum of the waiting time has been 5 seconds×3 times=15 seconds.
A configuration of the image forming apparatus of the exemplary embodiment is described below.
Referring to
In the self-check procedure, in a step S700, output voltages for the two optical sensors in states where the LEDs are OFF are detected as Voffset. For the regular optical sensor 110a, the output voltage from the light receiving element 112 is detected as a Voffset_reg. For the multi-reflection sensor 110b, the output voltage from the first receiving element 113 is detected as the Voffset_reg while the output voltage from the second receiving element 114 is detected as a Voffset_dif.
In a step S701, a start process of an image forming apparatus is performed. A motor load is started, for example, each photoconductor motor, an intermediate transfer belt motor, and a secondary transfer motor. Also, a charge bias, a development bias and a transfer bias are started at predetermined image forming timings. Here, the intermediate transfer belt motor is started so that the intermediate transfer belt 10 begins to drive, and simultaneously the LED of the optical sensor is turned on. Start timings of the motors, biases, and LED are described in
In a step S702, a surface potential Vd of the each photoconductor 20 uniformly charged under a predetermined condition is detected by the potential sensor 120.
In a step S703, an AC charge bias of the charging device 60 is adjusted based on a result detected by the step 702. In steps S702 and S703, procedures are performed in parallel by respective colors of the photoconductor units 18Y, 18C, 18M, and 18K.
In a step S704, the Vsg adjustment described above is performed. The emission amount of the LED of the optical sensor 110a is adjusted such that the output voltage Voffset_reg from the regular optical sensor 110a detecting the regular reflection light from the background unit of the intermediate transfer belt 10 is to be within a predetermined range (e.g., 4.0±0.2V). Each output voltage after the adjustment is stored in the RAM 504 as the Voffset_reg or the Voffset_dif. In the step S704, a procedure is performed for two optical sensors in parallel.
The steps S702 through S704 are called pre-processing. After the pre-processing, the potential adjustment is performed in steps S705 through S715.
In the step S705, four 10-gradation pattern images are formed for colors, Y, C, M, and K. Each 10-gradation pattern image includes 10 reference patches of different densities with different toner adhesion amounts.
In a step S706, the gradation pattern images are detected by the two optical sensors which are disposed 40 mm away from each other, and respective results are stored in the RAM 504 as K-Vsp_reg-i, Y-Vsp_dif-i, C-Vsp_dif-i, M-Vsp_dif-I where i is 1 through 10. Simultaneously, the output value of the potential sensor 120 with respect to a potential of each gradation pattern image on the photoconductor 20 is read and stored in the RAM 504. Each reference patch is sized at 15 mm×20 mm, and is disposed 10 mm away from one another.
In a step S707, the development potential is calculated from the output value of the potential sensor 120 stored in the RAM 504, and the development bias at a time of forming the pattern (see,
In a step S708, the development γ is calculated by calculating an equation of a collinear approximation (shown in
In a step S710, the charge potential Vd of the photoconductor 20 (i.e., the surface potention of the photoconductor), the development bias Vb, an optical writing intensity VL matching to the development potential γ are specified based on a potential table, for example TABLE 1 below.
In a step S711, a laser emission power of a semiconductor laser is controlled through a laser control circuit (not shown) controlling the laser writing device 21 so as to be a maximal light amount, and a residual potential of the photoconductor 20 is detected by importing the output value of the potential sensor 120.
In a step S712, when the residual potential of the step S711 is not 0, the residual potential is corrected with respect to the Vd, Vb, and VL specified in the step S710 so as to be as a target potential.
In a step S713, a power circuit (not shown) is adjusted such that the charge potential Vd by the charge device 60 of the each photoconductor 20 becomes the target potential.
In a step S714, the optical writing intensity VL is adjusted so that the laser emission power of the semiconductor laser through the laser control circuit is adjusted such that the surface potential Vd of the photoconductor 20 becomes the target potential.
In a step S715, after the power circuit is adjusted such that the respective development bias potentials Vt of the development devices 61K, 61C, 61M, 61Y become the target potentials, respective adjusted values are stored as image forming conditions in a printing operation.
After the potential adjustment in the steps S705 through S715, the γ correction is performed in steps S716 through S720.
In the step S716, a 16-gradation pattern image is formed for each color.
In a step S717, the 16-gradation pattern image is detected on the intermediate transfer belt 10 by the optical sensor.
In a step S718, the toner adhesion amount of each reference patch is determined based on a result of the step S717.
In a step S719, data of the toner adhesion amount as a half-tone correction is plotted with respect to a LD (laser diode) writing amount. An amount of the error with respect to an ideal half-tone characteristic is calculated based on a result of the plot.
In a step S720, a correction is made with respect to an input value of the each LD writing amount, and a result of the correction (e.g., a process control γ table) is fed back to an optical writing γ. Process operations of the self-check are ended in the step S720.
In a step S721, an ending process of the image forming apparatus is performed, and the self-check is ended. Here, the LED of the optical sensor is turned off.
A series of the self-check includes noteworthy points. When the start process of the image forming apparatus is performed, the intermediate transfer belt 10 begins to drive, and simultaneously the LEDs of the two optical sensors are turned on. The LEDs of the optical sensors remain being on until the ending process of the image forming apparatus is performed. The start process of the image forming apparatus needs 2 seconds for stabilizing a driving speed of each driving unit or the output voltage value of the power circuit, for example. After the image forming apparatus is started, various processes are needed before the Vsg is detected. The various processes include, for example, a detection of the Vd (S702) and an adjustment of the AC charge (S703). While these processes need at least several seconds to complete, the emission amount of the LED may be stabilized. Thereby, a necessity of the waiting time for stabilizing the emission amount of the LED is reduced in the step S704. An occurrence of prolonging the self-check may be reduced.
In the image forming apparatus of the exemplary embodiment, once the image forming apparatus is started, the LED remains on until the image forming apparatus is finished. Unlike the device of the related art which turns the LED on and off each time the gradation pattern image is detected, this image forming apparatus may not be in need of the waiting time for the potential adjustment and the half-tone γ correction. Thereby, an occurrence of a lengthy duration of the self-check by the waiting time may be reduced.
An ideal detection location for accurately feeding back the detection result of the reference patch has generally been known on the photoconductor which is after the development and before the transfer. However, when the reference patch is detected on the photoconductor, a light fatigue of the photoconductor is generated by irradiation of a LED light. This fatigue of the photoconductor has generated situations, for example, an image formed on a LED (a light emitting diode) irradiated portion of the photoconductor has been darker or faded in a stripe shape. Consequently, the LED is on for a minimum period of a time so that an occurrence of the fatigue is reduced. Unlike a configuration of the image forming apparatus of the exemplary embodiment, the related art is not capable of employing a configuration in which the LED is turned on as early as possible so that and the emission amount is stabilized beforehand.
In the image forming apparatus, each reference patch is detected on the intermediate transfer belt 10, rather than on the photoconductor. In the configuration of the image forming apparatus, the LED is turned on at an early timing, and an occurrence of prolonging the self-check may be reduced without the light fatigue of the photoconductor by irradiation of the LED light.
Referring to
Referring to
Referring to
Here, in a case where a reflection rate of the background unit of a detection target surface by the optical sensor is relatively high, in the Vsg adjustment, the emission amount of the LED needed for the light receiving element to receive a reflection light of a stipulated amount becomes relatively small. That is, a LED current value needed for the output voltage value from the optical sensor to be a stipulated value (e.g. 4.0±0.2V) becomes relatively small. For example, the LED current value needed to obtain 4.0V of the Vsg (Vsg=4.0V) is 4 to 7 mA in a case where the LED light is reflected at an opposing roller surface with using a transparent belt as the intermediate transfer belt and a metal roller having a high mirror reflection rate (20° gloss: 500) as an opposing roller of the optical sensor.
The image forming apparatus, on the other hand, employs a carbon dispersed belt (20° gloss: 120) having a change in a resistance with respect to a temperature and humidity environment as the intermediate transfer belt 10. This intermediate transfer belt 10 is colored in black by dispersing the carbon, and the mirror reflection rate is reduced to ¼, which is relatively low. In a case where this intermediate transfer belt 10 obtains 4.0V of the Vsg, the LED current is 20 to 35 mA which is 5 times larger than when using the transparent belt. Similarly, in a case of using a low gloss belt or a surface roughness belt, the LED current is relatively large.
As described above, the LED current needs to be within a range of the allowance forward current with respect to the ambient temperature. Thereby, the LED current with 20 to 35 mA may be difficult. A method of obtaining a predetermined Vsg while maintaining the LED current within the allowable forward current may include an enhancement of sensitivity of the light receiving element included in the optical sensor. That is, an enhancement of a gain of an operational amplifier. According to this method, 4.0V of the Vsg may be obtained while the LED current is maintained within the range of the allowance forward current. However, since this method simply amplifies a very weak light entering the light receiving element in terms of an electrical circuit, a high S/N ratio may not be obtained.
In this image forming apparatus, the gain of the operational amplifier is enhanced in addition to having a larger LED current value compared to a high reflection belt as a measure against the black intermediate transfer belt 10 being the detection target surface. Thereby, the LED current value is maintained within the allowable forward current, and an occurrence of decreasing the S/N ratio is reduced. Particularly, the LED current is set to be 15 mA in prospect of a maximum ambient temperature 50° C. and a ⅔ elapsed time reduction in the light amount. The operational amplifier is set to be 2.5 times in prospect of 20 to 35 mA (with a maximum width 15 mA) of a variation in the LED current with a maximum width 15 mA. Thereby, the S/N ratio needed for the optical sensor may be obtained on the black intermediate transfer belt 10 capable of providing a stable transfer performance without depending on the environment.
Referring to
In the image forming apparatus as described above, the LED is turned on when the image forming apparatus is started and maintains being on until the ending process so that an occurrence of an unnecessary waiting time during the self-check may be reduced. In the configuration of the image forming apparatus, an ON time period of the LED is longer compared to a situation of the related art where the LED is turned on and off when an optical detection is needed. Unlike the related art, an elapsed time reduction in the emission amount of the LED as shown in
Therefore, this image forming apparatus corrects the detection result so as to reduce an occurrence of reducing the detection accuracy by the elapsed time reduction in the emission amount with the multi-reflection sensor 110b. Thereby, a change in an output of the diffuse reflection light by the reduction in the light amount of the LED current is corrected.
The correction is explained. The correction stated above, for example in the step S707, is made when the color toner adhesion amount is calculated. Symbols used for explaining the correction are defined as follows.
Vsg: the output voltage value from the optical sensor which detects the background unit of the transfer belt (referring to a background detection voltage).
Vsp: the output voltage value from the optical sensor which detects each reference patch (referring to a patch detection voltage).
Voffset: the offset voltage (e.g., the output voltage value when the LED is OFF).
_reg.: the regular reflection light output
_dif.: the diffuse reflection light output
(cf. JIS Z 8105 Glossary of color terms)
[n]: an element number (e.g., an array variable of n)
Referring to
In a step S801, a data sampling is performed so that a ΔVsp and a ΔVsg are calculated. Initially, the regular reflection light output, the diffuse reflection light output, and a difference between the offset voltage and all reference patches (quantity: n) are calculated. These calculations are performed so that an increment of the sensor output which is caused by a change in the color toner adhesion amount may be expressed eventually.
An increment of the regular reflection light output is determined by:
ΔVsp rep. [n]=Vsp_reg. [n]−Voffset_reg.
An increment of the diffuse reflection light output is determined by:
ΔVsp_dif. [n]=Vsp_dif. [n]−Voffset_dif.
Such a difference process may be omitted in a case where the operational amplifier is employed such that the offset output voltage (e.g., the Voffset_reg or the Voffset_diff) becomes a small enough to be ignored. This step S801 provides a characteristic curve shown in
Referring to
In a step S802 of
α=min(ΔVsp_reg. [n]/Vsp_Dif. [n])
Where the sensitivity correction coefficient α is a minimum value between the ΔVsp_reg. [n] and the Vsp_dif. [n] because the minimum value for a regular reflection component of the regular reflection light output is nearly 0 and a positive which are known beforehand. This step S802 provides a characteristic curve shown in
Referring to
In a step S803 of
ΔVsp_reg. dif. [n]=ΔVsp_dif. [n]×α
A regular reflection composition of the regular reflection light output is determined by:
ΔVsp_reg. reg. [n]=Δvsp_reg. [n]−ΔVsp_reg._dif. [n]
When the decomposition is performed, the regular reflection composition of the regular reflection light output becomes 0 at the patch detection voltage at which the coefficient α is determined. Therefore, the regular reflection light output is decomposed into the regular reflection composition and the diffuse light output as shown in
Referring to
In a step S804 of
A normalized value β=an exposure rate of the background unit of the intermediate transfer belt =ΔVsp_reg._reg./ΔVsg_reg._reg.
This step S804 provides a characteristic curve as shown in
Referring to
In a step S805, a change in the background unit of the diffuse light output is corrected. The diffuse light output component from the belt background unit is removed from the diffuse light output voltage.
A post correction of the diffuse light output
=ΔVsp_dif.′
=the diffuse light output voltage−the background detection voltage×the normalized value of the regular reflection component
=ΔVsp_dif.(n)−ΔVsg_dif.×β(n)
Therefore, an influence on the background unit of the intermediate transfer belt 10 may be removed. In an area of a low adhesion amount having the sensitivity by the regular reflection light output, the diffuse light component directly reflected from the belt background unit may be removed from the diffuse light output. The post-correction of the diffuse light output in a range of the toner adhesion amount from 0 to 1 layer is converted to a value as shown in
Referring to
In a step S806 of
Referring to
The gradient of the line is determined by a least square method below.
X=a mean value of the normalized value of the regular reflection component in the regular reflection light
y=Y−the gradient of the line x X
x [i]=the normalized value of the regular reflection component in the regular refection light (where a range of x is 0.06≦x≦1)
y [i] =the diffuse light output of the change in the background unit in the post-correction
Y=a mean value of the diffuse light output of the change in the background unit in the post-correction
The gradient of the line
=Σ(x[i]−X)(y[i]−Y)/Σ(x[i]−X)2
In this image forming apparatus, a lower limit of the x for the calculation is 0.06. However, the lower limit may be optionally determined within a range in which the x and y has the leaner relation. An upper limit is set to be 1 because the normalized value is between 0 to 1.
According to the sensitivity determined, a sensitivity correction coefficient γ is determined such that a normalized value a to be calculated becomes a value b.
The sensitivity correction coefficient: γ
=b/(the gradient of the line x a+y intercept)
The diffuse light output of the change in the background unit in the post-correction determined in the step S805 is corrected by multiplying the sensitivity correction coefficient γ.
The diffuse light output of the sensitivity in the post-correction
=ΔVsp_dif.″
=the diffuse light output of the change in the background unit in the post-correction x the sensitivity coefficient γ
=ΔVsp_dif. (n)′ x the sensitivity correction coefficient γ
In a step S807 of
A second exemplary embodiment of the image forming apparatus of the present invention is described. As a configuration of the second exemplary embodiment is similar to the exemplary embodiment described above, a detailed description is omitted.
As described above in the exemplary embodiment, the image forming apparatus of the second exemplary embodiment is capable of reading the image information of the original by the scanner 300 to obtain image information. The image forming apparatus is also capable of obtaining the image information sent from an external personal computer by a printer interface (not shown) as the image information input mechanism. The toner image is formed on the transfer sheet 5 based on the image information obtained by the image information input mechanism.
The image forming apparatus of the second exemplary embodiment counts a number of print-out sheets by a related art count circuit (not shown) after performing the self-check. A number of the print-out sheets are determined by a determination circuit (not shown) whether or not a count number of the sheets reaches a predetermined number, for example, 200 sheets. When the determination circuit determines that the count number reaches the predetermined number, an execution signal for requesting the self-check is output to the control unit including the CPU 501, the ROM 503, and the RAM 504.
When the control unit receives the execution signal from the determination circuit during a continuous print operation, the control unit interrupts the continuous print operation so as to perform the self-check. The continuous print operation performs a print-out continuously with respect to a plurality of the transfer sheets 5.
When the continuous print operation is interrupted, the Vsg adjustment (e.g., the step S704 of
In this image forming apparatus, when an operator commands the control unit to start the process control for forming the toner image based on the image information obtained by the scanner 300 or the printer interface, the LED of the optical sensor is turned on regardless of a detection result by the detection circuit. In the continuous print operation, the print job with respect to at least one transfer sheet needs to be performed so that an accumulated number of the print-out sheets may reach the predetermined number. Therefore, when the process control is started to begin the continuous print operation, with the LED of the optical sensor being turned on, the emission amount of the LED is stabilized even if the accumulated number of the print-out sheets reaches the predetermined number, and the execution signal is output from the determination circuit. Thereby, an occurrence of the lengthy duration caused by waiting for the self-check may be reduced without stabilizing the emission amount of the LED during the self-check. When the LED is turned on upon start-up of the image forming apparatus in an initial state of the continuous print operation, the LED maintains being on until the ending process of the image forming apparatus in a later state of the continuous print operation regardless of a presence or absence of the self-check. Therefore, the LED maintains being on until at least all the reference patches are detected.
A third exemplary embodiment of the image forming apparatus of the present invention is described.
Like the second exemplary embodiment, the third exemplary embodiment of the image forming apparatus counts a number of the print-out sheets by a related art count circuit (not shown) after performing the self-check. A number of the print-out sheets are determined by the determination circuit (not shown) whether or not the count number of the sheets reaches the predetermined number, for example, 200 sheets. In a case of reaching the predetermined number of the sheets, the execution signal for requesting the self-check is output to the control unit.
When the image information with respect to the plurality of transfer sheets 5 is continuously sent from the external personal computer to the image information input mechanism, for example, when the image information with respect to an individual transfer sheet for the continuous print operation is sent, the count number may be predicted during the continuous print operation whether or not the predetermined number to be reached. For example, under an instruction of performing the self-check at a point in time when the count number reaches 200 sheets, in a case where the count number is 189 sheets before the continuous operation is performed, and the image information with respect to 20 transfer sheets is continuously sent from the personal computer, the execution signal may be predicted to be output from the determination circuit at a time of printing out a 11th sheet.
In this image forming apparatus, the count number is predicted during the continuous print operation whether or not to reach the predetermined number of sheets based on the image information continuously sent from the personal computer. Thereby, the control unit is configured to perform a control of turning on the LED before the execution signal is output when the count number is predicted to reach the predetermined number. The control unit functions as a prediction mechanism. In this configuration, as the emission amount of the LED may also be stabilized before the execution signal is output, an occurrence of prolonging the self-check caused by waiting for a stabilization of the emission amount may be reduced. In the image forming apparatus, when the LED is turned on during the continuous print operation, the LED maintains being on until the image forming apparatus is finished in the later state of the continuous print operation. Thereby, the LED maintains being on until at least all the reference patches are detected.
A transformation example of the third exemplary embodiment of the image forming apparatus is described.
In the transformation example, a related art clock circuit (not shown) clocks the elapsed time after the self-check is performed. The determination circuit (not shown) determines whether or not a clock value clocked by the clock circuit reaches a predetermined value, for example, 40 hours. The clock circuit (referring to the preliminary condition determiner) outputs the execution signal for the self-check to the control unit including the CPU 501, the ROM 503, and the RAM 504 when the clock value reaches the predetermined value.
The control unit continuously prints out with respect to the plurality of transfer sheets 5. When the control unit receives the execution signal from the determination circuit during the continuous print operation, the control unit interrupts the continuous print operation so as to perform the self-check.
In the transformation example, a time needed for the print job with respect to one transfer sheet is determined beforehand. When a print command is issued, the clock value may be predicted during a print operation whether or not the clock value reaches the predetermined value regardless of performing the continuous print operation or a 1 job print operation.
In the transformation example of the image forming apparatus, the clock value is predicted during the continuous print operation when the print command is issued whether or not the clock value reaches the predetermined value. Thereby, the control unit is configured to perform the control of turning on the LED before the execution signal is output when the clock value is predicted to reach the predetermined value. The control unit functions as the prediction mechanism. In this configuration, as the emission amount of the LED may also be stabilized before the execution signal is output, an occurrence of prolonging the self-check caused by waiting for the stabilization may be reduced.
In the above explanation, a reflection optical sensor is used as the optical sensor. The reflection optical sensor receives a reflection light, the light receiving element being the receiving mechanism. The reflection light is obtained by reflecting a light emitted from the LED which is the emission mechanism at a detection target surface. However, a transmission optical sensor may be used as the optical sensor. When the transmission optical sensor is used, a material having a light transmission capability is used as the intermediate transfer belt 10, and the receiving mechanism receives a transmission light obtained by transmitting the light emitted from emission mechanism to the belt. The toner adhesion amount of the reference toner patch is determined based on the light receiving amount of the transmission light by the receiving mechanism.
A device having a configuration shown in
Referring to
When the light having the P and S deflecting components emitted from the LED 121 passes through the deflecting filter 122, the S deflective component is cut so that the P deflective component is remained and reflected at the detection target surface, and becomes the reflection light. Here, a polarization is disturbed by the reflection so that the reflection light includes the P and S deflecting components again. When the reflection light passes through the beam splitter 123, the P deflecting component travels in a direction which is the same as before entering into the beam splitter while the S deflecting component travels in a direction which is inclined by 90°. Thereby, the P and S deflecting components are split. The P and S deflecting components after passing through the beam splitter 123 are respectively received by the first and second receiving elements 124 and 125.
The exemplary embodiments described above are configured to transfer the toner image on the photoconductor 20 onto the transfer sheet 5 through the intermediate transfer belt 10. The exemplary embodiments may also be configured to dispose a conveyance belt to convey the transfer sheet in a location opposing to the photoconductor, and the toner image on the photoconductor is directly transferred onto the transfer sheet being transferred with the transfer sheet being held onto a surface of the conveyance belt. In this configuration, the reference patch is transferred onto a surface of the conveyance belt, not onto the transfer sheet being held onto the surface of the conveyance belt. Thereby, the reference patch on the surface of the conveyance belt may be detected by the optical sensor.
The image forming apparatus capable of forming the toner image of a plurality of colors by superimposing transfer processes is described above. However, exemplary embodiments of the present invention may also apply to an image forming apparatus capable of forming a single color toner image.
In addition, the tandem image forming apparatus including the four photoconductors on which the toner images of different colors are formed are described above. In the tandem image forming apparatus, the toner images of the different colors are superimposed and then transferred so that a toner image of a multiple colors is formed. However, exemplary embodiments of the present invention may apply to an image forming apparatus capable of forming the toner image of a multiple colors with one photoconductor which is illustrated in
Referring to
The control unit above is configured to correct the result detected by the diffuse reflection light based on the comparison between the results detected by the regular optical sensor 110a and the multi-reflection sensor 110b. A result detected by the regular optical sensor 110a shows the regular reflection lights for the plurality of respective reference patches. Each of the reference patches has the different toner adhesion amount per unit area. Another result detected by the sensor 110b shows the diffuse reflection lights for the plurality of respective reference patches. However, the control unit may be configured to correct a detection result of the diffuse reflection light obtained by one reference patch based on a detection result of the regular reflection light obtained by the one reference patch as disclosed by a related art technique.
The control unit as the correction mechanism may be configured to correct the output value for the diffuse reflection light of the optical sensor by another related art technique. In this related art correction technique, a reference member may be inserted between the intermediate transfer belt 10 and the optical sensor. The optical sensor may be turned so as to aim at the reference member. The diffuse reflection light in the reference member is detected so that the correction of the output value is made based on the detection result.
The third exemplary embodiment of the image forming apparatus above causes the control unit to predict during the continuous print operation whether or not a quantity condition of printing out the predetermined number of sheets is satisfied based on the image information obtained by the printer interface or the scanner 300. The quantity condition becomes a trigger for performing the self-check. In this configuration, as stated above, the control unit accurately predicts during the continuous print operation whether or not the condition is satisfied, and the emission amount of the LED may be stabilized as may be needed before the self-check.
The third exemplary embodiment causes the control unit to predict during the continuous print operation whether or not a time condition of elapsing the predetermined time is satisfied based on the result clocked by the clock circuit which clocks the elapsed time from a predetermined point in time. The time condition becomes the trigger for performing the self-check. In this configuration, the control unit accurately predicts during the continuous print operation whether or not the time condition is satisfied, and the emission amount of the LED may be stabilized as may be needed before the self-check.
The exemplary embodiments of the image forming apparatus include, for example, the photoconductor, the laser writing device 21, the development device 61, and the primary transfer device 62 as an image forming mechanism to form a toner image. The image forming mechanism which transfers the reference patch developed on the photoconductor onto the intermediate transfer belt 10 is used. The reference patch on the transfer belt 10 is detected by the optical sensor. In this configuration, as stated above, the LED is turned on at the early timing so that an occurrence of the lengthy duration of the self-check may be reduced without the light fatigue of the photoconductor by irradiation of the LED light.
In addition, the exemplary embodiments of the image forming apparatus cause the control unit to control the calculation for a value of setting an image forming condition or the optical writing γ based on the light reflection amounts for each respective reference patch after the plurality of reference patches are formed when the self-check is performed. The image forming condition includes the Vd, Vb, and VL. The image forming condition may be appropriately set based on the detection result of the light reflection amounts for the plurality of reference patches.
The exemplary embodiments of the image forming apparatus above causes the control unit to control a formation of the gradation pattern image. The gradation pattern image includes the plurality of reference patches each of which has the per unit area of the different toner adhesion amount. The development γ or the optical wring γ may be appropriately adjusted based on the detection result for the respective reference patch included in the gradation pattern image.
The exemplary embodiments of the image forming apparatus causes the control unit to control the LED to maintain being on until the reflection light amount is detected for at least all the reference patches when the LED begins emitting the light for the self-check. In this configuration, during the self-check as stated above, an occurrence of the waiting time caused by turning on and off in a case of the optical detection may be reduced.
In the exemplary embodiments of the image forming apparatus, the multi-reflection sensor 110b detecting the diffuse reflection light from the detection target is used as the light receiving element, and the result detected by the multi-reflection sensor 110b is corrected by the correction mechanism. In this configuration, as stated above, the toner adhesion amounts for the reference patches of the Y, C, and M colors are accurately detected, and an occurrence of reducing the detection accuracy by increasing an emission time of the LED may be reduced.
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the disclosure of this patent specification the invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2005-215809 | Jul 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5182600 | Hasegawa et al. | Jan 1993 | A |
5198861 | Hasegawa et al. | Mar 1993 | A |
5327196 | Kato et al. | Jul 1994 | A |
5387965 | Hasegawa et al. | Feb 1995 | A |
5475476 | Murai et al. | Dec 1995 | A |
5630195 | Sawayama et al. | May 1997 | A |
5682572 | Murai et al. | Oct 1997 | A |
5761570 | Sawayama et al. | Jun 1998 | A |
5857131 | Hasegawa | Jan 1999 | A |
5860038 | Kato et al. | Jan 1999 | A |
6055386 | Kato et al. | Apr 2000 | A |
6160569 | Fujimori et al. | Dec 2000 | A |
6496677 | Fujimori | Dec 2002 | B2 |
6526235 | Kato | Feb 2003 | B2 |
6594453 | Kato | Jul 2003 | B2 |
7711275 | Miyashita | May 2010 | B2 |
20040136025 | Moriyama et al. | Jul 2004 | A1 |
20040253012 | Ishibashi | Dec 2004 | A1 |
20050019048 | Kato | Jan 2005 | A1 |
20050025510 | Yamada et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
04-060567 | Feb 1992 | JP |
06148991 | May 1994 | JP |
09-284556 | Oct 1997 | JP |
11-084762 | Mar 1999 | JP |
11-184187 | Jul 1999 | JP |
2000-075563 | Mar 2000 | JP |
2002-049193 | Feb 2002 | JP |
2002-148887 | May 2002 | JP |
2002-236402 | Aug 2002 | JP |
2003-131443 | May 2003 | JP |
2003-177589 | Jun 2003 | JP |
2005-77685 | Mar 2005 | JP |
2005-106525 | Apr 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070025748 A1 | Feb 2007 | US |